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Abstract

Bordetella bacteria are respiratory pathogens of humans, birds, and livestock. Bordetella

pertussis the causative agent of whopping cough remains a significant health issue. The

transcriptional regulator, BpsR, represses a number of Bordetella genes relating to viru-

lence, cell adhesion, cell motility, and nicotinic acid metabolism. DNA binding of BpsR is

allosterically regulated by interaction with 6-hydroxynicotinic acid (6HNA), the first product

in the nicotinic acid degradation pathway. To understand the mechanism of this regulation,

we have determined the crystal structures of BpsR and BpsR in complex with 6HNA. The

structures reveal that BpsR binding of 6HNA induces a conformational change in the protein

to prevent DNA binding. We have also identified homologs of BpsR in other Gram negative

bacteria in which the amino acids involved in recognition of 6HNA are conserved, suggest-

ing a similar mechanism for regulating nicotinic acid degradation.

Introduction

Bordetella bacteria are Gram-negative, respiratory pathogens of humans, birds, and animal

livestock. Three of the nine currently known species also known as the “classical species” are

closely related genetically. Bordetella bronchiseptica causes a diverse range of diseases and

chronically colonizes four-legged animals, marine mammals and humans [1,2]. Bordetella per-
tussis, the obligate human pathogen responsible for whooping cough, remains a prevalent

human health threat in spite of widespread and sustained vaccination coverage [3,4]. Borde-
tella parapertussis can infect both humans and sheep. A significant factor in the persistence of

these bacteria is their ability to form biofilms, a sessile lifestyle, in the respiratory tract of

infected animals and individuals allowing for efficient spread of the organism between hosts

[5–11]. The Bps exopolysaccharide is a critical component of the biofilm matrix and virulence

factor of the Bordetella species [12–14]. Synthesis of Bps requires the functions of the gene

products coded by the bpsA-D locus. Expression of the bpsA-D locus is repressed by the tran-

scriptional regulator, BpsR. The BpsR proteins from the three classical Bordetella species

exhibit >99% amino acid sequence identity [15].
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Additionally, BpsR regulates a number of genes relating to cell adhesion, cell motility, cell

wall strength, and intra- and extracellular transport [15,16]. Recently, we and others have

shown that BpsR controls the growth of B. bronchiseptica by repressing genes involved in nico-

tinic acid (NA) degradation [16,17]. Nicotinic acid or nicotinamide is essential for the growth

of many pathogenic Bordetella species in the laboratory. NA contributes to NAD synthesis in

the salvage pathway. It can also serve as a carbon and nitrogen source when degraded through

aerobic or anaerobic catabolism. In Bordetella, aerobic degradation of NA involves genes in

the nic cluster, which are conserved in B. bronchiseptica, B. pertussis, and B. parapertussis
[16,17] with a similar pathway conserved in other bacteria [18,19]. In the first step of degrada-

tion, NA is oxidized to 6-hydroxynicotinic acid (6HNA) by the nicA and nicB gene products

[18,19]. BpsR represses expression of the downstream nicC and nicE genes [16]. BpsR repres-

sion is relieved by binding of 6-hydroxynicotinic acid (6HNA), allowing tight regulation of the

pathway to control NA metabolism according to the needs and environment of the bacterium.

Thus, deciphering the structural basis of BpsR-HNA interactions is an important step in

improving the therapeutic options for disease and infection caused by Bordetella.

BpsR is a member of the MarR family of bacterial transcriptional regulators [20]. MarR pro-

teins often repress genes involved in the response to organic compounds, environmental

stresses, and virulence factors [21,22]. They are obligate homodimers and many are responsive

to ligand binding [23]. While some of the biological aspects of BpsR transcriptional regulation

have been reported, its structure and mechanism for allosteric regulation have remained unan-

swered questions. Here we report the crystal structure of BpsR and the complex of BpsR with

6HNA. These structures reveal a conformational change in protein structure upon BpsR bind-

ing of 6HNA that make it incompatible with DNA binding and explain the allosteric

regulation.

