
cells

Review

Implications for Diverse Functions of the LINC
Complexes Based on the Structure

Miki Hieda

Department of Medical Technology, Ehime Prefectural University of Health Sciences, Ehime 791-2101, Japan;
mhieda@eup.ac.jp; Tel.: +81-89-958-2111; Fax: +81-89-958-2177

Academic Editor: Thomas Dechat
Received: 15 December 2016; Accepted: 17 January 2017; Published: 26 January 2017

Abstract: The linker of nucleoskeleton and cytoskeleton (LINC) complex is composed of the outer
and inner nuclear membrane protein families Klarsicht, Anc-1, and Syne homology (KASH), and Sad1
and UNC-84 (SUN) homology domain proteins. Increasing evidence has pointed to diverse functions
of the LINC complex, such as in nuclear migration, nuclear integrity, chromosome movement and
pairing during meiosis, and mechanotransduction to the genome. In metazoan cells, the nuclear
envelope possesses the nuclear lamina, which is a thin meshwork of intermediate filaments known
as A-type and B-type lamins and lamin binding proteins. Both of lamins physically interact with
the inner nuclear membrane spanning SUN proteins. The nuclear lamina has also been implicated
in various functions, including maintenance of nuclear integrity, mechanotransduction, cellular
signalling, and heterochromatin dynamics. Thus, it is clear that the LINC complex and nuclear lamins
perform diverse but related functions. However, it is unknown whether the LINC complex–lamins
interactions are involved in these diverse functions, and their regulation mechanism has thus far been
elusive. Recent structural analysis suggested a dynamic nature of the LINC complex component,
thus providing an explanation for LINC complex organization. This review, elaborating on the
integration of crystallographic and biochemical data, helps to integrate this research to gain a better
understanding of the diverse functions of the LINC complex.
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1. Introduction

The nuclear envelope (NE) is composed of the inner nuclear membrane (INM) and outer nuclear
membrane (ONM), which are separated by a 40–50 nm perinuclear space (PNS) and spanned by the
nuclear pore complex. More than 100 putative integral membrane proteins have been found to reside
in either the INM or ONM [1–5]. The Sad1 and UNC-84 (SUN) homology domain proteins, which are
type II INM spanning transmembrane proteins, are widely conserved in all eukaryotes and share a
common carboxyl-terminal motif of ~175 amino acids, termed the SUN domain [6], so named for the
homology between Sad1 from Schizosaccharomyces pombe and UNC-84 from Caenorhabditis elegans [7–9].
Nematodes and flies possess two genes encoding SUN proteins and yeasts contain only one such
gene; however, mammalian SUN proteins are encoded by at least five genes, SUN1–5. SUN1 and
SUN2 are widely expressed in mammalian somatic cells [10,11], whereas SUN3, SUN4 (also known
as sperm–associated antigen 4, SPAG4), and SUN5 (also known as SPAG4-like, SPAGL) are largely,
but not entirely, restricted to the germ cells [12–15]. SUN proteins are composed of three domains:
a transmembrane domain, an amino-terminal nucleoplasmic domain that interacts with lamina and
chromatin-binding proteins, and a carboxyl-terminal region that protrudes into the PNS and contains
coiled-coil domains and a conserved SUN domain [10,11,16]. Klarsicht, Anc1, and Syne1 homology
(KASH) domain proteins are another class of type II integral membrane proteins; however, in contrast
to SUN proteins, most of KASH domain proteins reside at the ONM. The carboxyl termini of KASH
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proteins contain the KASH domain, which is a conserved stretch of ~30 amino acids that typically
ends with the highly conserved motif, PPPX, frequently PPPT. The KASH domain extends into the
PNS and interacts with the SUN domain of SUN proteins. In contrast, the amino-terminal regions of
KASH proteins are exposed in the cytoplasm, where they associate with the cytoskeleton, including
actin filaments, microtubule motors, and intermediate filaments [17–20]. The human genome contains
six genes encoding KASH proteins, four of which are nesprins (nesprin-1–4). Nesprin-1, -2, and -3
have multiple isoforms resulting from alternative splicing and transcription initiation sites [21], and
are expressed in a wide variety of tissues, whereas nesprin-4 expression is largely restricted to the
secretory epithelia [22]. There are some nesprin isoforms that have the KASH domain and are present
in the nucleus, probably inserted in the INM [23]. One of the other KASH proteins is KASH5, which
is a meiosis-specific KASH protein [24]. Another recently characterized putative KASH protein is
lymphoid-restricted membrane protein (lrmp), which is required for nucleus–centrosome attachment
and pronuclear congression during fertilization [25]. SUNs and nesprins form a complex via their
SUN and KASH domains, respectively. This protein complex physically links the nucleoskeleton and
cytoskeleton, and is thus named the linker of nucleoskeleton and cytoskeleton (LINC) complex [11,20].
In metazoan cells, the NE harbours the nuclear lamina, which is a meshwork of intermediate filaments,
mainly A-type and B-type lamins and lamin binding proteins. Note that, there is a small but important
fraction of nucleoplasmic lamin A. The first evidences for SUN protein binding to lamins came from
C. elegans [26,27]. Mammalian SUN proteins interact with A-type lamin, whereas their binding to
B-type lamins is generally considered to be very weak [11,16]. However, we recently demonstrated
that B-type lamins also interact with SUN1 but not with SUN2 [28].

