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Abstract

The human gastrointestinal tract is exposed to a huge variety of microorganisms, either commensal or pathogenic; at this
site, a balance between immunity and immune tolerance is required. Intestinal dendritic cells (DCs) control the mechanisms
of immune response/tolerance in the gut. In this paper we have identified a peptide (STp) secreted by Lactobacillus
plantarum, characterized by the abundance of serine and threonine residues within its sequence. STp is encoded in one of
the main extracellular proteins produced by such species, which includes some probiotic strains, and lacks cleavage sites for
the major intestinal proteases. When studied in vitro, STp expanded the ongoing production of regulatory IL-10 in human
intestinal DCs from healthy controls. STp-primed DC induced an immunoregulatory cytokine profile and skin-homing profile
on stimulated T-cells. Our data suggest that some of the molecular dialogue between intestinal bacteria and DCs may be
mediated by immunomodulatory peptides, encoded in larger extracellular proteins, secreted by commensal bacteria. These
peptides may be used for the development of nutraceutical products for patients with IBD. In addition, this kind of peptides
seem to be absent in the gut of inflammatory bowel disease patients, suggesting a potential role as biomarker of gut
homeostasis.
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Introduction

The lack of immunity against food antigens and the commensal

microbiota is usually defined as immune tolerance [1]. Dendritic

cells (DCs), the most potent antigen-presenting cells, are command-

ers-in-chief of the immune system, determining the nature and type

of immune responses [2]. Intestinal DCs are central in controlling

immune tolerance in the gastrointestinal tract [3–5]. DCs also

imprint homing markers on T-cells that they stimulate e.g. gut

DCs induce gut-homing markers on T-cells, localizing immune

responses to specific tissues [6]. Regulatory cytokine IL-10 is

essential in preventing inflammatory and autoimmune pathologies

and is crucial for maintenance of intestinal homeostasis [7,8].

The intestinal microbiota interacts with the local immune

system promoting the mechanisms of intestinal homeostasis in

health [9–11]. In certain disorders such as inflammatory bowel

disease (IBD), this homeostasis is disrupted leading to a

deregulated immune activity in the gut [12]. Harnessing the

contribution of pro- and/or prebiotics to gut homeostasis has been

proposed as alternative or complementary treatment for patients

with IBD [13]. Direct exposure of DCs in vitro to different

commensal bacteria has variable effects on DC phenotype and

function often promoting anti-inflammatory activity [4], implying

immunomodulation by commensal bacteria acts via DC in vivo

[14]. However, the molecular mechanisms through which

commensal bacteria interact with the human host and exert such

immunomodulatory properties have remained elusive.

Extracellular proteins of bacteria are currently being charac-

terised as potential mediators between commensal bacteria and

the human host [15]. Such proteins could have relevant roles

mediating interaction with the local microenvironment, including

communication with other bacteria and the host immune system

and even modulating the maintenance of the mucosal barrier [16].

We hypothesize therefore that the dialogue between intestinal

bacteria and DC is partially mediated by the secretion of soluble

bacterial compounds (including proteins).

To that end, we used a model of Lactobacillus plantarum and

human DCs. L. plantarum is a lactic-acid-producing bacterium

(LAB) with the largest genome [17] within the genus. This size

provides the species with a high versatility to bind to different

surfaces, and a great capacity for adaptation to diverse environ-
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mental conditions [18]. L. plantarum can be found in a wide array

of fermented foods in different geographical regions [19] and, in

addition, some L. plantarum strains, such as 299 v or WCFS1,

confer benefits on human health, thus being considered as

probiotics [20,21]. Noteworthy, L. plantarum modulates the gene

expression profile of the human intestine in vivo, promoting

mechanisms of immune tolerance [22]. In addition, there is some

evidence of L. plantarum is effective in methotrexate-induced colitis

and in regulating the motility of the gastrointestinal tract. The

amino acid sequences of some extracellular proteins secreted by L.

plantarum, have been characterized, although their precise bioac-

tivity has not been described [23–25]. Therefore we have chosen

this species as a candidate to evaluate our hypothesis of a host-

microbiota cross-talk, mediated through soluble factors. Our

results confirmed that L. plantarum secreted bioactive proteins with

the capacity to modulate the phenotype and function of human

intestinal DC, confirming that the immune system/microbiota

crosstalk may be also elicited through soluble factors.

