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Contextualizing genetic risk score for disease
screening and rare variant discovery
Dan Zhou 1, Dongmei Yu2,3, Jeremiah M. Scharf2,3,4,5, Carol A. Mathews6, Lauren McGrath7, Edwin Cook8,

S. Hong Lee9,10, Lea K. Davis 1,11,12✉ & Eric R. Gamazon 1,13,14✉

Studies of the genetic basis of complex traits have demonstrated a substantial role for

common, small-effect variant polygenic burden (PB) as well as large-effect variants (LEV,

primarily rare). We identify sufficient conditions in which GWAS-derived PB may be used for

well-powered rare pathogenic variant discovery or as a sample prioritization tool for whole-

genome or exome sequencing. Through extensive simulations of genetic architectures and

generative models of disease liability with parameters informed by empirical data, we

quantify the power to detect, among cases, a lower PB in LEV carriers than in non-carriers.

Furthermore, we uncover clinically useful conditions wherein the risk derived from the PB is

comparable to the LEV-derived risk. The resulting summary-statistics-based methodology

(with publicly available software, PB-LEV-SCAN) makes predictions on PB-based LEV

screening for 36 complex traits, which we confirm in several disease datasets with available

LEV information in the UK Biobank, with important implications on clinical decision-making.
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Over the past several years, human genetics has shifted
from controversies over the relative importance of rare or
common variation in the genetic architecture of complex

disease1–9, towards realization of the need for integrative analyses
of variation across the entire frequency spectrum10. While the
individual effects of common single nucleotide variants (SNVs)
on complex traits are often modest, a substantial proportion of
complex trait heritability can be explained by common variants
considered in aggregate1–5,11,12. In contrast, large-effect variants
(LEVs) are typically rare in the population but confer substantial
genetic risk for disease. For example, rare and de novo loss of
function (LOF) single nucleotide variants and large, rare, genic
copy number variants (lrgCNVs) substantially increase risk for
many common conditions including neuropsychiatric, endocrine,
and cancer phenotypes6–8,13,14. Although these LEVs confer
substantial risk, they also exhibit incomplete penetrance, where
penetrance is defined as the probability of developing the disease
given the genotype. Indeed, the reported penetrance of these
common trait-associated CNVs can vary substantially15,16. While
most LEVs are rare, common risk variants with substantial effects
are observed in Type 1 diabetes (i.e., the high-risk HLA-DR
haplotype), breast cancer (i.e., BRCA1 and BRCA2 mutations)17,
and Alzheimer’s Disease (i.e., APOE4 haplotype).

The polygenic background in which a LEV is expressed may
influence both its penetrance (i.e., the proportion of carriers with
the disease phenotype) and expressivity (i.e., variation in phe-
notypic presentation). Certainly, under the liability-threshold
model, liability derives from the cumulative effect of genetic and
nongenetic risk and protective factors, and a critical threshold
determines case status, which may indicate a testable pattern of
relationships among these factors. Alternative models of disease
liability may also be amenable to such statistical inference on the
relationship between contributing factors18. It is reasonable to
hypothesize that, for a range of complex disorders, those with the
condition who derive little susceptibility to phenotype from their
inherited common, small-effect variant polygenic burden (PB)
may be more likely to harbor LEVs (i.e., sequence variants or
CNVs, inherited or de novo). Conversely, the absence of LEVs in
affected individuals would imply a greater role for the PB in
conferring disease predisposition. We refer to this hypothesized
inverse relationship between PB and LEV among cases as the
“PB-LEV correlation” (Fig. 1). This hypothesized model is con-
sistent with empirical data in several recent studies. For example,
individuals with schizophrenia carrying a known LEV had a
lower schizophrenia polygenic score (PGS) than those without
such LEVs19, although both groups had higher average schizo-
phrenia PGS than controls. Similarly, Kuchenbaecker et al. found
that breast cancer and ovarian cancer PGS are significantly
associated with cancer risk even in BRCA1 and BRCA2 LEV
carriers, suggesting a role for PGS in cancer risk management20.
Similar observations for PGS were made for risk of breast and
prostate cancer risk in male BRCA1 and BRCA2 mutation
carriers21. Lee et al. reported that GWAS-identified loci modify
the clinical onset of Huntington’s disease, for which a rare CAG
repeat on HTT22 is causal. Finally, a recent study reported that
the odds ratios (ORs) of LEV for coronary artery disease, breast
cancer, and colon cancer are greater in high PGS quintile subjects
than in low PGS quintile subjects23. However, the generalizability
of these results to different disease risk models and different
classes of genetic architectures remains unclear, and an analytic
framework for further methodological and empirical investiga-
tions is lacking.

Here, we develop a summary-statistics-based framework to
characterize and exploit the relationship between the PB and LEV
among individuals sharing a diagnosis in clinically- and metho-
dologically- relevant applications, with software implementation,

PB-LEV-SCAN. This framework allows us to test several falsifi-
able hypotheses. Firstly, the framework raises the possibility that
the common-variant PGS may provide a useful criterion for
prioritizing samples for sequencing and rare variant discovery.
Secondly, if implemented in clinical or research praxis24, to what
extent would different parameters—study-design, disease model,
and genetic architecture—influence the result and be used as
features for prediction? We apply our summary-statistics-based
methodology in the context of empirical data, i.e., with parameter
values observed in large-scale biobanks (see Methods), test the
predictions and findings generated based on the models of the
framework against empirical observations, and present a real-
world application of the framework.

Results
Utility of PB-LEV correlation. The PB-LEV correlation (Fig. 1)
may provide a useful approach for probing the relationship
between sources of genetic risk and for prioritizing samples for
sequencing and rare variant discovery. Extensive simulations
were therefore performed to calculate the utility (see Methods) of
the PB-LEV correlation for each of the disease risk models and a
genetic architecture chosen from the polygenic, negative selection,
and LD-adjusted kinship models (Fig. 2). We use the term “uti-
lity”, as the usefulness of the PB in some of the clinically
important applications we have in mind (e.g., as a sample
prioritization tool for sequencing or for well-powered discovery
of a large-effect pathogenic variant) depends on our ability to
detect the PB-LEV relationship from a (clinical) sample of causal
variants and of individuals.

The models of disease risk included here are the liability-
threshold model (in which a case is deterministically defined by
exceeding a liability threshold) and the logit risk model (in which
the definition of a case has a stochastic structure), each a joint
model of how risk factors PB (denoted by A) and LEV (denoted
by R) contribute to disease susceptibility. That is, if p is the
probability of disease risk, each model specifies p as a function of
the two sources of risk (see Methods):

p ¼ g A;Rð Þ ð1Þ
On the other hand, each genetic architecture models the

distribution of the causal effect size βPB;i as a function of minor
allele frequency f i and the extent of LD li with neighboring
variants as quantified by the LD Score (see Methods):

βPB;i � N 0;ψ f i; li
� �� �

ð2Þ
For example, the (baseline) polygenic architecture is defined by

a fixed variance ψ f i; li
� � ¼ V .

Specific simulation parameters such as the heritability of the
trait attributable to the PB (h2PB), the heritability (h

2
LEV) explained

by, and allele frequency (f ), of the LEV, the disease prevalence
Kð Þ, and sample size (N) (see Methods) were varied to assess the
utility of the PB-LEV correlation.