The LINC complex performs diverse functions, including nuclear shaping and positioning [29],
maintenance of the centrosome–nucleus connection [30], DNA repair [31,32], nuclear membrane
spacing [11], cell migration [28,29,33–35], and moving chromosomes within the nucleus during
meiosis [36]. In addition, lamins play various roles such as maintenance of nuclear integrity, cell
cycle regulation, mechanotransduction, cellular signalling, and DNA repair. Because all of these
functions are critical for cell viability, variations in the expression or dysfunction of lamins and
their interacting LINC complexes are associated with a wide range of diseases, including muscular
dystrophy, cardiomyopathies, lipodystrophy, progeria, cancer, and neurological diseases [37]. Indeed,
LMNA, encoding A-type laminins, is currently the gene with the greatest number and most diverse
forms of disease-linked mutations in the human genome [38].

The LINC complex and nuclear lamins combine to form a solid scaffold from which they carry
out their diverse functions. However, it is unknown how cells regulate these multiple functions, and
whether the LINC complex–lamins interactions are essential for these diverse functions. There are
several reasons contributing to the lack of clarity on these questions. One reason is that mammalian
somatic cells express at least two SUN domain proteins, which have partially overlapping functions,
and up to four KASH domain partners (i.e., nesprins 1–4). Based on the SUN2/KASH peptide crystal
structure, it has been believed that each LINC complex is composed of three SUN and three nesprin
molecules. Therefore, a diverse range of LINC complexes is possible, which may relate to their
multiple functions. Here, I first review the structure of SUN proteins [39–43] recently revealed by
crystallographic analyses, which is consistent with the established biochemical data. I then discuss the
possible functions of the dynamic interactions between SUN and lamins. Integrating this recent insight
with well-established knowledge of these interactions should help to provide a better foundation
for elucidating the regulatory mechanisms of the LINC complex, and help to understand its cellular
functions and roles in diseases.