Materials and Methods

Culture Conditions
L. plantarum BMCM12 strain was propagated on MRS agar

(Becton Dickinson France SAS, Le Pont-De-Claix, France).

Isolated colonies were used to inoculate 10 ml of MRS broth,

which were used for total DNA extraction. Strains Lc. lactis

NZ9000, Lc. lactis NZ9000-pNZ8110 (harbouring the empty

plasmid pNZ8110), Lc. lactis D1, and Lc. lactis ST, were propagated

on GM17 (BD). Five mg/ml chloramphenicol were added to the

medium as selective agent when appropriated, and all the cultures

were incubated in aerobiosis at 30uC.

Cloning of the Sequence Coding for STp in Lactococcus
Lactis

Total DNA of L. plantarum BMCM12 was extracted and purified

from overnight cultures using the DNeasy Blood & Tissue Kit

(Qiagen Iberia S.L, Madrid, Spain), following manufacturer

instructions. The internal gene sequence coding for the serine/

threonine rich domain of the protein D1 was amplified using

primers STF and STHTR (Table S1), the latter including the

genetic information for the addition of a histidine tag to the C-

terminal domain of the recombinant protein.

Plasmid pNZ8110, containing the lactococcal Usp45 signal

peptide, was extracted from Lc. lactis NZ9000-pNZ8110 strain

using the QIAGEN Plasmid Midi Kit (Qiagen), following the

manufacturer instructions. PCR products and plasmid pNZ8110

were digested with NaeI (Promega, Madison, WI), and the latter

was further dephosphorylated using alkaline fosfatase (Promega).

Digestion products were ligated using T4 DNA ligase (Promega)

and then transformed into Lc. lactis NZ9000. The clone Lc. lactis

ST, was selected for further studies using chloramphenicol as a

selective marker. Sequencing of the resulting plasmid was carried

out in order to ensure that undesirable mutations were not

generated, and the DNA sequence of the gene was deposited in the

GenBank under the accession number HQ262414. This strain

produced a recombinant STp. It carried one extra glycine at the

N-terminal of the mature protein after cleavage by sortase (coming

from codon GGC originated in the reconstitution of the NaeI

restriction site after ligation; 59-GCCGGC-39).

Protein Manipulations and STp Purification
The production of STp was induced by adding 40 ng/ml nisin

at cultures of strain Lc. lactis ST in exponential phase of growth,

usually at an Abs600 of 0.3. STp was purified from Lc. lactis ST

supernatants as follows. Five hundred ml of an overnight culture

were used to inoculate 50 ml of fresh GM17 broth (1% v/v). After

proper induction, cells were collected by centrifugation (10,000 g

for 5 min at 4uC), and supernantants were filtered (0.22 mm). Five

ml of 106 purification buffer, containing 500 mM NaH2PO4,

1.5 M NaCl, 100 mM imidazole, pH 8.0 were added to 45 ml of

filtered supernatant and mixed. Five hundred ml of Ni-NTA

agarose (Qiagen) was added to the mix, and gently stirred at 4uC
for 2 h. The mixture was then loaded into a column (BioRad),

being washed twice with 4 ml of a wash buffer containing 50 mM

NaH2PO4, 300 mM NaCl, 20 mM imidazole, pH 8.0. ST

fragment was eluted with 2 ml (four fractions of 500 ml) of elution

buffer (50 mM NaH2PO4, 300 mM NaCl, 250 mM imidazole,

pH 8.0), yielding usually a final concentration of 1 mg/ml.

Fractions were extensively dialysed against phosphate buffer

saline (PBS) and the purified STp identified by N-terminal

degradation, preformed in a Procise 494 Protein Sequencer

(Applied Biosystems, Foster City, CA). Contaminating LPS was

discarded in the purified peptide after Limulus amebocyte lysate

protocol following manufacturer’s instructions (Kinetic-QCLTM

assay, Lonza, Basel, Switzerland).