We first considered the results under a liability-threshold
model and the polygenic architecture as a baseline. Higher PB
was, in general, observed for cases than for controls in the
simulations (Supplementary Data 1). As expected, a larger sample
size resulted in higher utility consistently across all simulation
settings (Fig. 3). Higher trait variance explained by the LEV
(equivalently h2LEV, when the outcome is standardized to N ð0; 1Þ)
or higher common SNP-based heritability (h2PB) also resulted in
higher utility (Fig. 3a, b), with the exception of the special case of
very small sample size (N= 500). We then fixed h2LEV, h

2
PB, and

disease prevalence, but varied the allele frequency of the LEV
from 1e-4 to 0.05. The utility was negatively correlated with the
allele frequency in the range of 0.001 to 0.05 (Fig. 3c). Because the
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variance explained by the LEV was fixed, larger f yielded smaller
effect size βLEV, implying that when the effect size difference
between common and rare variants was smaller (i.e., the common
and rare variants had more similar effects), the utility was lower.
However, in the case of LEV allele frequency lower than 0.001,
utility dropped, as the LEV might not be present in the sample.

For more common diseases (i.e., greater value of trait prevalence
K), an increase in sample size resulted in an increase in utility
(Fig. 3d).

We simulated alternative genetic architectures from the
negative selection and LDAK models (see Methods). In contrast
to the polygenic model, these genetic architectures assume that

Fig. 1 Central hypothesis underlying relationship between polygenic burden and large-effect (typically rare) variant. For illustration here, we set the
heritability due to the polygenic burden (PB), heritability due to large-effect variants (LEVs), and population prevalence to be 0.5, 0.1, and 0.01,
respectively, and simulated N ¼ 10;000 independent samples under the liability-threshold model of disease risk. Panel a shows the distribution of the
underlying liability, a normally-distributed trait resulting from the cumulative effects of PB, LEVs, and the residual component. The red dashed line indicates
the so-called liability threshold, which is determined by K, the population prevalence parameter. Panel b illustrates the relationship between the two
orthogonal sources of genetic risk among individuals who share a diagnosis. Ideally, an inverse correlation of PB and LEV burden should be observed in
cases (red dots, defined by the threshold line in panel (a)) under the liability-threshold model. In real-world data, the liability may include many additional
effects not shown in this model. We refer to the inverse relationship between PB and LEV among cases (illustrated in panel (b)) as the “PB-LEV
correlation”. The PB-LEV correlation can then be used in downstream applications, e.g., predicting (for external validation) the proportion of LEV carriers
among cases with a given PB profile, a key element of PB-based LEV screening. Source data are provided as a Source Data file.

Fig. 2 Generative models of disease liability and various genetic architecture models.We calculated the disease risk probability assuming two models of
disease liability, namely, the liability-threshold model (green panel) and logit risk model (blue panel). To simulate the effect sizes of common causal
variants (and the resulting phenotypes), we considered three genetic architecture models: polygenic, negative selection, and LD-adjusted kinship. For each
model of disease liability and model of genetic architecture, we varied the simulation parameters (the white panels), including the heritability h2PB due to the
common-variant polygenic burden (PB), heritability h2LEV captured by the (primarily rare) LEV and its allele frequency f, disease prevalence K, and sample
size N (as a study-design parameter). The chosen values are shown in the brackets under each parameter. In simulated data, we calculated the utility of the
PB-LEV correlation. In addition, varying the proportion of noncausal variants (π0) in the estimate of PB, we quantified the power to detect the PB-LEV
correlation. For each of the parameter combinations, we simulated 500 times to calculate the utility and power. These generative models of disease liability
and genetic architectures provide the basis for a summary-statistics-based framework for inferences based on PB and LEV.
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the contribution to h2PB from the causal variants depends on the
minor allele frequency or on both the minor allele frequency and
the correlation with neighboring variants, respectively. The
results on the utility of the PB-LEV correlation held robustly
across these genetic architectures (Supplementary Fig. 1).

Power. In addition, under all three classes of genetic archi-
tectures, we simulated a mixture distribution consisting of null
and causal effects (see Methods) to determine the degree to which
a PGS with noncausal SNPs, as an estimate of the common-
variant PB, might impact the detection of the PB-LEV correlation.
The power significantly dropped when π0 (the proportion of
noncausal variants) increased while fixing a set of parameters
(h2PB, h

2
LEV, f , and K) at “low” (Fig. 4a) and “high” levels (Fig. 4b).

In 10,000 samples, the power (under “low” level) was sub-
stantially reduced from 98.2 to 94.6, 79.8, 48.0, and 14.8 when the
proportion of noncausal variants was increased from 10 to 30, 50,
70, and 90, respectively. The power dropped below 50% for all the

cases when π0 was set to 90%. The trend was consistent across the
three genetic architectures (Supplementary Fig. 2).

Taken together, these results underscore the importance of
determining, i.e., fine-mapping, the causal variants to be included
in the PGS for the detection of the PB-LEV correlation. On the
other hand, they also show that statistical power can be
maintained at a sufficiently high level (i.e., at or above 80%)
even when a large proportion of the variants (here, up to half) in
the PGS are noncausal.

Effect of negative selection on genetic architecture. Negative
selection has been proposed as a mechanism to explain the extreme
polygenicity of complex traits. A genetic architecture constrained by
negative selection would display ”flattening” of the distribution of
heritability25, thereby showing more limited average per-allele effect
for common variants across the genome. The action of negative
selection could also induce effect size to vary with LD26.
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Fig. 3 Utility of PB-LEV correlation under liability-threshold model. We simulated the effect sizes for common and rare variants and calculated the
probability of disease risk for each individual using real genotype data. Cases and controls were defined by the liability threshold. The utility is defined as
the proportion of simulations for which, among cases, a significantly lower (P < 0.05) PB in LEV carriers than in noncarriers is observed. We varied the a
heritability attributable to the common-variant polygenic component, b heritability captured by the LEV and c its allele frequency, and d disease prevalence
while fixing all other parameters. Two-sample Wilcoxon test was performed to test whether PB was lower in LEV carriers than in noncarriers (one-sided
test) in cases. The utility, to be contrasted with power, was calculated as the proportion of significant (P < 0.05) test results in 500 simulations, with
different seeds for sampling causal variants and subjects. Broken line at 80% is a reasonable utility threshold. The results under the polygenic genetic
architecture are shown. Results for the other two genetic architecture models can be found in Supplementary Fig. 1. Source data are provided as a Source
Data file.
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We hypothesized that the influence of negative selection on
genetic architecture could be tested through its impact on the PB-
LEV correlation. Furthermore, this impact would be greater in the
case of relatively modest PB heritability (with the same number of
independently associated variants), which would indicate a more
pronounced separation between average common-variant effects
and the LEV. Consistent with this hypothesis, although all three
classes of genetic architecture consistently showed a highly
significant PB-LEV correlation throughout the simulations, the
genetic architecture consistent with negative selection was more
enriched for higher-significance PB-LEV correlation than the

(neutral) polygenic genetic architecture (Fig. 5a). Similarly, the
LD-adjusted kinship model, which assumes an MAF-dependent
genetic architecture (in addition to dependence on LD), had
greater enrichment than the polygenic genetic architecture
(Fig. 5a). Taken together, these results raise the possibility that
certain types of genetic architecture can be ruled out for a given
complex trait by the application of the framework.

PB-LEV correlation in presence of disease subtypes. We asked
to what extent the presence of disease subtypes as defined by a
heterogeneous PB effect alters our conclusions. The presence of
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Fig. 4 Power under liability-threshold model. The proportion of noncausal common variants π0 (0.1–0.9) in the common-variant polygenic component
was considered in power estimation. For the other parameters, two different combinations were applied. We simulated a “low”
(h2PB ¼ 0:3; h

2
LEV ¼ 0:03; f ¼ 0:005;K ¼ 0:01) and b “high“ (h2PB ¼ 0:5; h

2
LEV ¼ 0:1; f ¼ 0:05;K ¼ 0:05) levels to show the effect of π0 on the power at

different levels. The results under the polygenic genetic architecture are shown. Results for the other two genetic architecture models can be found in
Supplementary Fig. 2. Broken line at 80% is a reasonable threshold. Source data are provided as a Source Data file.