Materials and methods

Cloning, expression, and purification of BpsR

The gene fragment encoding BpsR was inserted into a modified pET19 expression vector

(Novagen) which encodes an N-terminal poly-histidine tag, followed by a Rhinovirus 3C pro-

tease cleavage site to permit the removal of the affinity tag (PreScission Protease, GE Health-

care). The pET19-bpsR vector was transformed into E. coli strain C41(DE3) cells for

expression. One liter of LB-Broth (Luria-Bertani) supplemented with 50 μg/ml of ampicillin

was inoculated with 50 ml of an overnight culture of the C41 cells containing the pET19-bpsR
vector. The cells were grown at 37˚C to an OD600 = 0.5, and induced with 1 mM isopropyl β-

D-thiogalactopyranoside (IPTG) at 16˚C for 20 hours. Prior to induction with IPTG, cells

were rapidly cooled on ice to 20˚C to bring the temperature of the culture close to the induc-

tion temperature. Induction of the cells at low temperature was necessary for protein stability

during overexpression. Cells were harvested by centrifugation, resuspended in lysis buffer (100

mM Tris pH 7.5, 500 mM NaCl, 5% glycerol, 40mM Imidazole), and lysed using an EmulsiFlex

C-5 cell homogenizer (Avestin). Cell debris was removed at 30,000 x g and the supernatant

was passed over a Ni-NTA (Qiagen) column equilibrated with lysis buffer. This column was

washed with buffer (100 mM Tris pH 7.5, 500 mM NaCl, 5% glycerol, 40 mM imidazole).

Bound BpsR was eluted with wash buffer containing imidazole (100 mM Tris pH 7.5, 500 mM

NaCl, 5% glycerol, 500 mM imidazole), treated with PreScission Protease according to the

manufacturer’s directions, and dialyzed overnight at 4˚C against 100 mM MES (pH 6.0), 200

mM NaCl, 5% glycerol, 1 mM dithiothreitol (DTT), and 0.5 mM EDTA. BpsR was further

purified using a heparin cation exchange column, and eluted with a 0.1 M– 1.5 M gradient of

NaCl. Purity of the peak fractions was verified by SDS-PAGE, and fractions containing pure

BpsR structure

PLOS ONE | https://doi.org/10.1371/journal.pone.0223387 November 7, 2019 2 / 12

WB and 5T32GM095440-10 to RRD. The funders

had no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0223387


BpsR were pooled. For crystallization experiments, BpsR was dialyzed against 100 mM Bis-

Tris pH 5.5, 100 mM NaCl, 2% glycerol. BpsR was concentrated to 10 mg/mL for crystalliza-

tion experiments, flash frozen in liquid nitrogen, and stored at -80˚C.

Crystallization of BpsR

Crystallization of BpsR was carried out using the sitting drop vapor diffusion method with

equal volumes of protein and crystallization solution in the drop reservoir. Initial crystals were

identified in the PEG-ION screen (Hampton Research) and a PEG-infactorial screen [24]. Opti-

mized crystallization conditions contained 18% PEG 2250, 0.2 M potassium formate, and 15%

butanediol in the reservoir solution. Crystals were transferred to a drop containing 50% mineral

oil, 50% parafin oil (Hampton Research) prior to cryocooling in a liquid nitrogen stream.

Co-crystallization of the 6HNA-BpsR complex was performed with 10 mg/ml BpsR. Crys-

tals were obtained by mixing 2.6 μL of protein solution with 3 μL of the reservoir solution con-

taining 0.1 M HEPES (pH 7.5), 2 mM 6-HNA, 0.2 M MgCl2, 18.5% PEG 3350. The crystals

were obtained by incubation at 12 ºC.

Data collection and refinement of the BpsR structure

Diffraction data were collected in house on a Saturn 92 CCD detector or Pilatus3R pixel array

detector using Cu Kα radiation from a Micromax007 generator and VariMax optics (Rigaku).

Indexing, integration and scaling of the data were performed using HKL3000 program suite

[25]. Addition of the 6HNA caused a subtle deterioration in some of the data collection statis-

tics compared to the apo crystal data, however, the CC1/2 of the data (>0.95) suggested the

data was of high quality. Phasing of the structure was performed by molecular replacement

with the program Phaser, using the structure of a probable MarR transcriptional regulator

from Pseudomonas aeruginosa as the search model (PDB ID: 2NNN)[26]. The search model

was identified using BLAST (blast.ncbi.nlm.nih.gov) as having the highest sequence identity

with BpsR (36%) [27]. Manual model building and editing was performed in the program

Coot and refinement was carried out using simulated annealing and composite omit proce-

dures using the program Phenix [28,29]. Further model validation and refinement was per-

formed with PDBRedo [30]. Data collection and refinement statistics are listed in Table 1. The

atomic coordinates and structure factors have been deposited in the Protein Data Bank with

the PDBIDs: 6PCP and 6PCO. The software PyMOL was used for figure preparation [31].