Detection of STp in Human Intestinal Microenvironment
Polyclonal serum against the purified ST was generated in the

Central Facilities of the University of Oviedo (Spain). Briefly, a

rabbit was immunised five times, with an interval of 15 days

between immunisations, with 500 mg of protein dissolved in 1 mL

of PBS, and mixed with 1 mL of Freund’s incomplete Adjuvant.

The rabbit was finally sacrificed by intracardiac puncture and

blood was let to coagulate at 37uC for 4 h and subsequent

overnight incubation at 4uC. Serum was separated by centrifuga-

tion (30 min, 2000 g), and used for purifying the IgG. Ammonium

sulphate was added to a final concentration of 45% (w/v), and the

mix was incubated overnight at 4uC. After centrifugation (1 h,

10000 g, 4uC), the pellet was resuspended in 30 mL of PBS. This

was extensively dialyzed against PBS, and loaded in a ProteinA

Sepharose 4 Fast Flow, previously equilibrated with 10 column

volumes of PBS (50 mL). The column was washed with 6 column

volumes of PBS, and five fractions of 5 mL were eluted with citric

acid 100 mM pH 3.0. pH was corrected in each aliquot by adding

1 mL of 1 M Tris-HCl pH 9.0. Fractions were mixed, centrifuged

in a Vivaspin 20 device (3000 g, molecular weight cut-off of

10 kDa) and washed with 20 mL of PBS. Protein concentration

was estimated by measuring the A280 of the sample, aliquoted and

stored at 280uC.

The IgG fraction was used for the detection of STp-containing

proteins in human intestinal microenvironment. Briefly colonic

biopsies were obtained at colonoscopy from 10 healthy controls,

following informed consent after ethical approval from the Outer

West London Research Ethics Committee (United Kingdom).

These patients had macroscopically and histologically normal

intestines, and had been referred with symptoms of rectal bleeding

or change in bowel habit. Biopsy specimens were collected in ice-

chilled complete medium and cultured within 1 hour in complete

medium [Dutch modified RPMI 1640 (Sigma-Aldrich, Dorset,

UK) containing 100 u/mL penicillin/streptomycin, 2 mM L-

glutamine, 50 mg/mL gentamicine (Sigma-Aldrich) and 10%

foetal calf serum (TCS cellworks, Buckingham, UK)] in 24 well

culture dishes (1 biopsy/ml/well) for 24 hours (37uC, 5% CO2,

high humidity). Negative control involved the culture and

handling in parallel of complete medium alone. A second negative

control involved the use of human skin samples, following

informed consent, of two patients during abdominal closure after

colorectal surgery on non-cancer, non-IBD patients who were not
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genetically pre-disposed to colorectal cancer. Skin samples were

collected in complete medium. Incubation with Dispase II (Sigma-

Aldrich, St. Louis, USA) was used to separate the epidermal and

dermal layers which were subsequently cultured for 24 hours

(37uC, 5% CO2, high humidity). Media were centrifuged in all

cases (1500 rpm, t = 59) and cell-free biopsy culture supernatants

(SN) used to detect STp-containing proteins. Protein concentra-

tion of SN was measured using the bicinchonic acid (BCA) Protein

Assay kit (Pierce, Rockford, IL, USA), and extracted in Laemmli

buffer 5 min at 90uC. STp-containing proteins were detected by

western-blotting. Briefly, 5 mg of protein extract from cultured

biopsies were electro-transferred to a PVDF membrane for 30 min

at a constant intensity of 50 V. STp-containing proteins where

detected with the specific IgG fraction as a primary antibody

(1:1000), and with a anti rabbit IgG (HRP conjugated) as

secondary antibody (1:2000) (Sigma). Pre-immunization serum,

as negative control, confirmed the specificity of the reaction since

it did not detect any STp-containing protein. Purified STp

fragment (1 mg) was also detected with the same procedure using a

Penta?HisTM HRP conjugate from Qiagen. The Pierce CN/DAB

Substrate Kit (Pierce), including both chloronapthol and diami-

nobenzidine, was employed as colorimetric substrate for HRP in

all cases.