Fig. 5 The PB-LEV correlation under different genetic architectures. a We compared the significance of the correlation between the polygenic burden
(PB) and large-effect variant (LEV) in cases for three classes of genetic architecture, namely, “polygenic”, “negative selection”, and “LDAK” (see Methods).
The expected –log(P) and the observed –log(P) from 500 simulations are shown on x-axis and y-axis, respectively. In the case of relatively modest PB
heritability (h2PB ¼ 0:1), higher-significance levels (i.e., lower p values) were observed for “negative selection” and the “LDAK” model (than for neutral
“polygenic” architecture), both consistent with the “flattening” of heritability across the genome, which has been attributed to the action of negative
selection. Here, we set h2LEV; f; and K at 0:01;0:001; and 0.01, respectively. Significance was assessed via Wilcoxon rank-sum test (one-sided). Given the
specific combination of simulation parameter values, the dashed horizontal line at 4.5 is a potential threshold that can be used to rule out certain genetic
architecture models through comparison of the observed PB-LEV correlation with the framework’s predictions. b To test the effect of potentially dependent
PB and LEV (in the general population) on the PB-LEV correlation (in cases), we assumed that the LEV was in high LD (D'= 1) with the top-ranked
common variant (i.e., with the largest effect size) and compared the utility. Here, we set h2PB ¼ 0:3; h2LEV ¼ 0:01; f ¼ 0:001, and prevalence Kð Þ ¼ 0:01, and
assumed a polygenic genetic architecture and the liability-threshold model in the simulations. c To test the extent to which potential interactions between
the PB and LEV could affect the PB-LEV correlation, we assumed that the interaction between the LEV and the common variant with the largest effect size
contributed to the variance of the trait (h2interaction ¼ 0:02) and performed simulations. All other parameters were fixed as in (b). Broken line at 80% is a
reasonable utility threshold. Source data are provided as a Source Data file.
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disease subtypes for a given complex disease is typically a priori
not known. By varying the heterogeneity of effects across sub-
types and the proportion of minor subtype cases (see Methods),
we observed highly consistent results (Supplementary Fig. 3).
This analysis shows the robustness of the relationship between
LEV and PB in cases even in the presence of disease subtypes.

Robustness to independence and additivity of PB and LEV. All
simulations thus far assumed that the PB and LEV are inde-
pendent (in the general population) and that their contributions
to risk are additive. Here, we simulated two additional scenarios
wherein (1) small-effect common variants and LEV are depen-
dent and (2) the interaction between small-effect common var-
iants and LEV also plays a role in disease risk.

For the first scenario of dependence, we assumed that the LEV was
in high LD (D′= 1) with the common variant with the largest effect
size. We performed simulations and compared the utility of the PB-
LEV correlation with the utility when PB and LEV were independent.
For the simulations, we set h2PB ¼ 0:3; h2LEV ¼ 0:01; f ¼ 0:001, and
prevalence Kð Þ ¼ 0:01, and assumed a polygenic genetic architecture
and the liability-threshold model. The values for the utility were
similar for the dependent and independent cases as sample size was
varied from 500 to 10,000 (Fig. 5b).

For the second scenario of interaction, we assumed that the
interaction between the LEV and the common variant with the
largest effect size contributed to the trait variance
(h2interaction ¼ 0:02). For all other parameters, we used the same
settings as above. Here again, the utility values between the disease
models with and without interaction were similar (Fig. 5c).

Application of PB to identify at-risk individuals comparable to
LEVs. For clinical application, it is of considerable interest to
determine, from simulations, to what extent one can use the
common-variant PB to identify at-risk individuals with PB
comparable to large-effect mutations. We calculated the OR of
the LEV (by taking LEV carriers and noncarriers as the exposed
and the unexposed group, respectively) and the OR of PB (by
taking the top 1, 5, and 10% of the PB-ranked samples as the
exposed group and the remaining samples as the unexposed
group). For our assumed simulation settings (under a polygenic
genetic architecture), the OR of the LEV and OR of the PB
showed a similar order of magnitude. The OR of the LEV and
that of the PB tended to converge as h2PB increased (Fig. 6a) or as
the heritability due to the LEV decreased (Fig. 6b). Assuming h2PB
to be 0:3, we observed that the OR of the LEV was comparable to
the OR of the PB (using any of the three PB cutoffs) when h2LEV
was in the range between 0.01 and 0.03 (Fig. 6b). However, as
h2LEV increased, the two ORs would increasingly diverge. Never-
theless, at least based on the estimates of h2LEV from available
empirical data in a large-scale biobank (UK Biobank), the con-
dition h2LEV > 0:03 would appear to be rather uncommon (and
indeed the maximum h2LEV estimate was 0.025 among the 36
heritable traits with an identified LEV, from studies using the UK
Biobank27,28 [Supplementary Data 2 and Methods]). Thus, our
simulations identified a specific range of these parameters
wherein the OR of the LEV and that of the PB would be expected
to be similar. As expected, lower LEV allele frequency would
result in increased OR of the LEV (Fig. 6c). The OR of the LEV
and that of PB tended to become more similar with higher disease
prevalence, i.e., for more common diseases (Fig. 6d). Similar
patterns were observed for the other two classes of genetic
architectures (Supplementary Figs. 4, 5).

Our analyses so far assumed that all causal variants were
known (i.e., π0 ¼ 0) for PB estimation. To fit realistic situations,

we varied the proportion of noncausal variants (π0) from 0 to 0.9
and reestimated the OR. The OR estimate both in carriers and in
noncarriers substantially decreased when the π0 was increased
(Supplementary Fig. 6). The difference in OR for PB between
carriers and noncarriers was no longer detected when 90% of the
variants used for the PB were noncausal. Similar results were
observed under the other two classes of genetic architectures.

We compared the change in OR of the PB (per sd change)
between LEV carriers and noncarriers while varying each of h2PB,
h2LEV, f , and K, i.e., we compared the slopes ∂ðORÞ

∂h2PB
, ∂ðORÞ
∂h2LEV

, ∂ðORÞ∂f , and
∂ðORÞ
∂K , respectively, between LEV carriers and noncarriers. The
2.5–97.5 percentile range for the OR among LEV carriers and
noncarriers overlapped for each simulation setting (Fig. 6e–h,
under polygenic genetic architecture). No difference in OR was
observed between LEV carriers and noncarriers (i.e., no evidence
of interaction between PB and LEV), which is consistent with the
simulation’s assumed additivity of effects but also with recent
empirical studies for some traits20,23,29. However, for a given
change in h2PB, our framework would predict that change in OR of
the PB should be generally higher in noncarriers than carriers
(Fig. 6e) while a more limited differential change in OR between
carriers and noncarriers was observed by varying h2LEV, f , and K
(Fig. 6f–h). Thus, among the tested parameters, h2PB is the most
important determinant of how differently, between carriers and
noncarriers, the OR of the PB changes. We observed similar
results for the other two classes of genetic architectures
(Supplementary Figs. 7, 8).

