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Vacuolar proton-translocating ATPase (V-ATPase) is a membrane-bound, multi-subunit
enzyme that uses the energy of ATP hydrolysis to pump protons across membranes.
V-ATPase activity is critical for pH homeostasis and organelle acidification as well as for
generation of the membrane potential that drives secondary transporters and cellular
metabolism. V-ATPase is highly conserved across species and is best characterized in
the model fungus Saccharomyces cerevisiae. However, recent studies in mammals have
identified significant alterations from fungi, particularly in the isoform composition of the 14
subunits and in the regulation of complex disassembly.These differences could be exploited
for selectivity between fungi and humans and highlight the potential for V-ATPase as an
anti-fungal drug target. Candida albicans is a major human fungal pathogen and causes
fatality in 35% of systemic infections, even with anti-fungal treatment. The pathogenicity
of C. albicans correlates with environmental, vacuolar, and cytoplasmic pH regulation, and
V-ATPase appears to play a fundamental role in each of these processes. Genetic loss of
V-ATPase in pathogenic fungi leads to defective virulence, and a comprehensive picture of
the mechanisms involved is emerging. Recent studies have explored the practical utility of
V-ATPase as an anti-fungal drug target in C. albicans, including pharmacological inhibition,
azole therapy, and targeting of downstream pathways. This overview will discuss these
studies as well as hypothetical ways to targetV-ATPase and novel high-throughput methods
for use in future drug discovery screens.
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V-ATPase PUMPS: STRUCTURE-FUNCTION AND
MECHANISM OF CATALYSIS
VACUOLAR H+-ATPase (V-ATPase) PUMPS ARE LARGE MULTI-SUBUNIT
MOLECULAR MOTORS THAT COUPLE ACTIVE TRANSPORT OF PROTONS
WITH ATP HYDROLYSIS TO ACIDIFY INTRACELLULAR COMPARTMENTS
V-ATPase pumps generate and sustain the distinctive organelle
pH gradient of the endomembrane system that is necessary for
Golgi, endosomal, vacuolar, and lysosomal functions (Kane, 2006;
Forgac, 2007). Redistribution of protons from the cytosol to the
lumen of acidic organelles by V-ATPase pumps is essential for
organelle pH homeostasis. In fungi, V-ATPase also contributes
to cytosolic pH regulation (Martinez-Munoz and Kane, 2008).
Genetic and pharmacologic inactivation of V-ATPase pumps alters
intracellular and extracellular pH. It disturbs numerous cellu-
lar processes including protein processing and sorting, protein
secretion, receptor-mediated endocytosis, vesicular membrane
trafficking, zymogen activation, and autophagy (Kane, 2006;
Forgac, 2007).

The vast majority of structural and mechanistic data on
eukaryotic V-ATPases available have been collected in Saccha-
romyces cerevisiae. V-ATPase proton transport requires structural
and functional coupling of a peripheral domain (V1) with a
membrane-embedded domain (Vo; Figure 1). Coupling involves

an intricate mechanism that uses relative rotation of subunits
in V 1 and V o (Sun-Wada et al., 2003; Forgac, 2007). During
catalysis, hydrolysis of ATP within the protuberant structure of
V 1 drives rotation of a central stalk (the rotor’s shaft) located
near the catalytic sites. The rotating central stalk is connected to
a hydrophobic ring of proteolipid-like subunits in V o (c-ring).
During rotation, each subunit of the c-ring has one essen-
tial glutamate residue that accepts a proton from the cytosol
and transfers it to the organelle’s lumen against a concentration
gradient.

Important changes occurred as V-ATPase evolved from S. cere-
visiae to humans. For example, the c-ring of all fungal species
contains a combination of three subunits (Voc, Voc′, Voc′′)
whereas mammalian c-rings lack the Voc′ subunit. Phylogenic
analysis by Finnigan et al. (2012) suggests that the fungal Voc and
Voc′ subunits evolved from a gene duplication in an ancestral gene
that was common to all fungal species. Intriguingly, the functions
of Voc and Voc′ in fungi, particularly the binding capabilities of
each subunit, appear to have degenerated from the common ances-
tor (Finnigan et al., 2012). This example of constructive neutral
evolution suggests that the complexity of the V-ATPase machine
may have been driven in part by loss-of-function processes
(Doolittle, 2012).
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In general, the complexity of V-ATPase increased as species
evolved further from fungi. Mammals developed multiple tissue
and membrane specific isoforms for most V1 and Vo subunits
(Figure 1; Marshansky and Futai, 2008; Sun-Wada and Wada,
2010; Toei et al., 2010). In contrast, only one subunit (Voa) of V-
ATPase in budding yeast species such as S. cerevisiae has functional
homologues (Manolson et al., 1994), and non-budding fungi such
as Neurospora crassa contain only single subunit isoforms (Chavez
et al., 2006).