Dendritic Cells from Peripheral Blood
Human peripheral blood was collected from healthy volunteers with

no known autoimmune or inflammatory diseases, allergies or

malignancies, following informed consent. Peripheral blood

mononuclear cells (PBMC) were obtained by centrifugation over

Ficoll-Paque Plus (Amersham Biosciences, Chalfont St. Giles,

UK). Human blood enriched DC were obtained following

NycoPrepTM centrifugation of overnight cultured PBMC. This

protocol has been characterised in detail in previous studies from

our laboratory as a way to obtain fresh human blood enriched DC

[14]. Obtained cells display morphological characteristics of DC

(both at light and electron microscopy), express HLA-DR and are

potent stimulators of naı̈ve T-cells. DC were cultured for 24 hours

(0.5 million cells/ml) in complete medium in the presence of STp

(10 mg/ml, 1 mg/ml and 0.1 mg/ml) or LPS (100 ng/ml) (Sigma-

Aldrich, St. Louis, USA). Results were compared with a paired

culture in basal medium which acted as an internal control.

Intestinal Dendritic Cells
Colonic biopsies were obtained at colonoscopy from extra 8

healthy controls as previously detailed. Freshly obtained colonic

biopsies were collected in ice-chilled complete medium and

processed within an hour. Biopsies were incubated with Hanks’s

balances salt solution (HBSS) (Gibco BRL, Paisley, Scotland, UK)

containing 1 mM dithiothreitol (DTT) (Sigma-Aldrich) for 20

minutes and then in 1 mM ethylenediamine tetraacetic acid

(EDTA) solutions to remove the associated mucus/bacteria and

epithelial layer respectively. Lamina propia mononuclear cells

were obtained from biopsy tissue following a quick digestion in the

presence of 1 mg/mL of collagenase D (Roche Diagnostics Ltd,

Lewes, UK) in complete medium which does not affect neither the

phenotype nor the function of DC [4]. Total lamina propria

mononuclear cells were incubated for 24 hours with or without the

addition of 1 mg/ml of STp and compared to a basal culture. DC

from total lamina propria mononuclear cells were identified by

flow cytometry as HLA-DR+CD32CD142CD162CD192CD342

[4].

Antibody Labelling
Table S2 shows the specificity, clone and fluorochrome of the

monoclonal antibodies used. Cells were labelled in phosphate-

buffered saline (PBS) containing 1 mM EDTA and 0.02% sodium

azide (FACS buffer). Labelling was performed in ice and dark for

209. Cells were washed twice in FACS buffer, fixed with 1%

paraformaldehyde in 0.85% saline and stored at 4uC prior to

acquisition on the flow cytometer within 48 hours. Appropriate

isotype-matched control antibodies were purchased from the same

manufacturers.

Flow Cytometry and Data Analysis
Cells were acquired on a FACSCalibur cytometer (BD

Biosciences) and analysed using WinList 5.0TM software (Verity,

ME, US). The proportion of cells positive for a given marker was

determined by reference to staining with an isotype-matched

control. For single parameter analysis WinList was used to subtract

the normal cumulative histogram for isotype control staining from

a similar histogram of staining with the test antibody using the

superenhanced Dmax (SED) normalised subtraction.

Intracellular Cytokine Staining
The intracellular cytokine production by non-stimulated DC

was measured using the superenhanced Dmax (SED) normalised

subtraction to subtract the normal cumulative histogram for

cytokine staining without added monensin from a similar

histogram of staining with cytokine and added monensin for the

last 4 hours of cell culture (3 mM, Sigma, UK). Cells were

subsequently labelled for surface markers on ice as previously

explained, fixed with Leucoperm A and permeabilized with

Leucoperm B before adding antibodies for intracellular labelling.

After incubation cells were washed in FACS buffer, fixed and

acquired as previously reported.

This sensitive technique has been validated by our research

group and allows us to assess the natural on-going cytokine

production (without external PMA and/or ionomycine stimulus)

of DC [4]. By that approach we do not quantify the intracellular

content of a given cytokine. Instead we determine ongoing

cytokine production in a time window of 4 hours (monensin

incubation) irrespectively of the initial cytokine content.