Simulations using alternative model of disease risk. We con-
sidered an alternative model of disease liability, namely the logit
risk model. Under this model, a case is defined by a stochastic
draw (in contrast to the deterministic cutoff of the liability-
threshold model) from binomial distribution (using the prob-
ability of disease risk). In general, the results from the logit risk
model were consistent with those from the liability-threshold
model (Supplementary Figs. 9–13).

Testing the PB-LEV correlation in real data. We found that
Tourette Syndrome (TS) patients30,31 harboring LEVs (i.e., de
novo LoF/Mis3 coding variants or lrgCNVs, Supplementary
Table 1 and Supplementary Table 2; n ¼ 36) had significantly
lower common-variant PGS than TS patients (n ¼ 480) without
such chromosomal events (P= 0.020, Supplementary Table 3).
The PGSTS accounted for 3.6% of the total variance in lrgCNV
carrier status according to Nagelkerke’s R2 calculation. In con-
trast, among cases with Obsessive-compulsive disorder (OCD)30

(n ¼ 919), no significant difference (P= 0.120) of PGSOCD was
observed between LEV (lrgCNVs) carriers (n ¼ 61) and non-
carriers (n ¼ 858).

We excluded chromosome 6 to avoid any possible confounding
by complex LD patterns in the HLA region for PGS of type 1
diabetes T1D. Individuals (n ¼ 873) who were carriers of the
high-risk alleles at the HLA-DRB1 locus32 (high-risk genotypes=
3/3, 3/4, or 4/4) had significantly lower covariate-adjusted
PGST1D than individuals (n ¼ 985) who were carriers of the
lower risk alleles (low-risk genotypes= 3/not [3 or 4], 4/not [3 or
4], or not [3 or 4]/not [3 or 4], Wilcoxon rank-sum test P=
0.007).

Application to large-scale biobank. Using empirical data with
various levels of heritability, disease prevalence, and LEV
frequency, as observed in the UK Biobank, we sought to (1)
evaluate whether the predictions generated based on the
models of the framework can be confirmed in empirical
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observations and (2) illustrate real-world applications of the
framework. In total, 36 heritable traits, each with at least one
identified LEV, were included (Supplementary Fig. 14). Most
of the UK Biobank traits reflected the simulation parameters
(Supplementary Data 2). Twenty-five percent (9 of 36) of the
traits showed a high utility (≥80%) of the PB-LEV correlation
(Supplementary Data 2).

We considered the probability of LEV carriers among cases,
P LEV j Y ¼ 1ð Þ, estimated here from simulations as the number
of LEV carriers per 1000 cases, to quantify the effectiveness of the
framework for prioritizing cases for sequencing studies. We
estimated the number of LEV carriers per 1000 cases for each of
ten equally-sized bins of PB risk score. We found that cases from
the lowest PB risk bins tended to have the highest proportion of
LEV carriers. As an example (Fig. 7a), we would expect to find 27
cases carrying a stop-gain mutation (OR= 5.1, MAF= 0.0013)
on MYOC per 1000 glaucoma cases from the lowest PB risk bin.
However, among the 1000 glaucoma cases in the highest PB risk
bin, we would expect to find only six carriers. We analyzed four
additional traits (Fig. 7b–e) representing three distinct patterns.
The results on malignant melanoma (Fig. 7b) indicated that only
cases with low-PB risk would be worth sequencing for LEV
screening. For both Crohn’s disease (Fig. 7c) and acute tonsillitis
(Fig. 7d), the striking difference in the estimated proportion of
LEV carriers among cases from the different PB risk bins would
suggest the usefulness of PB-based prioritization. Per 1000

Crohn’s disease patients, 214 cases would be expected to be
NOD2 frameshift mutation carriers from the lowest PB risk group
whereas only about 67 cases from the highest PB risk group
would be expected to be carriers of the mutation (Fig. 7c). Nearly
half of the acute tonsillitis cases (452/1000) from the lowest PB
risk group were predicted to be OXCT2 missense mutation
carriers, which was a nearly threefold increase relative to the
highest PB risk group (Fig. 7d). However, PB-based prioritization
appears to be less helpful for screening low frequency, large-effect
type 2 diabetes-associated variants (Fig. 7e).

We further compared the predictions from our framework
with observations from the empirical data: breast cancer,
colorectal cancer, type 2 diabetes, and short stature28. Under
the liability-threshold model applied to these traits, our frame-
work would predict that low-PB cases tended to have a higher
probability of carrying an LEV than high-PB cases (the median of
PB was used to define low and high-PB groups). The framework’s
predicted distribution of the proportion of LEV carriers was
generated (shown as a boxplot in Fig. 8a). Notably, the empirical
data (i.e., the actual proportion of LEV carriers, marked as a red
diamond) were concordant with the predictions. In addition, we
induced different levels of noise for the PB by varying the
proportion of noncausal variants in the polygenic risk score, π0
(evaluated at 0, 0.5, and 0.8). The pattern of low-PB cases having
a higher proportion of LEV carriers still held despite the presence
of induced noise although the difference between low-PB cases
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Fig. 6 The odds ratio (OR) of small-effect, common variant-based polygenic burden. a–d OR comparison between the large-effect variant (LEV) and
polygenic burden (PB). One potential application of our framework is to identify at-risk individuals with PB similar to a LEV. Thus, we investigated the
scenarios in which the OR for the LEV and for the PB are comparable. We calculated the OR of the LEV under the liability-threshold model and the
polygenic genetic architecture while varying the common SNP-based heritability (h2PB), the heritability of LEV (h2LEV), the allele frequency of LEV (f), and the
prevalence (K) and assuming 10,000 independent samples. The OR of the PB was determined by comparing individuals with high-PB (top 1, 5, and 10% of
distribution) with the remainder of the population. The point estimates and the 95% confidence interval (CI) are shown as dots and horizontal lines,
respectively. e–h Change in the OR of PB (per sd change) with respect to change in parameter differs between LEV carriers and noncarriers. The OR of the
PB was calculated under the liability-threshold model and the polygenic genetic architecture while varying h2PB, h

2
LEV, f, and K. In simulations, we assumed

10,000 samples. The median of the OR across simulations is shown as a dot, while the 2.5th and 97.5th percentile of the OR across simulations are
represented by the horizontal segments. Among the parameters tested here, the h2PB is the most important determinant of how differently, between carriers
and noncarriers, the OR of the PB changes, as can be seen from the “slope” at each point. In panels (a) and (e), we fixed h2LEV; f; and K at 0:03;0:005; and
0.01, respectively, while varying h2PB. In panels (b) and (f), we fixed h2PB; f; and K at 0:3;0:005; and 0.01, respectively, while varying h2LEV. In panels (c) and
(g), we fixed h2PB; h