2. Overall Structure of SUN Domains

The crystallographic structure of the human SUN2519–716 protein showed that the SUN domain
(SUN2555–716) and upstream extension is sufficient to form a homotrimer, which exhibits a perfect
three-fold symmetry and resembles a cloverleaf (~65 Å) sitting on a short fragment of a stem (~30 Å
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of length) [39]. Two subsequent studies revealed the structure of the SUN domain in complex with
the KASH domain peptide derived from nesprin-1 and nesprin-2 [40,41]. Both research groups used
the SUN2 protomer SUN2522–717, consisting of a SUN domain and a minimal helical coiled-coil region
(SUN2525–540), which are necessary for SUN2 trimerization and KASH binding [40]. Of note, this helical
domain (SUN2525–540) is outside of the previously defined coiled-coil region (see below). The overall
conformation of the SUN domain in complex with the KASH peptide closely resembles the SUN
domain homotrimer in its apo state: a trimeric SUN2 structure with a globular head composed of the
SUN domain, and a stalk composed of a triple helical coiled-coil (Figure 1A). Three SUN domains
interact with three independent “hook”-like KASH peptides, forming a 3:3 hexameric heterocomplex
(Figure 1B). The SUN domain consists of a beta-sandwich core and a ~20-amino acid beta-hairpin
(SUN2567–587) extending as a long flexible loop, termed the KASH lid [39]. Each KASH peptide interacts
with the KASH lid of one SUN2 protomer and the beta-sandwich core of the neighbouring SUN2
protomers. Thus, three KASH peptides effectively interconnect with multiple SUN proteins making
up the 3:3 hetero-hexamer [40,41]. These results indicate that multimerization of SUN monomers
through the triple helical coiled-coil is required for the KASH binding. In addition, disulphide bonds
between conserved cysteines on SUN and KASH covalently link the SUN–KASH complex [40,43].
Though these disulphide bonds have not been detected in cells, molecular simulation suggested that
disulphide bonds are crucial for the stability of the complex and the transmission of forces through the
complex [42].
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It is assumed that the characteristic cloverleaf-like and trimeric SUN arrangement is universally 
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First, the amino acid sequence of the SUN domain is well-conserved across divergent species, and all 
SUN domains are immediately preceded by the predicted coiled-coil segments [40]. Second, the 
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formation for all mammalian SUN proteins is highly possible, but the regulation and stability of 
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Figure 1. Schematic representation of SUN–KASH interactions based on the results of Sosa et al., and
Wang et al. [40,41]. (A) A schematic representation of SUN molecular structure with KASH peptide.
Orange colour represents SUN molecules and green colour represents KASH and transmembrane
domains of nesprin proteins; (B) The top-down view of the SUN2/KASH domain. Orange colour
shows SUN domain of SUN2 molecules and green colour represents KASH domain of nesprin proteins.
Each KASH peptide interacts with the KASH lid of one SUN2 protomer and the beta-sandwich of the
neighbouring SUN2 protomer. SUN, Sad1 and UNC-84 homology domain proteins; KASH, Klarsicht,
Anc1, and Syne1 homology domain proteins.

It is assumed that the characteristic cloverleaf-like and trimeric SUN arrangement is universally
conserved for all mammalian SUN proteins through SUN1 to SUN5 for the following two reasons. First,
the amino acid sequence of the SUN domain is well-conserved across divergent species, and all SUN
domains are immediately preceded by the predicted coiled-coil segments [40]. Second, the trimeric
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arrangement of the SUN domain is a prerequisite for the KASH binding. The homotrimer formation
for all mammalian SUN proteins is highly possible, but the regulation and stability of SUN3–5 may be
substantially different from those of SUN1 and SUN2. This is because the latter proteins in mice and
humans contain the cysteine residue that can form disulphide bonds with four nesprin family proteins,
and their coiled-coil domain is predicted to be ~40 nm in length, whereas the germ cell-specific SUN3,
SUN4, and SUN5 proteins have a shorter coiled-coil domain and do not contain the conserved cysteine
residue [39,40,42]. By contrast, in nematodes, yeast, and plants, the sequences are quite divergent, and
in particular, in Sad1 from S. pombe, the KASH lid is hardly recognizable according to its sequence and
the typical disulphide bonds are lost [40]. Therefore, experimental data are needed to determine the
conserved SUN protein trimer formation for other species.

3. The Coiled-Coil Domain in SUN Proteins Helps to Control the KASH Binding Capacity

All known SUN protein homologs from divergent species contain at least one coiled-coil segment
in the luminal region near the amino-terminal end of the SUN domain. Coiled-coil domains have
been generally regarded as oligomerization centres for the assembly of supramolecular protein
complexes [44]. Coiled-coil domains are also found in several structural proteins that show highly
elastic properties, suggesting that the SUN1 and SUN2 proteins are suitable elastic load-bearing
components under the constant application and release of cytoskeletal forces to the NE [45].

In addition, coiled-coil domains are also believed to act as rigid spacers to define the distance
between the ONM and INM of the NE [11,46]. The full coiled-coil region of the SUN1 and SUN2
proteins is predicted to be ~40 nm in length, which is similar to the distance between the ONM and
INM [40]. Electron microscopy analysis using HeLa cells showed uniform spacing between the ONM
and INM of ~50 nm; however, in the double SUN1 and SUN2-depleted cells, the ONM was clearly
dilated with obvious expansion of the PNS to 100 nm or more [11]. It is worth noting that another
mechanism likely exists to maintain the space between the ONM and INM in C. elegans [47].