Proliferation Assay
Freshly obtained PBMC from healthy controls were suspended

in MiniMACs buffer (PBS containing 0.5% BSA and 2 mM

EDTA). T-cells were enriched by depletion of CD14, CD19 and

HLA-DR positive cells with immunomagnetic beads (Miltenyi

Biotech, Bisley, UK) following manufacturer’s instructions. An

average of 94.91%61.06 (mean6SD) T-cells were obtained

following enrichment. T-cells were labelled with 10 mM 5-

carboxyfluorescein diacetate succinimidyl ester (CFSE, Invitrogen

Ltd, UK) following manufacturer’s instructions. CFSE-labelled T-

cells (46105/well) were incubated for 5 days in U-bottomed 96

well microtitre plates with enriched allogeneic gut or blood DC at

0%, 1%, 2% or 3%. Cells were recovered and CFSElow

proliferating cells identified, quantified and phenotyped by flow

cytometry as described before [4].

Results and Discussion

In the present work, we have characterized the interaction of a

single peptide, encoded in the amino acid sequence of protein D1

(homologous to gi|28270057 from L. plantarum WCFS1) [25], with

human DCs. The bioinformatic analysis of the D1 amino acid

sequence revealed an internal region with a relatively high
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abundance of uncharged polar amino acids. This region had a

predicted molecular mass of 6.8 kDa, and contained 22.7% of

serine and 31.8% of threonine. Polar uncharged amino acids

represented around 83% of the total amino acids (Figure 1a).

Given the particular patterns of repeated serines and threonines,

and its high content in these amino acids, we have denominated

such region as STp and we produced and purified it using a

recombinant Lactococcus lactis strain.

Serine-rich proteins from other microorganisms have been

related to binding to eukaryotic components. For instance, the

Figure 1. Structure, purification and location of the ST peptide. a) Domain structure of the protein D1, where the ST peptide is encoded (S/T
domain); b) Western blot performed with a specific horseradish peroxidase-conjugated anti His5 antibody, showing the anomalous migration of the
purified His-tagged ST peptide (marked with an arrow); c) Western blot using the polyclonal anti-STp serum as primary antibody; specific
immunoreactive bands are labelled with arrows; -: complete medium (negative control), HC#: protein extracts obtained from culture supernatants of
healthy colonic biopsies, F#: Some culture supernatants were 0.2 mm filtered prior to protein extraction, D# and E#: protein extracts from culture
supernatants of human epidermal and dermal layer cultures respectively.
doi:10.1371/journal.pone.0036262.g001
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serine-rich fragment from the SrpA protein of Staphylococcus aureus

mediates platelet-aggregation, although the predicted receptor is

unknown [26]. Remarkably, the observed molecular mass of the

purified STp in SDS-PAGE gels was over 100 kDa (Figure 1b). N-

terminal sequencing by Edman degradation confirmed that this

band corresponded to the STp. In certain cases, protein

aggregates are difficult to disassociate, and this kind of artifacts

may appear in SDS-PAGE, as happened with protein D1 [27].

STp was highly specific from Lb. plantarum species as revealed by

BLASTP analysis against the cured non-redundant database of the

NCBI (http://www.ncbi.nlm.nih.gov).

Further analysis of the amino acid sequence of the STp revealed

that it did not contain cleavage recognition sequences for the

major intestinal proteases (Figure S1). This was supported from the

fact that neither pepsin nor trypsin digestions released any peptide,

as revealed by tandem mass spectrometry (data not shown).

We thus investigated whether proteins containing the STp were

produced by the commensal microbiota and therefore present in

the human intestinal microenvironment. Colonic biopsies from

healthy controls were cultured in vitro for 24 h in complete medium

and the cell-free culture supernatant (SN) assayed with a

polyclonal serum (IgG fraction) generated against the purified

STp. Pre-immunization serum confirmed the specificity of the

reaction since it did not detect any STp-containing protein.

Western Blot analysis confirmed an immunoreactive high molec-

ular mass band over 100 kDa in seven out of the ten cultures

(Figure 1c) and two small molecular mass bands around 20 kDa in

another healthy control. This high molecular band was not lost

after 0.2 mm filtration of the SN (Figure 1d, samples F1RF3), and

it was absent in SN from human epidermal and dermal layer

cultures (Figure 1d, samples D# and E#). Our findings confirmed

that protein containing regions homologous to STp can be found

in the healthy human colonic microenvironment. Remarkably,

STp-containing proteins were absent in the intestinal microenvi-

ronment from inflammatory bowel disease patients (unpublished

data), suggesting a potential role as biomarker of gut homeostasis.