2
LEV; and K at 0:3;0:03; and 0.01, respectively, while varying f. In panels (d) and (h), we fixed h2PB; h

2
LEV; and f at 0:3;0:03; and 0.005,

respectively, while varying K. The horizontal broken line at OR= 1 shows the null. Source data are provided as a Source Data file.
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Fig. 7 Cases with low polygenic risk score have higher probability of carrying an LEV. Based on empirically-informed parameter values (i.e., derived from
the UK Biobank), we performed simulations (under the liability-threshold model and the genetic architecture in line with negative selection) and compared
the number of LEV carriers per 1000 cases among the different polygenic risk scores for a glaucoma, b malignant melanoma, c Crohn’s disease, d acute
tonsillitis, and e type 2 diabetes. For each trait, we grouped the cases into ten equally-sized polygenic risk score bins. For each bin, the mean ± 1sd of the
number of LEV carriers per 1000 cases is displayed as a blue circle and bar. The distribution of polygenic risk score is shown as a histogram. For example,
per 1000 Crohn’s disease cases, 214 would be expected to be NOD2 frameshift mutation carriers from the lowest PB risk group; in contrast, PB-based LEV
screening would be less effective for type 2 diabetes. The proportion of LEV carriers in the lowest PB risk group for acute tonsillitis was a nearly threefold
increase relative to the highest PB risk group. Thus, the framework (assuming prespecified simulation parameters) provides testable predictions on the
number of LEV carriers per 1000 cases with a given PB profile and on the sample polygenic risk score profile to optimize LEV screening. Detailed results
can be found in Supplementary Data 2.
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and high-PB cases became smaller with higher induced noise
(Fig. 8b, c). Notably, the concordance between predicted and
observed proportion remained. Under the logit risk model, we
also observed consistent results between the framework’s
predictions and the empirical data for breast cancer, type 2
diabetes, and short stature (Supplementary Fig. 15). For colorectal
cancer, a higher proportion of LEV carriers was predicted in low-
PB cases, in agreement with empirical data; however, the
predicted proportion of LEV carriers in both low-PB and high-
PB groups was slightly higher than observed from the empirical
data (Supplementary Fig. 15).

Having observed striking concordance between the predictions
and empirical data, we applied our summary-statistics-based
framework to all remaining UK Biobank traits to generate
additional predictions. The results consistently showed the value
of PB-based LEV screening for almost all of the tested traits,
covering a diverse range of levels of PB heritability, disease
prevalence, and LEV allele frequency (Supplementary Fig. 16). On
average, we found the proportion of LEV carriers among cases
with the lowest PB risk (i.e., the first PB risk bin) to be 2.6 times
(range: 1.4–32.6) as large as the proportion among cases with the
highest PB risk (i.e., the tenth PB risk bin). Detailed results can be
found in Supplementary Data 2.

Discussion
This study provides a framework for integrative analysis of large-
effect genetic risk factors and their polygenic background. We

evaluate the impact of several parameters (i.e., heritability, disease
prevalence, LEV frequency) under different models of disease
liability and diverse classes of genetic architectures on the utility
and power of the PB-LEV correlation. The framework makes
certain predictions (e.g., reduced PGS stratification for LEV car-
riers compared with noncarriers) and presents several testable,
falsifiable hypotheses (e.g., estimating the proportion of LEV
carriers among cases with a particular PB profile given study-
design, disease model, and genetic architecture parameters
informed by empirical genomics data). Using empirical data, we
confirmed the signature of the PB-LEV correlation in a large-scale
biobank and, moreover, observed a significant PB-LEV correla-
tion in early-onset phenotypes such as TS and T1D. In addition,
we show that, for a set of choices of the parameters, the pro-
portion of LEV carriers among cases given a PB profile can be
accurately predicted, with clear utility for clinical and sequencing
applications.

As a baseline, we assumed a liability-threshold model and the
polygenic architecture. Consistent results were observed when we
varied the disease liability and genetic architecture models. We
found that the action of negative selection on the genetic
architecture25 might be detected through its more pronounced
effect on the PB-LEV correlation in comparison with the neutral
polygenic genetic architecture.

To explore the clinical relevance of our framework, we com-
pared the OR of the PB and that of the LEV, uncovering a range
of conditions in which the risk derived from the PB is comparable

Fig. 8 Prediction of the framework on proportion of LEV carriers in cases with a given PB profile matches empirical observations, providing an LEV
screening approach. Using empirically-informed values (i.e., derived from the UK Biobank) of the parameters (including the common variant-based
heritability; disease prevalence; allele frequency and odds ratio of the LEV), we performed simulations for four traits under the genetic architecture in line
with negative selection. We varied the π0 (the proportion of noncausal variants in the polygenic risk score) at a 0, b 0.5, and c 0.8. Cases were defined under
the liability-threshold model and classified into “low-PB” and “high-PB” (using the median as the cutoff) groups. The proportion of LEV carriers in each group
was estimated as the number of cases carrying the LEV divided by the total number of cases. The distribution of the proportion (across 500 simulated sets)
is shown in the boxplot. The median of the proportion is visualized as a black segment in the middle of the box. The lower and upper hinges correspond to
the first and third quartiles (the 25th and 75th percentiles). The upper/lower whisker extends from the hinge to the largest/smallest value no further than/at
most 1.5 * IQR from the hinge (where IQR is the inter-quartile range or the distance between the first and third quartiles). The actual observed proportion of
LEV carriers for each PB profile from empirical data (with matching parameters as the simulations) is marked as a red diamond. Thus, the prediction of the
framework and the empirical dataset (with matching parameters as the simulations) were concordant. Source data are provided as a Source Data file.
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to the LEV-derived risk. A recent study reported confirmatory
results in empirical data (including CAD, Atrial fibrillation, T2D,
IBD, and breast cancer GWAS data)33.

Although some recent studies have provided support for the
notion that, for many complex traits, PB and LEV are indepen-
dent and additive20,23,29, we examined two additional scenarios in
which the assumption of either independence or additivity is
relaxed. For the scenario of dependence, since we assumed that all
causal common variants were independent, assuming D′= 1
between LEV and the common variant with the largest effect size
is an extreme case. For the potential interaction of PB and LEV,
we assumed a non-negligible role of interaction (i.e., explaining
twice as much of the trait variance as the marginal LEV effect) in
disease risk. In both scenarios, simulation results showed that the
PB-LEV correlation held.

It is possible that the nonsignificant results for OCD may be
due to implicit or chance ascertainment schemes in which cases
were enriched for polygenic etiology (i.e., probands taken from
multiplex families), consequently decreasing the power to identify
pathogenic rare variants within the sample and negatively
impacting the power to detect the PB-LEV correlation. Notably,
we did not explicitly model gene networks or pathways shared
between PB and LEV, i.e., biological correlation, which may
explain the result for OCD. Certainly, replication in larger sam-
ples with a more comprehensive model (e.g., as implemented in
CORE GREML34) will be needed to conclusively determine the
strength of the correlation in all complex traits tested to date.

As expected, our analysis revealed significantly lower polygenic
risk score in T1D cases with high-risk HLA-DRB1 genotypes.
This analysis provides another confirmation that known variants
with large effect—even when they are not fully penetrant—may
exhibit a negative correlation with common-variant polygenic
risk within a patient population.

Given only summary-level data for key parameters (e.g., trait
heritability and LEV effect size), our framework provides an
accurate estimate of the proportion of LEV carriers among cases
with different PB profiles. Leveraging empirical data from the UK
Biobank, we quantified the performance (i.e., the accuracy of the
estimate) by comparing the predicted and observed results.
Notably, the effectiveness of utilizing the PB risk for LEV
screening varied by trait. For malignant neoplasms (malignant
melanoma, basal cell carcinoma, and colorectal cancer) and
diverse trait classes, including inflammation (Crohn’s disease,
regional enteritis, acute tonsillitis, phlebitis, and thrombophlebi-
tis), cognition (delirium), circulation (acute myocardial infarc-
tion), and metabolism (gout), our results show that it is more
effective to identify LEV carriers among cases with low-PB. In
contrast, for type 2 diabetes and cellulitis, the effectiveness of
using the PB risk is reduced. Notably, the framework’s predictions
were confirmed by empirical data in an external study28. It should
be noted that the current framework’s predicted proportion of
LEV carriers among cases with a given PB profile may under-
estimate the true value. Our empirical understanding of LEVs is
limited: (1) noncoding LEVs are not covered in exome-
sequencing data and (2) for each trait, only the top-ranked
LEV was considered in this study.