The sequence conservation between human and S. cerevisiae
subunits is 31–41% identity and 51–60% similarity, depending on
the subunit and isoform (Rahman et al., 2013). This relatively low
sequence conservation may explain differences in binding affinity
between V-ATPase subunits from human (Rahman et al., 2013)
and S. cerevisiae (Oot and Wilkens, 2012); it may also fine tune V-
ATPase activity and determine regulatory mechanisms in response
to diverse cellular signals and environments. Although infor-
mation describing the topological arrangements of the human
V1Vo complex is not available, the V-ATPase overall structure
and its sophisticated mechanism of rotational catalysis are likely
conserved from S. cerevisiae.

This review focuses on fungal V-ATPases with an emphasis
on the human fungal pathogen Candida albicans. We summa-
rize our current understanding of the roles of V-ATPase in
pathogenicity as well as its antifungal drug targeting potential.
Because V-ATPase subunit structure and composition, assem-
bly and regulation, and multiple downstream cellular functions
are best studied in the fungus S. cerevisiae (Kane, 2006, 2007),

we also refer to S. cerevisiae and other fungi throughout this
review.

Candida albicans IS THE PRIMARY HUMAN FUNGAL
PATHOGEN
Candida albicans is the most frequently diagnosed fungal pathogen
and is the fourth leading cause of hospital-acquired bloodstream
infections in North America (Klotz et al., 2007). C. albicans is nor-
mally a harmless commensal in the oral cavity, digestive tract, and
genital region of healthy people but is also associated with super-
ficial infections. C. albicans can enter the bloodstream following
tissue damage or the formation of fungal biofilms on medical
implants, leading to sepsis, and organ failure. These severe cases
of systemic candidiasis are most common in patients undergoing
immunosuppressive therapy or that are otherwise immunocom-
promised (Pfaller and Diekema, 2007). Critically, patient mortality
rates can reach 35% even with anti-fungal treatment (Horn et al.,
2009).

Invasive infection due to C. albicans is a multifactorial process
that relies on numerous virulence factors to control pathogenesis.
C. albicans can exist as either a unicellular yeast or a filamentous
hyphae. This morphological dimorphism contributes to virulence,
as the yeast form is considered nonpathogenic while the hyphal
form induces damage and invasion of host tissue (Sudbery, 2011).
C. albicans also secretes serine aspartyl proteinases and lipases that
are involved in nutrient acquisition, host cell degradation, and
immune evasion (Naglik et al., 2003). Other C. albicans virulence
pathways include iron acquisition from hemoglobin, protection

FIGURE 1 | V-ATPase subunit composition and mechanism of catalysis.

The V-ATPase proton pump acidifies the lumen of organelles in the
endomembrane system of all eukaryotic cells. V-ATPase has 14 subunits that
form two domains, V1 and Vo. V1 (clear and gray subunits, A3B3CDE3FG3H)
hydrolyzes ATP at the cytosolic side of the membrane, and Vo (blue subunits,
ac3−4c’c”de) translocates protons. Transport of protons against a
concentration gradient entails a rotational mechanism. Hydrolysis of 3 ATP in

the V1A catalytic subunits drives rotation of a shaft (subunits D, F) that
penetrates V1 and is bound to a rotating proteolipid ring structure in Vo
formed by subunits c(3−4)c’c” (c-ring) that together with subunit Voa forms
the path for proton transport. With the exception of subunit Voa, which exists
in two isoforms (Vph1p and Stv1p), each V-ATPase subunit is encoded by a
single gene in fungi. In contrast, multiple isoforms (two to four) exist for most
subunits of the mammalian V-ATPase. Subunit Voc′ is absent in mammals.
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against reactive oxygen species, expression of adhesion molecules,
and formation of biofilms. Together, these pathways facilitate
host cell invasion and protect against the host immune response
(Karkowska-Kuleta et al., 2009).