Figure 2. STp induced i) regulatory cytokines in blood enriched DC and ii) stimulated T-cells, which acquired a skin homing profile.
a) Intracellular ongoing cytokine production of IL-12(p40/p70), IL-10, IL-6 and TGFb in blood DC of healthy controls after 24 hours stimulation with
STp (10 mg/ml, 1 mg/ml and 0.1 mg/ml) or LPS (100 ng/ml) compared to a basal culture. Closed histograms represent the percentage of positive cells
assessed by intracellular cytokine staining and SED normalized subtraction from antibody stained cells cultured in the absence of monensin. That
approach accurately quantifies the ongoing cytokine production of DC in a time window of 4 hours (monensin incubation) irrespectively of the initial
cytokine amounts within the cells. b) Stimulatory capacity of DC was assayed in a mixed leukocyte reaction (MLR). T-cells were identified in the
forward (Fw) and side (Sd scatter) and subsequent CD3 identification of dividing T-cells as CD3+ and CFSElow. c) Dose response proliferation of T-cells
upon 5 days stimulation with different doses of allogeneic DC (0%, 1%, 2% and 3%) previously pulsed with different doses of STp or LPS compared to
untreated DC (basal). Results show the mean6SEM of three independent experiments. d) Imprinted homing profile of stimulated T-cells (CFSElow)
was determined regarding their surface expression and intensity ratio (IR) for the gut-homing integrin b7 and the skin-homing CLA molecules
compared to resting T-cells cultured in the absence of DC. e) Acquired cytokine profile of such cells was determined as intracellular cytokine content
of both IL-10 and IFNc. Closed histograms represent the percentage of positive cells after subtraction from respective isotypes. All displayed
histograms are representative of three independent experiments performed with similar results.
doi:10.1371/journal.pone.0036262.g002
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This issue deserves further experimentation that is currently

ongoing in our laboratories.

In vitro experiments confirmed that STp has the capacity to

modulate phenotype and function of human DCs. Human blood

DCs conditioned with STp acquired a regulatory cytokine profile

(Figure 2a). Although STp conditioning did not alter the

stimulatory capacity of DCs (Figure 2b and 2c), STp-pulsed DCs

primed responding T-cells with a skin homing profile via induction

of skin-homing molecule CLA (Figure 2d). T-cells stimulated by

STp-pulsed DCs decreased the production of pro-inflammatory

IFNc and increased anti-inflammatory IL-10 production suggest-

ing that these T-cells acquired an immunoregulatory profile

(Figure 2e). All results were elicited in a dose dependent manner,

with the greatest effects achieved at lower assayed doses (100 ng/

ml) in all cases. Those effects were lost if the concentration was

decreased further, and restored back to basal conditions (data not

shown).

Having established that STp is a secreted peptide produced by

L. plantarum, resistant to intestinal proteolysis, found in the human

colonic microenvironment and capable of modulating phenotype

and function of human blood-enriched DCs, we next studied its

effect on human gut DCs. In contrast to effects on blood-enriched

DCs, optimum effects of STp were elicited at a concentration of

1 mg/ml (data not shown). Similar to blood-enriched DCs, STp

priming expanded ongoing production of regulatory IL-10 in

human intestinal DCs (Figure 3a and 3b).

Since resting intestinal DCs from healthy controls do not usually

produce pro-inflammatory cytokines like IL-12 [28], there was no

statistically significant inhibition of such cytokine although its

ongoing production was blocked in DCs from the 3 healthy

controls producing it (Figure 3c). Human intestinal DCs are less

stimulatory than blood DCs and prime T-cells with a gut-homing

profile [29]. STp conditioning did not alter the stimulatory

capacity of intestinal DC (Figure 3d). Nevertheless, such intestinal

STp-pulsed DCs induced more CLA expression on stimulated T-

cells than basal intestinal DC. IL-10 production by stimulated T-

cells was also increased (Figure 3e–f). Recently, it has been

proposed that the host has no capacity to distinguish between

‘‘harmful’’ and ‘‘commensal’’ microbiota, but the substrates that

the microbiota produce actively promote immunologic tolerance

to symbiotic bacteria [30]. Our data adds a new dimension to the

concept of intestinal immune tolerance and shows that STp could

be related not to the mechanisms of intestinal immune tolerance

but rather of intestinal immune ignorance by diverting immune

responses from the gastrointestinal compartment [10]. Therefore,

in health, T-cells stimulated by bacteria-products-primed DC

would be diverted away from intestinal sites to the skin.