In addition to the above predicted functions, the coiled-coil domains of SUN proteins have been
shown to play roles in the regulation of SUN domain activity. A recent crystal structure analysis
demonstrated that the two coiled-coil domains of SUN2, named CC1 and CC2, exhibit two distinct
oligomeric states [43]. CC1 and CC2 are the distal and proximal coiled-coil domains with respect
to the SUN domain, respectively. CC2 forms a three-helix bundle to lock the SUN domain in an
inactive conformation, and sequesters the KASH lid of the SUN domain that is essential for anchoring
the KASH domain in the SUN–KASH complex. In contrast, CC1 is a trimeric coiled-coil for the
trimerization and activation of the SUN domain. Therefore, the two coiled-coil domains of SUN2
act as intrinsic dynamic regulators [43]. The results of solution binding assays are consistent with
these structural analysis results for CC1 and CC2; removal of the CC1 of SUN1 or SUN2 abrogated
their interaction with nesprins, whereas these deletion mutants retained the minimum region required
for KASH binding [11,39,41,48,49]; i.e., the SUN domain and upstream extension consisting of the
CC2 domain without CC1 suppressed trimer formation. Collectively, these findings demonstrate
that the coiled-coil motif in the SUN protein does not simply function as a passive linear coiled-coil
for oligomerization but further regulates SUN–KASH (de)coupling through the modulation of SUN
domain oligomerization. However, it remains unknown how the wild type SUN protein, which
possesses both CC1 and CC2, regulates the trimerization under physiological conditions. A clue to
resolving this question was provided by Nie et al. [43], who reported that a SUN protein fragment
containing CC1, CC2, and the SUN domain exists in a monomer- and trimer equilibrium state.

4. Compositional Nature of the SUN–KASH Hetero-Hexamer

Mammalian somatic cells, excluding epithelial cells, express two kinds of SUN, (SUN1 and SUN2)
and three kinds of nesprin proteins (nesprin-1, nesprin-2, and nesprin-3) and it has been believed
that each LINC complex is composed of three SUN and three nesprin molecules based on the crystal
structure. Thus, to uncover the molecular mechanism underlying the diverse LINC complex functions,
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it is essential to first understand the compositional nature of the SUN–KASH hexamer from the aspect
of two key points: the SUN–KASH interaction and the compositions of trimers. First, LINC complex
formation relies on the direct binding of two kinds of SUN molecules and three kinds of KASH
molecules. Long-standing solution binding assays have shown that both SUN1 and SUN2 interact
with all of nesprin-1, -2, and -3, and vice versa, suggesting promiscuous interactions between the SUN
and nesprin protein families [11,48–51]. Functional analyses support this promiscuous interaction;
SUN1 and SUN2 are redundant in their anchoring functions of nesprins at the NE, and deletion of
either SUN1 or SUN2 alone does not disrupt LINC connections [11,48,49]. In addition, the results of
structural analyses further support such promiscuous interactions. The crystallographic structures of
SUN2–KASH1 and SUN2–KASH2 look very similar; a hydrophobic pocket on the surface of the SUN
domain serves as the docking site for the KASH domain PPPT motif, which is highly conserved in
all nesprin proteins [40,42]. Therefore, the SUN–KASH combination is indeed promiscuous, and six
combinations exist for interactions of the two SUN proteins and three nesprins (Figure 2A). It is to be
noted that two SUN and four nesprin proteins are promiscuously able to bind each other, however it is
not always true that deletion of either SUN alone has no effect on LINC complex functions. For example,
SUN2 deletion alone affects nuclear movement in polarizing fibroblasts [35]; SUN1 knockout showed
neuronal defects in the brain [30,52]; SUN1 is required for germ cell development [53]; and SUN2
knockout causes defects in skin and hair [54]. These facts again stress the SUN-KASH combination is
critical for the LINC complex functions.
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Figure 2. The compositional nature of the SUN–KASH hetero-hexamer. (A) The SUN–KASH
combination is promiscuous. In mammalian somatic cells, except for the secretory epithelia, there are
six combinations possible for two SUN proteins and three nesprins; (B) Mammalian cells mainly express
SUN1 and SUN2 protein in somatic cells. SUN1 and SUN2 homo- and hetero-trimeric arrangement
is conceivable; thus, four combinations of SUN trimers are possible; (C) Possible combinations of
nesprin protein trimers using nesprin-1, nesprin-2, and nesprin-3, which are expressed in mammalian
somatic cells.