Recent studies have shown that proxy measures of PB, such as
family history of neuropsychiatric phenotypes, are also sig-
nificantly negatively associated with LOF de novo variant rate in
ASD samples providing additional support for the hypothesis that
in the absence of common-variant polygenic risk, rare pathogenic
de novo, or inherited variants must be more salient risk factors35.
Our study suggests that PB is a useful addition to the prior-
itization schemes of samples likely to harbor rare pathogenic
variants, particularly in the absence of extensive family history
information. Since rare pathogenic variants may be enriched for

loss-of-function and since the genetic dose-response curve may
be extrapolated from the regulatory range to loss-of-function36,
genetically determined expression37,38 may be used to further
investigate the PB-LEV correlation. Furthermore, cases with low
common-variant polygenic risk and no apparent rare variant
burden who are nonetheless affected, may represent a subgroup
of cases enriched for epigenetic or environmental risk factors.
This raises the possibility of a “stratified medicine” strategy based
on PB. It follows that genetic epidemiology studies that include
common-variant polygenic and rare variant risk scores in their
models may further increase their power to identify shared and
modifiable environmental risk factors.

The current study has several limitations. The disease models
we used are plausible and wide-ranging, but they are not likely to
cover all possible scenarios. Although we tested relaxing the
assumptions of additivity and interaction of PB and LEV, com-
prehensive studies of generative models are needed. Diseases are
complex, involving heterogeneous causal etiologies for individual
variants and implicated biological processes and pathways, which
the framework may not accurately model. Although we validated
the predictions of the framework in several disease datasets in a
large-scale biobank, the generalizability of the framework needs to
be confirmed in additional datasets.

Several future applications come to mind. First, as we noted in
Methods, estimation of disease prevalence using the genetic risk
score follows from the framework. For highly heterogeneous
traits, the less noisy genetic risk score may lead to improved
estimation. Second, the framework raises the possibility of
obtaining an estimate of the proportion of noncausal variants (π0)
in the PB. We provide a software implementation, PB-LEV-
SCAN, to enable application of the framework to other complex
traits and the testing of other hypotheses in future studies.

In conclusion, we developed a summary-statistics-based fra-
mework that utilizes the relationship between PB and LEV among
cases for some methodologically- and clinically-relevant appli-
cations, including PB-based LEV screening. The framework’s
testable, falsifiable predictions on the proportion of LEV carriers
among cases with a given PB profile under prespecified simula-
tion parameters were confirmed by empirical data. Application of
the framework to a large-scale biobank showed that the effec-
tiveness of PB-based LEV screening varied substantially by trait.
Taken together, these findings shed critical light on the use of PB
in clinical practice.

Methods
Assumptions of the framework. The first major assumption of the mathematical
framework is the choice of generative model of disease liability. The second major
assumption concerns the genetic architecture. Here, initially, we assume that the
effects of the (genome-wide) PB and the LEV are independent and additive in
defining the disease liability. For sensitivity analysis, we also considered the sce-
nario in which the assumption of independence or additivity is relaxed. Let h2PB and
h2LEV be the heritability due to the common variant-based polygenic background
and the LEV, respectively.

Generative model of disease liability. Under the liability-threshold model (Fig. 1),
individuals whose liability (L) exceeds a given threshold (t) are cases. If the effects of
PB and the LEV are independent and additive, the liability can be written as:

L ¼ Aþ Rþ e ð3Þ

where A is the additive effects of PB:

A � N 0; h2PB
� � ¼ ffiffiffiffiffiffiffi

h2PB

q
*N ð0; 1Þ ð4Þ

R is the large-effect variant (LEV) burden with effect size βLEV and allele frequency
f :

R � ðβLEVÞ2 *Binomialð2; f Þ ð5Þ
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and e is the residual component:

e � N ð0; 1� h2PB � h2LEVÞ ð6Þ
Here we assume a single LEV (see, however, below in case of LEV

heterogeneity). The disease risk probability p thus satisfies:

p ¼ P L> tð Þ ¼ P e > t � A� Rð Þ ¼ Φ � t � xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2PB � h2LEV

q
0
B@

1
CA :¼ Φ*ðxÞ ð7Þ

where Φ is the cumulative distribution function (CDF) of the standard normal
N ð0; 1Þ and x ¼ Aþ R is the total genetic risk. Note that the liability L ¼ x þ e is
unimodal. The threshold t ¼ Φ�1ð1� KÞ is a function of disease prevalence K , by

definition. Note Φ* is a composition of the linear function m xð Þ ¼ x�Φ�1 ð1�KÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�h2PB�h2LEV

p and

the CDF Φ. This implies that Φ* is an increasing function of the genetic risk score
x:

∂p
∂x

¼ ∂Φ

∂m
∂m
∂x

¼ ϕ
x � Φ�1ð1� KÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h2PB � h2LEV

q
0
B@

1
CA 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� h2PB � h2LEV

q ð8Þ

where ϕ is the probability density function of the standard normal distribution.
An alternative model is a logit risk model. Here the disease risk probability is

connected to the total genetic risk x ¼ Aþ R via the function:

p ¼ 1=ð1þ e�ðu1xþu0 ÞÞ :¼ logit�1ðu1x þ u0Þ ð9Þ
Therefore, the total genetic risk can be written in terms of the log odds ratio:

u1x þ u0 ¼ In p
1�p

� �
, where the intercept term u0 is a population-level parameter.

While we use the same notation x for genetic risk in the liability-threshold model
and in the logit risk model, the genetic risk is modeled as a random effect for the
former and a fixed effect for the latter. However, for the analysis of interest to us
(which is not variance estimation), this distinction does not play a role, and thus we
use the same notation. We note that the genetic risk score xlogit under the logit risk
model maps to the same disease risk probability (i.e., p ¼ plogit ¼ pliability�threshold)
as the genetic risk score xliability�threshold under the liability-threshold model given by
the following:

xliability�threshold ¼ ðΦ*Þ�1 logit�1 u1xlogit þ u0
� �� �

ð10Þ
Under the logit risk model, the case status of an individual has a stochastic

structure:

Y � Binomialð1; pÞ ð11Þ
We note that we can derive the prevalence K as follows:

K ¼ P Y ¼ 1ð Þ ¼
Z 1

0
pφðpÞdp ¼ E½p� ð12Þ

where φðpÞ is the probability density of p and E is the expectation operator. As the
disease risk probability p is a function of the genetic risk score x ¼ Aþ R, the
framework enables estimation of disease prevalence K using the genetic data
(which may be less noisy than the phenotype information).

In addition to the assumption of independent, additive effects of PB and LEV,
as captured in the representation of the total risk score (x ¼ Aþ R), we
investigated other formulations of the total risk score, wherein either independence
or additivity of effects is violated. To relax the assumption of independence, we
considered the case wherein the LEV was in high LD (D0 ¼ 1) with the common
variant with the largest effect size. To relax additivity, we assumed that the
interaction between the LEV and the common variant with the largest effect size
contributed to the trait variance. In this case, the liability has a nonzero interaction
effect:

L ¼ A0 þ Rþ A*Rþ e ð13Þ
whereA* and A0 denote the effect of the common variant with the largest effect size
and the effect of the remaining common variants, respectively. The A*R denotes
the interaction effect.