Similar results highlighting the role of bacterial-derived

products have been recently reported such as the role of

immunomodulatory polysaccharide A from Bacteroides fragilis that

mediated conversion of CD4+ T-cells into IL-10 producing T-cells

[31], or the case of a soluble protein produced by L. rhamnosus GG,

which prevented cytokine-induced apoptosis in intestinal epithelial

cells [32]. Similarly, peptidoglycan of Lactobacilli was capable of

inducing a regulatory phenotype on mouse intestinal DC [33]

while probiotic bacterial DNA increases IL-10 production by DC,

Figure 3. STp primes human intestinal DC towards a regulatory phenotype. a) DC were identified in total colonic lamina propria
mononuclear cells from healthy controls by flow cytometry according to the Forward and Side scatters and the subsequent HLA-DR/lineage cocktail
dot plot. DC were defined as HLA-DR+ and lineage– (CD3, CD14, CD16, CD19 and CD34). b) Ongoing intracellular IL-10 and IL-12(p40/p70) cytokine
production (closed histograms) was determined in colonic DC cultured with and without STp (10 mg/ml). Pooled data of 8 independent experiments
are shown in panel c). d) Stimulatory capacity of such intestinal DC was determined upon 5 days culture in the presence of allogeneic CFSE-labelled
T-cells as stated in Figure 2c. Results show the mean6SEM of 8 independent experiments. e) Imprinted homing profile (gut-homing: b7; skin-homing:
CLA) and intracellular cytokine content (IL-10 and IFNc) of stimulated T-cells (CFSElow) was compared to resting T-cells cultured in the absence of
intestinal DC. Pooled data of eight independent experiments is shown in panel f). Closed histograms represent the percentage of positive cells after
subtraction from respective isotypes. Lines and bars represent mean6SEM.
doi:10.1371/journal.pone.0036262.g003
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while DNA from non-probiotic bacteria failed to induce such

regulatory phenotype on DC (Hart, AL; personal communication).

Such evidence is in agreement with our findings and suggests that

the crosstalk between the commensal microbiota and the local

immune system is partially elicited through soluble factors and not

exclusively through direct cell contact.

To sum up, in the human gut L. plantarum secretes an

extracellular protein that releases an internal fragment (STp)

when cleaved by intestinal proteases. STp might thus interact with

human intestinal DCs in vivo promoting mechanisms of intestinal

homeostasis. Further research using high-throughput techniques

and in vivo experiments would shed light on the signaling pathways

triggered by this peptide on the mucosal cells. Our ultimate aim is

to characterise proteins, produced by probiotic bacteria, that are

resistant to gut enzymes and produce ‘homeostatic’ effects on

immunity. Such ‘natural’ products from commensal bacteria may

well have been honed in vivo over millennia to facilitate mutually

beneficial interactions between the microbiota and its host. In

agreement with that concept we have identified a secreted

bacterial peptide, highly resistant to proteolysis by gastrointestinal

enzymes, which may play a role in generation of regulatory

immune responses in the gut. From an applied point of view, STp

may be used as an additive and/or nutraceutical compound and

may therefore set the basis for non-drug related dietary treatment

for patients with IBD. Its presence in the gut of healthy individuals,

together with its absence in most of the IBD gut samples analysed

so far, makes STp-containing proteins as promising biomarkers of

healthy gut.

Supporting Information

Figure S1 Slide 1: Theoretical cleavage sites of the intestinal

proteases chymotrypsin, pepsin and trypsin were predicted at the

ExPASy proteomic server, using the peptide cutter application

(http://expasy.org/tools/peptidecutter/). The ST domain, where

no predicted cleavage sites are predicted, is highlighted with the

black arrow.
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recognition sites are underlined, and sequence coding for the
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