Cells 2017, 6, 3 6 of 13

To add further complexity to the matter, in addition to the promiscuous SUN–KASH combinations,
SUN and KASH can form a 3:3 hetero-hexamer. The LINC complex may include several combinations
of SUN trimers (Figure 2B) and nesprin trimers (Figure 2C). As well as the above-mentioned SUN2
homotrimer demonstrated by crystallographic analysis, a SUN1 homotrimer should also exist [40,55].
Moreover, SUN1–SUN2 heterotrimer formation is feasible for the following two reasons. First,
biochemical analyses have shown that SUN1 and SUN2 can form a hetero-oligomer [11,28,49,55–57],
and second, the molecular organization of SUN 1 and SUN2, such as the length of the coiled-coil
domains or the SUN domain, is similar. Thus, four kinds of SUN protein trimers are possible (Figure 2B).
By the same logic, 10 nesprin trimers are possible from the combination of three nesprins (Figure 2C).
Collectively, these combinations would result in a whopping total of ~40 combinations of SUN and
nesprin hetero-hexamers. However, this prediction represents a great simplification of the actual
situation. We have no evidence for that there are always three KASH domain proteins bound to a SUN
trimer. It might be possible that SUN/KASH domain proteins can not only interact at a 3:3 ratio, but
also at 3:1 and 3:2 ratios. Likewise, SUN1 may exist in dimers or tetramers, not trimers in cells under
some circumstances [55]. In addition, since each gene encoding SUN and nesprin proteins produces a
wide range of splicing variants, and the expression level of variant proteins is tissue-dependent, the
compositional nature of SUN–KASH hexamers significantly varies among tissues [10–12,21,28,58].

There is one other key factor to keep in mind. Several reports have demonstrated that some
KASH proteins are organized by multimerization [50,59,60]. However, at present, the organization of
KASH proteins is unclear, and it is also unknown whether the three SUN domains in a trimer interact
with the KASH domains originating from individual KASH protein monomers, from a single nesprin
trimer, or from even higher organizational units (Figure 1A). Interestingly, it has been suggested that
the transmembrane helices of nesprins might engage in protein–protein interactions [40]. Based on
crystallographic structural data, Sosa et al. [40] indicated that the transmembrane helices of KASH
proteins cannot interact with each other in the membrane if all of the peptides comprising a KASH
oligomer are bound to SUN domains from a single SUN trimer. This is because the three KASH
peptides are ~50 Å apart on a SUN trimer (see Figure 1B) and the transmembrane helix is quite close to
the KASH domain (with only seven amino acid residues separating them). They proposed an attractive
model in which self-association of the transmembrane helix in nesprins would prevent the interaction
of nesprins with the same SUN trimer, which would instead interact with neighbouring SUN trimers,
thus enabling the formation of higher-order complexes (Figure 3).
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Figure 3. Multivalent SUN–KASH interactions. The interaction of nesprin with neighbouring SUN
trimers enables the formation of higher-order complexes; i.e., the association of the KASH domain from
trimeric/oligomeric nesprins with neighbouring SUN trimers allows for higher-order arrays of the
LINC complex. Orange and green molecules represent SUN and KASH peptides, respectively.

The molecular mechanism underlying the higher-order assembly of the LINC complex has not
been elucidated; however, the existence of such structures is evident in at least two physiological
situations. First, SUN proteins can form higher-order oligomers or clusters during meiosis in various
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organisms. Fission yeast SUN protein, Sad1 and its KASH partner, Kms1, function in chromosomal
bouquet formation during meiosis which facilitates homologous chromosome pairing. In C. elegans,
SUN protein and the KASH partner, ZYG-12, also make large complexes in meiosis. Similar aggregates
are found in mouse meiosis [50,59–66]. Second, transmembrane actin-associated nuclear (TAN) lines,
which are linear actin-associated arrays of SUN2 and nesprin-2G, are formed to reorient the nucleus
during cell migration [35,67]. To clarify the LINC complex composition, the organization of the KASH
protein oligomer must first be solved at the crystallographic structure level.