Disease subtypes. We investigated the PB-LEV correlation in the presence of
disease subtypes. Here, we assumed two subtypes, hereafter called major and
minor, without loss of generality. We assumed a linear model39 of the underlying
liability that reflects the presence of subtypes using a polygenic subtype hetero-
geneity parameter λ:

L ¼ 1þ λð Þ*Aþ Rþ e ð14Þ
The major subtype is defined by λ ¼ 0, while the minor subtype assumes a

heterogeneous polygenic effect induced by λ≠ 0. We varied λ from 0 to 1 and the
proportion of minor subtype cases from 0 to 0.5. Although we used a liability-
threshold model, the analysis easily generalizes to the logit risk model to
accommodate a stochastic structure.

Genetic architecture models. We modeled three distinct classes of genetic
architectures to evaluate their impact on the PB-LEV correlation.

i. Polygenic genetic architecture model
In the first class, the effect size of each causal variant i was assumed to be

identically and independently Gaussian distributed as:

βPB; i � N 0;
h2PB
NPB

� �
ð15Þ

Under this so-called polygenic genetic architecture, each casual variant
contributes a modest proportion to trait variance that depends only on the number
of causal variants NPB:

var
�
βPB; i

�
: ¼ E

�
βPB; i

2� ¼ h2PB
NPB

ð16Þ

We assume the following linear model for the phenotype

y ¼ ∑
NPB

i¼1
GPB; iβPB; i þ ε ð17Þ

where the genotype GPB; i is standardized to have zero mean and unit variance and
the residual is normally distributed as ε � N ð0; σ2ε Þ. The variance of the phenotype
can be written as:

varðyÞ ¼ h2PB
NPB

ZZT þ σ2ε I ð18Þ

where Z equals the N ´NPB matrix of genotype values for the N samples and
G ¼ ZZT

NPB
is the genetic relationship matrix (GRM).

ii. A genetic architecture model consistent with negative selection
We considered a second class of genetic architectures, in which the minor allele

frequency influences the contribution to h2PB from causal variants, that is consistent
with a model of negative selection (which has been shown to be present in the UK
Biobank phenotypes40):

βPB; i � N ð0;C½f ið1� f iÞ�1þαÞ ð19Þ
Here, C is a constant of proportionality that does not depend on the variant, f i

is the allele frequency of the variant i, and, by assumption, α ¼ �0:37 (consistent
with what was observed in the UK Biobank40). Using the linear model for the
phenotype, we obtain:

var y
� � ¼ ZDZT þ σ2ε I ð20Þ

where D is a diagonal matrix with each diagonal entry equal to C. We note that the

polygenic architecture can be viewed as a subclass, with α ¼ �1 (and thus C ¼ h2PB
NPB

).

iii. LD-adjusted kinship model
Finally, we considered the LDAK41 class of genetic architectures:

βPB; i � N 0;C f i 1� f i
� �	 
1þα

wi

� �
ð21Þ

Here, the causal variant contribution to h2PB is both MAF- and LD- dependent.
The LD dependence is encoded in the weight wi for variant i, which we calculated
from the European ancestry panel derived LD Score42 li as follows:

wi ¼ 1=ð1þ liÞ ð22Þ
Compared to the polygenic genetic architecture, more of the genetic signals are

allocated to low LD regions. We note that the LDAK class can be viewed as a
subclass of the MAF-dependent architecture that assumes an LD-weighted
genotype HPB; i :

HPB; i ¼
ffiffiffiffiffi
wi

p
GPB; i ð23Þ

which would result in the same contribution to h2PB for the causal variant. In
simulations under this class, α was set to �0:25.

Utility metric. We define a utility metric that quantifies the usefulness of the
relationship between the common-variant PB and the LEV burden in probing the
genetic architecture of a trait. This metric derives from randomly sampling a set of
assumed causal variants and randomly sampling the individuals from the popu-
lation. In simulations, we used real genotype data (see below) to calculate the utility
under different models and parameters. It is defined as the expected proportion of
simulations for which, among cases, a significantly lower (P < 0.05) PB in LEV
carriers (i.e., individuals with the risk allele at the pathogenic variant) than in
noncarriers is observed. We note that the interpretation and application of the PB-
LEV test, which is performed only in cases, are fundamentally different from those
of the test of an association between PB and LEV in the general population
(Supplementary Information).

In order to evaluate the utility of the PB-LEV correlation for aforementioned
applications for a given disease liability model (Λ) (including liability-threshold or
logit risk) and a given genetic architecture (Γ) (including polygenic or “negative
selection” or LDAK), we considered the correlation between LEV and PB in cases
as a metric and considered its distribution. All simulations were conducted for each
pair of Λ and Γ. We systematically explored the impact of several population and
disease specific parameters on this metric in simulated datasets for each such pair.
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We varied several parameters of the underlying genetic architecture (Fig. 2): the
heritability h2PB due to the common-variant polygenic component (i.e., h2PB = 0.1,
0.2, 0.3, 0.4, and 0.5), the allele frequency of the LEV (i.e., f = 1.0e-4, 0.001, 0.005,
0.01, and 0.05), and the heritability h2LEV due to the LEV (i.e., h2LEV = 0.01, 0.02,
0.03, 0.05, and 0.10). We varied study-level parameters, specifically the sample size
N (i.e., N = 500; 1000; 2000; 3000; 5000; 10000). Finally, we varied parameters of
the model of disease liability, including the prevalence K (i.e., K = 0.001, 0.005,
0.01, 0.02, and 0.05; the prevalence is the mean or expected value of the disease risk
probability, as shown above) and the distribution of the probability of disease risk
in the population, as represented within the liability-threshold and logit risk
models. Varying the parameters (h2PB, h

2
LEV, f , N , and K) within each pair (Λ and Γ)

resulted in 3750*2 simulated models for liability-threshold and logit risk model
(Fig. 2). For each of the resulting models, we generated 500 simulated sets with
different seeds for causal variants and performed subject sampling. In simulated
cases, the Wilcoxon rank-sum test was performed to compare the PB between LEV
carriers and noncarriers.

Our simulations assumed NPB common causal variants (MAF > 0.01)
responsible for the PB of the trait. After LD pruning (PLINK command–indep-
pairwise 50 5 0.01) in 23,294 ancestrally European samples (see below), we set NPB
equal to 95,593. The effect size of common variants was defined based on different
genetic architectures (see above). The effect size of the LEV, with allele frequency f ,
was defined as follows:

βLEV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2LEVvarðyÞ
2f ð1� f Þ

s
ð24Þ

The phenotype (y) was then simulated as follows:

y ¼ ∑
NPB

i¼1
GPB; iβPB; i þ GLEVβLEV þ ε ð25Þ

ε � N ð0; 1� h2PB � h2LEVÞ ð26Þ
Here GPB; i and GLEV are the genotypes for the common variant i and the LEV,

respectively. The genotypes GPB; i were standardized to have zero mean and unit

variance. The total genetic risk x was mapped to a disease risk probability p ¼
Φ*ðxÞ or p ¼ 1=ð1þ e�ðxþu0ÞÞ, under a liability-threshold or a logit risk,
respectively.

LEV heterogeneity. A more general scenario assumes potential LEV heterogeneity,
i.e., at least one LEV – indexed by, say, m – each with effect size βLEV;m and allele
frequency f m . For example, different carriers may carry different LEVs. Here the
heritability due to these variants (of count NLEV in the population) is given by:

h2LEV ¼ 2 ∑
NLEV

m¼1
ðβLEV;mÞ2f mð1� f mÞ=varðyÞ ð27Þ

In this case, our simulation framework, as a simplifying assumption, uses the
LEV with the largest causal contribution to h2LEV. That is, for simulations, we chose:

βLEV; f
� � ¼ argmax

m
ðβLEV;mÞ2f mð1� f mÞ ð28Þ

Thus, under the assumption of LEV heterogeneity, we are using a lower bound
estimate for h2LEV (equal to the contribution of the LEV with the largest
contribution to h2LEV).