Candida albicans PATHOGENICITY CORRELATES WITH pH
REGULATION, SUGGESTING THAT V-ATPase MAY PLAY A
FUNDAMENTAL ROLE IN FUNGAL VIRULENCE
Candida albicans VIRULENCE IS REGULATED BY pH AT THE
EXTRACELLULAR, VACUOLAR, AND CYTOPLASMIC LEVEL
Extracellular pH controls the morphological dimorphism of C.
albicans. The non-pathogenic yeast form of the fungus grows pref-
erentially under acidic environmental conditions while increasing
extracellular pH triggers hyphal growth and increased virulence
(Sudbery, 2011). C. albicans has developed mechanisms that allow
it to rapidly respond to environmental pH changes, and mutants
lacking the ability to sense extracellular pH display reduced
virulence (Davis, 2009).

Vacuolar pH is important for numerous aspects of C. albi-
cans physiology and virulence. Preservation of a proton gradient
across the vacuolar membrane is critical for general cellular
metabolism, including receptor-mediated endocytosis, intracel-
lular membrane trafficking, pro-hormone processing, protein
degradation, uptake of small molecules, and storage and detox-
ification of metabolites and ions (Veses et al., 2008). Additionally,
both activation and secretion of the proteinase and lipase vir-
ulence factors and activity of the enzymes themselves require
optimal vacuolar pH (Naglik et al., 2003). Numerous C. albicans
mutants that display abnormal vacuolar alkalinization also display
reduced filamentation and defective in vivo virulence (Bruck-
mann et al., 2000; Jia et al., 2002; Eck et al., 2005; Poltermann
et al., 2005; Palanisamy et al., 2010; Zhang et al., 2010; Patenaude
et al., 2013; Rane et al., 2013). The azole class of anti-fungal drugs
also functions in part through disruption of vacuolar acidification
(Zhang et al., 2010).

Finally, cytoplasmic pH contributes to filament formation
during C. albicans virulence. Germ tube formation, the pre-
cursor step to hyphal formation, requires alkalinization of the
cytoplasm (Stewart et al., 1988). In fungi, cytosolic pH is reg-
ulated via the Pma1p plasma membrane proton transporter,
which pumps protons out of the cell and into the extracellu-
lar space to maintain a neutral-to-alkaline cytosol and an acidic
extracellular environment (Monk et al., 1991). The importance
of Pma1p activity and cytosolic alkalinization in C. albicans
virulence is illustrated by studies showing that Pma1p activ-
ity and expression is upregulated during filamentation (Kaur
and Mishra, 1991; Monk et al., 1993). Furthermore, C. albicans
mutants that cannot properly alkalinize their cytosol in response
to filamentation cues are avirulent (Stewart et al., 1988, 1989;
Mahanty et al., 1990).

The central importance of pH regulation in C. albicans viru-
lence makes V-ATPase an attractive target for anti-fungal therapy
(Parra, 2012). In addition to its critical role in vacuolar pH home-
ostasis (Kane, 2006; Tarsio et al., 2011), V-ATPase is a known
regulator of Pma1p activity in S. cerevisiae. V-ATPase mutants dis-
play abnormally acidified cytosol due to a lack of properly localized
or functional Pma1p (Perzov et al., 2000; Martinez-Munoz and

Kane, 2008; Huang and Chang, 2011). Together, these data suggest
that V-ATPase may contribute to numerous virulence pathways in
C. albicans, including vacuolar function and during the germ tube-
to-hyphae morphological transition. Next, we summarize studies
that have examined the role of V-ATPase in fungal pathogenesis
using genetic loss-of-function studies.

GENETIC LOSS OF V-ATPase IN PATHOGENIC FUNGI
AFFECTS VIRULENCE
GENETIC STUDIES IN VARIOUS PATHOGENIC FUNGI HAVE
ESTABLISHED A LINK BETWEEN V-ATPase ACTIVITY, VACUOLAR
ACIDIFICATION, AND FUNGAL VIRULENCE
Hilty et al. (2008) removed VMA1 (the V1A subunit of V-ATPase)
from the Histoplasma capsulatum genome and demonstrated that
V1A is required for iron sequestration, replication in macrophages,
and growth as a mold. The vma1 mutants were also avirulent in a
mouse model of histoplasmosis (Hilty et al., 2008). In Cryptococ-
cus neoformans, loss of the Voa subunit via deletion of VPH1 leads
to defective production of capsule, laccase, and urease, three vir-
ulence factors required for C. neoformans infectivity. These vph1
mutants also displayed defective in vivo virulence in a murine
model of meningo-encephalitis (Erickson et al., 2001). These find-
ings lend credence to the idea that V-ATPase plays a critical role in
the maintenance of fungal virulence.