Results and discussion

BpsR structure

BpsR crystallized the in the primitive orthorhombic space group (P212121) with 2 dimers in

the asymmetric unit. The secondary structure of the protein is primarily α-helical composed of

6 α-helices and 2 β-strands per monomer (Fig 1). BpsR contains a winged Helix-turn-Helix

(wHtH) domain for DNA binding. In the dimer, the two wHtH motifs are positioned in tan-

dem to one another to create a DNA binding surface (Fig 1). The dimer interface buries about

2355 Å2 (PDBePisa (http://www.ebi.ac.uk/pdbe/prot_int/pistart.html [32]), or about 13% of

the surface area of each monomer. The overall structure of the dimer is similar to other mem-

bers of the MarR family of transcriptional regulators [33–37].

Since the precise DNA sequence for BpsR recognition is unclear, it has not been possible to

determine a structure in complex with DNA. However, we created a model for BpsR binding

to DNA by superimposing the structure of BpsR onto the Escherichia. coli MarR (ecMarR)

structure in complex with a DNA duplex of 21 base pairs (PDB: 5H3R) [38–41] (Fig 2 and S1

BpsR structure
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Fig). The RMSD between BpsR and ecMarR is 1.38 Å (over 129 Cα atoms) which is indicative

of high structural similarity [28]. The model suggests that helix α4, from the HTH domain,

inserts into DNA major groove and likely functions in DNA sequence recognition. The β hair-

pin wing motif extents away from the protein, along the DNA helix, to provide interactions

with the phosphodiester backbone and the minor groove (Fig 2B). Although the DNA

sequence for BpsR binding is likely different, residues Thr76, Arg79, Gln83, Arg84, Lys86

within helix α4 extend towards the DNA bases within the major groove, providing potential

sequence specific interactions. Within the wing region, Arg100, Arg101, and Lys102 (Fig 2B)

interact with the DNA phosphate groups in the minor groove also contributing to the stability

Table 1. Data collection and refinement statistics.

BpsR 6HNA-BpsR

Wavelength 1.54 1.54

Resolution range 34–2.75 (2.85–2.75) 30–3.2 (3.31–3.2)

Space group P 21 21 21 C 2 2 21

Unit cell 71. 9, 90.5, 103.1, 90, 90, 90 77.5, 110.6, 273.3, 90, 90, 90

Total reflections 20298 (1866) 117056 (6249)

Unique reflections 17964 (1712) 18178 (1564)

Multiplicity 1.1 (1.1) 6.4 (4.0)

Completeness (%) 98.65 (97.44) 90.78 (79.39)

Mean I/sigma(I) 23.40 (4.38) 15.18 (5.71)

Wilson B-factor 70.01 45.62

R-merge 0.058 (0.549) 0.124 (0.185)

R-meas 0.068 (0.642) 0.134 (0.210)

R-pim 0.034 (0.330) 0.049 (0.097)

CC1/2 0.999 (0.906) 0.989 (0.966)

CC� 0.983 (0.918) 0.997 (0.991)

Reflections used in refinement 17793 (1710) 18027 (1537)

Reflections used for R-free 911 (75) 1805 (155)

R-work 0.2266 (0.3127) 0.2278 (0.2840)

R-free 0.2736 (0.3842) 0.2805 (0.3513)

CC(work) 0.941 (0.812) 0.936 (0.822)

CC(free) 0.938 (0.702) 0.914 (0.757)

Number of non-hydrogen atoms 3617 6141

macromolecules 3600 6080

ligands 6 60

solvent 11 1

Protein residues 462 834

RMS(bonds) 0.002 0.006

RMS(angles) 0.61 1.16

Ramachandran favored (%) 98.00 98.17

Ramachandran allowed (%) 1.33 1.71

Ramachandran outliers (%) 0.67 0.12

Clashscore 3.00 8.02

Average B-factor 72.45 38.71

macromolecules 72.56 38.86

ligands 47.08 23.09

Statistics for the highest-resolution shell are shown in parentheses.