5. Lamins Interact with SUN Proteins and Affect Their Dynamics

The LMNA gene encodes the two major A-type lamins, lamin A and lamin C, whereas LMNB1
and LMNB2 encode the two major B-type lamins, lamin B1 and lamin B2, respectively [68–71].
The nucleoplasmic region of both SUN1 and SUN2 interacts with lamin A, whereas the interaction with
B-type lamins appears to be relatively weak [11,16]. However, as mentioned above, a recent solution
binding assay and yeast two-hybrid analysis revealed that both lamin B1 and lamin B2 interact with
SUN1 but not with SUN2 [28].

A-type lamins could contribute to SUN2 localization, although they are certainly not the only
determinants [11]. Studies with LMNA-null (LMNA−/−) mouse embryonic fibroblasts (MEFs) showed
that SUN2 was dispersed throughout the cytoplasmic membranes in the majority of cells, with a
minority showing SUN2 fully retained at the NE. In contrast, lamin A/C is not required for localization
of SUN1 in the INM [11,16,72]. However, the interactions with lamin A/C affect both SUN1 and SUN2
protein dynamics [51]. SUN1 and SUN2 are more mobile in LMNA−/− MEFs than in wild-type MEFs.
In addition, fluorescence resonance energy transfer (FRET) experiments showed that SUN1 is more
closely associated with lamin A than SUN2, suggesting a higher affinity for SUN1 [51]. These findings
may provide an explanation for the observation that overexpression of SUN1 in HeLa cells causes
displacement of endogenous SUN2 from the NE, while the converse is not the case. In addition, from
the point of SUN INM anchoring, it is worth mentioning that mouse SUN1 possesses a zinc finger
motif and SUN protein in Dictyostelium, which does not have lamins, interacts with DNA [57].

SUN proteins and lamins clearly interact in coordinated ways; however, the mechanisms
controlling these interactions remain largely unknown. One possible regulatory mechanism of this
association is post-translated modification. Since both lamins and SUN proteins undergo various
post-translational modifications such as phosphorylation and sumoylation [73–75], these modifications
might affect and regulate LINC complex–lamins interactions. One well-investigated example is
mitosis-dependent disassembly. Since the nucleus breaks down during mitosis in multicellular
organisms, the complex of SUN and lamins is inevitably disassembled at least once in each cell
cycle. During mitosis, SUN proteins play an active role in NE breakdown [76]; phosphorylation of
lamin and SUN proteins induces the dissociation between these molecules while the SUN–KASH
interaction is retained, indicating that phosphorylation regulates the lamin-LINC interaction but lamin
A/C is not essential for SUN–KASH binding at least during mitosis [74].

6. Possible Functions of Lamins–SUNs Interactions

The human SUN1 gene produces over 10 alternative splicing variants that are distinguished
by variable deletions just upstream from the transmembrane domain, between exon 6 and 9 [28].
Thus, all of the splicing variants contain a lamin A-binding domain, which is located at the extreme
amino-terminal domain of the SUN protein [11,12,28]. A solution binding assay confirmed that lamin
A interacted with all of the investigated SUN1 splicing variants as well as with SUN2 [28], suggesting
that the lamin A–SUN interaction may play fundamental roles such as in the regulation of KASH
binding. In contrast, in the same experiment, B-type lamins interacted with the SUN1 variants but
not with SUN2 [28]. Although the B-type lamins-binding sites are not yet known, this result suggests
that the interaction with B-type lamins plays a role in SUN1-specific functions such as cerebellar
development, nuclear pore complex organization, or chromatin tethering.
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Another key question to help understand the function of the LINC complex is whether or not
the interaction between SUNs and lamins affects the LINC complex formation such as structure,
composition, and combination. It is well known that SUN1 and SUN2 have a redundant function in
nesprins ONM localization. In addition, nesprin-2 was relocalized to the endoplasmic reticulum in
LMNA−/− cells [58], indicating a role for lamins, in addition to SUNs, in the localization of nesprins
to the NE in interphase cells. Because lamins are physically separate from nesprins, and disruption
of the SUN trimer abolished KASH binding [39], the association of SUNs with lamins might affect
the overall structure of SUN proteins in interphase cells, resulting in regulation of the SUN–KASH
interaction. It is attractive to speculate that the interaction with lamin might be the molecular switch
for SUN-KASH oligomer formation, but this idea awaits experimental verification.