Empirical data informed simulations. In order to capture the LD structure and
the allele frequency distribution of real genomic data, simulations were performed
using the BioVU43 European ancestry subjects (23,294 independent individuals).
After quality control, common small-effect variants (MAF > 0.01) that passed an
imputation quality cutoff (R2 > 0.30) were included in the PB in downstream
analyses. LEVs (whose MAF ranged from 1e-4 to 0.05) were used in the simulations.
We also performed the sampling of subjects in our simulations from this dataset.

Statistical power. Since the PB is typically estimated using a PGS without
knowledge of which variants are causal, we simulated models with a certain pro-
portion, π1, of variants that comprise the PGS assumed to be causal. π0 ¼ 1� π1 is
then the proportion of null (noncausal) variants in the estimate PGS of PB. For
each distribution Dj of causal effects as defined above (representing a class of
genetic architectures; j ¼ a; b; or c), we defined a mixture distribution to generate a
PGS consisting of both causal and noncausal variants:

βPB; i � Tj ¼ π1Dj þ π0δ0 ð29Þ
where δ0 is the point-mass distribution. (For our purposes,
π0 2 f0:1; 0:3; 0:5; 0:7; 0:9g).

The power was then calculated as the proportion of simulations for which,
among cases, a significantly lower (P < 0.05) PGS in LEV carriers than in
noncarriers is observed, assuming a certain proportion of noncausal variants in
the PGS.

Testing the PB-LEV correlation in real datasets. We tested several complex
traits and included previously published and available genomic data from large
case–control analyses of TS, OCD, and T1D in our analyses (Supplementary
Table 1)7,30,44–50. We calculated the common-variant PGS for each individual
using the genomic best linear unbiased prediction (GBLUP) method implemented
in GCTA51, estimating the total genetic effect for each individual from the SNPs
used to estimate the GRM. For the LEVs of neuropsychiatric disorders (i.e., TS and
OCD), we restricted analysis to the pool of rare variants most likely to be enriched
for pathogenic variation, including copy number variants (CNVs) that are large
(>500 Kb), rare (<1% in the Database of Genomic Variation), and genic (con-
taining at least one gene), and LoF or putative damaging (missense) single
nucleotide variants identified in previous reports7,44,50 (Supplementary Table 2).
For T1D, we used the DRB1 susceptibility locus52 of the HLA region which
accounts for ~50% of the heritability for T1D53 (Supplementary Table 2). The
HLA-DRB1 genotype data was obtained from the WTCCC with permission for
analysis. We compared PGS between cases with and without LEVs using Wilcoxon
rank-sum test.

Application to large-scale biobank. Here, we illustrate the framework in the
context of empirical data, i.e., with empirically observed values of heritability,
disease prevalence, and LEV frequency for traits in the UK Biobank (involving up
to 361,194 samples), to (1) demonstrate that the predictions and findings generated
based on the models of the framework recapitulate empirical results and (2) show
real-world applications of the framework. The common variant-based (MAF ≥
0.01) heritability was obtained from the Ben Neale lab (http://www.nealelab.is/uk-
biobank/). In total, 2322 traits were included after removing nonsignificant
(Ph2 > 0:05) or low-heritability (h2 < 0:05) traits. We leveraged the effect size (OR)
and allele frequency for the LEVs, as presented in a recent exome-wide phenome-
wide association study in the UK Biobank27. Large-effect (OR ≥ 1.5) trait-
associated non-synonymous variants under the allelic model were considered as
LEVs. We also extended these analyses to another set of four traits, including breast
cancer, colorectal cancer, type 2 diabetes, and short stature28 (We excluded
osteoporosis from the study since its estimated OR was not significant). For each
tested trait, we used the top-ranked LEV in the downstream analysis. In total, 36
heritable traits with at least one LEV were included in additional analyses (Sup-
plementary Data 2).

The heritability attributable to the LEV was estimated from the “case status by
LEV status” table (if available) or from the OR estimate from logistic regression
using an interpretable measure of R2(coefficient of determination)54. Its expected
value EðR2Þ equals the heritability on the liability scale. Under the probit-liability
scale, the estimator is calculated as follows:

R2
probit ¼

varðlnðÔRÞgÞ
varðlnðÔRÞgÞ þ 1

ð30Þ

Under the logit-liability scale, the estimator is defined as follows:

R2
logit ¼

varðlnðÔRÞgÞ
varðlnðÔRÞgÞ þ 3:29

ð31Þ

The genotype dataset was simulated using PLINK55 with the sample size
matched with the UK Biobank (Supplementary Data 2). We used the distribution
of MAF and the LD score56 as calculated from real genomic data (in 23,294
European ancestry samples).

We calculated the utility of the PB-LEV correlation, using the empirically-
informed parameters for the tested traits in the UK Biobank. In addition, we were
interested in determining, for a given PB profile, the probability of LEV carriers in
cases, P LEV j Y ¼ 1ð Þ, which we calculated using the “number of LEV carriers per
1000 cases”. This fraction quantifies the effectiveness of our PB-based approach for
prioritizing cases for sequencing —a practical application. For a given trait, cases
were grouped into ten equally-sized bins according to their PB risk (i.e., polygenic
risk score). The number of LEV carriers per 1000 cases was calculated for samples
in each of the bins. The resulting proportion was then tested against empirical
observations, specifically for the set of four traits (breast cancer, colorectal cancer,
type 2 diabetes, and short stature), for which data were publicly available for the
comparison. For the simulations in the UK Biobank data, we assumed the genetic
architecture consistent with negative selection, which had been inferred from the
UK Biobank40. Both the liability-threshold and logit risk models were considered.

Reporting Summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The summary-statistics on the UK Biobank are publicly available. The download link and
the technical details can be found at http://www.nealelab.is/uk-biobank and http://www.
nealelab.is/blog/2017/9/14/heritability-501-ldsr-based-h2-in-ukbb-for-the-technically-
minded. The trait-associated variants from exome sequencing come from recent
published studies [https://doi.org/10.1101/2020.12.13.422582][https://doi.org/10.1038/
s41436-020-01007-7]27,28. The BioVU summary-statistics, including the MAF and LD
score data, can be retrieved from https://zenodo.org/record/4767933. All requests for raw
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BioVU data (for example, genotype) are reviewed by Vanderbilt University Medical
Center to determine whether the request is subject to any intellectual property or
confidentiality obligations. For example, patient-related data not included in the paper
may be subject to patient confidentiality. Any such data and materials that can be shared
will be released via a material transfer agreement. The simulation studies were performed
using the software we created for this project (https://github.com/gamazonlab/
Polygenic_Background_Rare_Variant_Axis). These simulations were informed by
linkage disequilibrium patterns and allele frequency information from empirical data
(BioVU) and the simulation parameters reflected empirical parameters from disease
phenotype data (UK Biobank). Information on TS and OCD is available from the
published GWAS of TS30,31,45 and OCD30,46. GWAS summary-statistics and data access
for TS and OCD can be obtained from the Psychiatric Genomics Consortium website:
https://www.med.unc.edu/pgc/pgc-workgroups/ocd-tourette-syndrome/. We analyzed
the previously published WTCCC T1D dataset. WTCCC data access for T1D cases and
controls is described at https://www.wtccc.org.uk/info/access_to_data_samples.
html. Source data are provided with this paper.

Code availability
The source code can be downloaded from https://github.com/gamazonlab/
Polygenic_Background_Rare_Variant_Axis.
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