https://doi.org/10.1371/journal.pone.0223387.t001

BpsR structure
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of the recognition helix interactions within the major groove. Previous data shows that muta-

tion of the corresponding arginine residues in the β-hairpin of other MarR family members,

such as OhrR (from Bacillus subtilis) and MexR (from Pseudomonas aeruginosa) decreased

DNA binding 10-fold, which supports their necessity in effective DNA interaction. [33,41,42]

6HNA-BpsR bound structure

6-hydroxynicotinic acid (6-HNA) binding causes a significant conformational change in the

BpsR structure. Recently, we discovered that 6-hydroxynicotinic acid (6HNA) is a negative

regulator of BpsR binding to DNA, but the molecular mechanism was not fully understood

[16]. To elucidate the structural details of this regulation, we determined the structure of BpsR

in complex with 6HNA (Table 1 and Fig 3). 6HNA-BpsR crystallized in the centered ortho-

rhombic space group (C2221), with 6 chains in the asymmetric unit. Each dimer bound 2 mol-

ecules of 6HNA. The binding pockets are located at the dimer interface between helices α1,

α2, α5 of one monomer and α1 of the opposing monomer, and are approximately 8 Å above

the recognition helix of the HTH domain (Fig 3A).

A superimposition of the 6-HNA bound and apo BpsR structures reveals a conformational

change within the dimer in which the wHtH motif of one monomer pivots away from the

other resulting in a 7.3 Å increase in the distance between the α4 DNA recognition helices (Fig

3B). This open conformation with an alteration to the inter-helical distance likely prevents

them from inserting into consecutive DNA major grooves thus decreasing binding affinity. A

defining characteristic of many MarR family member is allosteric regulation through phenolic

like ligands [23], and similarly other MarR family members have a “closed” conformation

capable of DNA binding and a “open” form that is unable to bind DNA. Salicylate binding to

MarR induces a shift in the protein that widens the dimer into an “open” state that is inactive

for DNA binding [36].

6HNA interactions with the protein rearranges the amino acids in the binding site. The

bound 6HNA is positioned between four amino acid residues extending from the α1 helix on

both monomers. (Fig 3C). Residues Tyr15, His23, and Arg26 from one monomer and His32

from the other monomer each contribute to hydrogen bonding interactions with 6HNA (Fig

Fig 1. The BpsR structure. (A) The monomers of the BpsR dimer are highlighted in light and dark gray, and the secondary structures are labeled (α/α‘ 1–6

and β/β’ 1–2). The conserved winged Helix-turn-Helix (wHtH) domain is highlighted showing the helices in red and the beta hairpin in yellow. (B) The

BpsR dimer is rotated 90º, showing the DNA binding surface.

https://doi.org/10.1371/journal.pone.0223387.g001

BpsR structure
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3C). A comparison of the conformations of these residues shows that the side chain of Tyr15

shifts approximately 2 Å toward the 6HNA when compared to the unbound structure to H-

bond with the 6-hydroxy group of the pyridine ring (Fig 3C). The epsilon nitrogen of His32

contributes to H-bond interactions at the nitrogen on the pyridine ring of 6HNA (Fig 3C).

The epsilon and nu nitrogens of Arg26 have H-bonding interactions with the carboxyl group

oxygen of 6HNA (Fig 3C). The guanidinium moiety of Arg26 rotates approximately 5 Å away

from the binding pocket, using its delta carbon as a hinge, to accommodate the entrance of

6HNA. This residue shows the most significant movement of any sidechain involved in 6HNA

interaction (Fig 3C). A protein surface model of the complex shows a potential passageway for

6-HNA entry located directly below the binding pocket (Fig 4).

Fig 2. Model of BpsR bound to DNA. The model was created by superimposing the BpsR structure onto the structure of the Escherichia coli MarR-DNA

complex (PDB ID: 5H3R [38]). The protein structures had an RMSD of 1.37 Å (A) This model shows how the recognition helix (red) of the wHtH domain

inserts into the major groove of DNA. (B) A magnified section of the BpsR-DNA interaction highlights how the residues of the HTH domain interact with the

phosphodiester backbone.

https://doi.org/10.1371/journal.pone.0223387.g002

BpsR structure

PLOS ONE | https://doi.org/10.1371/journal.pone.0223387 November 7, 2019 6 / 12

https://doi.org/10.1371/journal.pone.0223387.g002
https://doi.org/10.1371/journal.pone.0223387