7. Pathological Relevance of the Lamins–SUNs Interplay

Mutations in the LMNA gene encoding A-type lamins cause a wide range of diseases,
including muscular dystrophies, lipodystrophy, and progeria, which are collectively referred to
as laminopathies [38]. Intriguingly, some nesprin gene mutations also induce similar phenotypes.
For example, Emery-Dreifuss muscular dystrophy, which affects the skeletal and cardiac muscle, is
commonly caused by mutation in the emerin (EMD) gene and less frequently by mutation in LMNA,
and has also been associated with a mutation in the nesprin gene [77,78]. Nevertheless, the pathological
relevance of the LINC–lamins interplay remains largely unknown. One possible reason for these
etiologies is that mutations in the genes encoding A-type lamins or EMD might specifically weaken,
prevent, or strengthen the SUN–lamin–emerin interaction, which would also affect the physical
connections between SUN and KASH proteins, resulting in altered associations between the nuclear
lamina and cytoskeleton [79,80]. Thus, the disruption of adequate interactions between SUNs and
lamins could be ultimately responsible for the pathological effects.

In Hutchinson-Gilford progeria syndrome (HGPS), the most common mutation is a de novo
missense mutation in exon 11 of the LMNA gene, which results in the creation of an abnormal
splice donor site and expression of a 50-amino acid region near the carboxy terminus to result in
a truncated protein, permanently farnesylated prelamin A, termed progerin [81,82]. Progerin has
higher affinity to SUN1 than lamin A [83]. Thus, accumulated progerin interacts with SUN1 and
induces the accumulation of SUN1, which contributes to the nuclear aberrancies in HGPS. As another
example, mandibuloacral dysplasia type A is caused by a recessive mutation of the LMNA gene and is
a rare laminopathy characterized by several skeletal and tissue defects, including postnatal growth
retardation, craniofacial anomalies, and bone resorption at specific sites [84]. This mutation induces the
accumulation of the unprocessed prelamin A precursor and also alters SUN1 and SUN2 localization.

Besides these disease-linked effects, mutations of the LMNA gene induce global epigenetic
defects. Human fibroblast cells derived from both HGPS and mandibuloacral dysplasia type A
patients showed altered histone H3 lysine 9 (H3K9) methylation status [85], and experimentally altered
H3K9 methylation status induced SUN2 protein disorganization (Hieda et al., unpublished data).
These observations could be directly induced by aberrant lamin A protein expression but could also be
induced by unusual epigenetic status.

8. Perspectives

The functions of the mammalian LINC complex have been studied for nearly a decade now,
and progress in this field has accelerated in recent years. In particular, the atomic resolutions of the
SUN domain provide valuable insights into the functional diversities of LINC complexes and give
plausible interpretations for a decade-old biochemical observation. However, this research has also
raised many new questions. For example, do the LINC complex linkages disassemble despite the
tight association of SUN and KASH, and if so, how? How often does the LINC complex interchange?
The trimeric formation of the SUN domain is the prerequisite for the mode of KASH binding; thus, the
regulation of trimerization may control SUN–KASH complex formation. If so, how is the equilibration
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between the SUN trimer and monomer regulated? What are the functions of lamin–LINC complex
connections? How is the timing of the lamin–LINC complex interaction regulated? How much and
how often do SUNs and lamins interact? Finally, could the interaction between SUNs and lamins affect
compositional nature of SUN/KASH oligomer?

Disconnection of LINC complexes disrupts the flow of physical and molecular information
between the two cell compartments inside and outside of the nucleus. Therefore, many recent studies
of LINC complexes have focused on the information transfer from the cytoplasm into the nucleus.
However, I would like to emphasize the possibility that lamins–SUNs connections might play roles in
controlling LINC complex functions, and it is highly possible that the LINC complex can bidirectionally
transfer information between the cytoplasm and the nucleus, similar to the role of plasma membrane
receptors such as integrins. Finally, resolving the above fundamental questions related to LINC
complex–lamins interactions will potentially help to explain the overall functions of the LINC complex,
and highlight new therapeutic targets for treating laminopathies.
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