6HNA interactions are conserved

Because the NA catabolism pathway is conserved in some bacteria, we looked to see if the

BpsR residues involved in 6HNA interactions are conserved in other bacterial homologs with

that also contain the nicotinate dehydrogenase gene (nicA) (KEGG Database [43]). We

searched for amino acid sequences of proteins similar to BpsR and identified several homologs

from at least six other Gram negative bacterial species, many of them also pathogenic (Fig 5

and S1 Fig). The comparative sequence analyses reveal the homologs share about 40%

sequence identity across species, with the residues comprising the wHtH domain highly con-

served. Interestingly, the residues interacting with 6HNA (Tyr15, His23, Arg26, and His32)

are also strictly conserved, suggesting these homologs also may be involved in regulating nico-

tinic acid metabolism in these organisms. In contrast, the NicR regulator of from Pseudomonas
putida is also a MarR-like protein and represses nic gene expression [18,19]. However, the

6HNA binding residues are not conserved between BpsR and NicR, providing a new model

for 6HNA interaction.

Fig 3. Structure of BpsR bound to 6-HNA (6HNA-BpsR). (A) 6HNA-BpsR structure showing the location of the binding pockets within the dimer. The

6HNA 2Fo-Fc map is contoured to 2.0σ. (B) The superimposed BpsR (light and dark gray) and 6HNA-BpsR (green) structures reveal a 7.3 Å shift in the

location of the recognition helix indicating that the shift prevents DNA binding (C) A magnification of the binding pocket of the BpsR (left) and

6HNA-BpsR (right) structures to show the changes that occur with the residues participating in binding of 6HNA. There is a 5 Å rotational shift of Arg26 in

order to accommodate 6HNA.

https://doi.org/10.1371/journal.pone.0223387.g003

BpsR structure
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Many pathogenic Bordetella species have an absolute requirement for nicotinic acid (NA)

or nicotinamide for laboratory growth. It serves as a source of NAD synthesis in the salvage

pathway and alternatively as a carbon and nitrogen source when degraded. Bordetella genes

Fig 4. 6HNA entry passageway. (A) A cartoon illustration of 6HNA-BpsR and the equivalent surface representation.

(B) The 6HNA-BpsR structure is rotated 90º to show a potential passageway for 6HNA entry in to the allosteric

binding site.

https://doi.org/10.1371/journal.pone.0223387.g004

Fig 5. BpsR homologs retain 6HNA binding residues. An amino acid sequence alignment of BpsR homologs from other Gram negative bacteria (Clustal

Omega [44]) with an overall sequence identity of about 40%. The residues highlighted in red and yellow boxes are in the HTH and wing domains,

respectively. The amino acids highlighted in green are the residues that make up the 6-HNA binding pocket. These residues have 100% identity across the

indicated species.

https://doi.org/10.1371/journal.pone.0223387.g005

BpsR structure
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involved in the aerobic degradation of NA are harbored in the nic cluster. We have previously

shown BpsR binds to the nic promoter region, and its DNA binding activity is inhibited by

6HNA, the first metabolite of the NA degradative pathway [16]. We proposed that this regula-

tion by BpsR enables Bordetella bacteria to utilize nicotinic acid for their survival depending

on environment and metabolic needs.

Here we have determined the structures of BpsR and BpsR in complex with 6HNA in order

to understand the molecular mechanism of regulation of DNA binding. The BpsR structure

reveal the dimeric architecture of the protein and the overall similarity to the MarR transcrip-

tional regulator. Our structural data along with our previous results lead us to propose a model

for regulation of nicotinic acid degradation in Bordetella (Fig 6) in which in the absence of

6HNA, BpsR binds to the nicC and nicE promoters in the closed form to repress transcription.

As nicotinic acid levels increase in the bacteria, expression of the nic genes are induced, result-

ing in the formation of 6HNA. This molecule then acts as a substrate and inducer of the nicC
and nicE genes by binding to BpsR and inducing a conformational change to an open form

that loses DNA binding affinity.

Supporting information

S1 Fig. BpsR amino acid sequence comparisons. A) Sequence alignment of BpsR and E. coli

MarR shows 24.5% identity and 52% similarity. B) A phylogenetic tree with real branch lengths

showing relationships between BpsR proteins from other Gram negative bacteria (tree pro-

duced by Clustal Omega [44]).
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