In contrast, studies in Aspergillus fumigatus suggest that host
V-ATPase plays an important protective role during immune
defense against fungal pathogens. A. fumigatus is the primary
causative agent of life-threatening invasive bronchopulmonary
aspergillosis. While host V-ATPase is critical for phagolysoso-
mal acidification and pathogen killing under non-pathogenic
conditions, infective variants of A. fumigatus prevent acidi-
fication of phagolysosomes and allow for A. fumigatus ger-
mination and immune escape (Ibrahim-Granet et al., 2003).
Notably, work by Slesiona et al. demonstrated that less virulent
Aspergillus variants can be made virulent via pharmacological
inhibition of host V-ATPase resulting in loss of phagolysoso-
mal acidification (Slesiona et al., 2012). These findings sug-
gest that fungal pathogens may inactivate host V-ATPase path-
ways during immune evasion and suggest that the balance of
pathogen versus host V-ATPase activity is critical for determining
virulence.

Studies specifically examining virulence in C. albicans have fur-
ther solidified the importance of V-ATPase in this process. In the
iron-deplete conditions of host tissue, C. albicans must extract
iron from hemoglobin for survival. Weissman et al. (2008) demon-
strated that null mutants of vma11 (subunit Voc′) are deficient in
iron acquisition. Upon loss of VMA7 (subunit V1F) in C. albicans,
Poltermann et al. (2005) noted defects in in vitro filamentation
and in vivo virulence during systemic candidiasis. The authors fur-
ther connected these defects to biochemical phenotypes including
vacuolar alkalinization, pH-dependent growth, and sensitivity to
metal ions (Poltermann et al., 2005). Recently, our laboratories
demonstrated that inducible loss of VMA3 (subunit Voc of the c-
ring) in C. albicans results in alkaline vacuoles with fission defects,
leading to reduced protease and lipase secretion, defective fila-
mentation, and ineffective macrophage killing (Rane et al., 2013).
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Unpublished studies from our laboratories have yielded similar
phenotypes following the inducible loss of VMA2 (subunit V1B).

In C. albicans, the Voa subunit is the only subunit within the
enzyme complex that is encoded by multiple isoforms: VPH1
localizes V-ATPase to vacuoles while STV1 traffics V-ATPase to
the Golgi and endocytic organelles (Patenaude et al., 2013; Raines
et al., 2013). This difference was recently exploited to study the
contribution of organelle-specific V-ATPase to C. albicans viru-
lence. Both our laboratories and Patenaude et al. (2013) showed
that loss of VPH1 but not STV1 leads to vacuolar alkalinization,
abnormal vacuolar morphology, and defective metal ion seques-
tration (Raines et al., 2013). Our study noted that although these
biochemical defects contributed to reduced protease and lipase
secretion, the vph1 mutants displayed only modest filamentation
defects and wild-type levels of biofilm formation and macrophage
killing (Raines et al., 2013). Our results suggest that vacuolar
acidification is dispensable during certain C. albicans virulence
pathways. Furthermore, Stv1p-containing V-ATPase complexes
may play novel roles in pathogenesis (Figure 2). In contrast,
the vph1 mutant cells used in the Patenaude et al. (2013) study
displayed defective filamentation, reduced damage to epithelial
and macrophage host cells, and avirulence during systemic in
vivo infection. These results suggest that vacuolar acidification
is essential for all forms of C. albicans virulence. The explanation
for these disparate results remains to be determined but likely
centers around differences in strain background or methodol-
ogy. Nonetheless, these studies raise the fascinating possibility that
organelle-specific V-ATPase activity can be modulated to control
specific C. albicans virulence pathways.

CURRENT UTILITY OF V-ATPase AS AN ANTI-FUNGAL DRUG
TARGET
The recent emergence of multidrug resistant strains of C. albi-
cans has made the development of novel classes of anti-fungal
drugs paramount (Hameed and Fatima, 2013). V-ATPase is an
attractive target for drug discovery, given the numerous lines
of genetic evidence supporting a critical role for V-ATPase in
C. albicans virulence. We next consider the feasibility of V-
ATPase as an anti-fungal drug target via an overview of three
currently available methods that utilize V-ATPase-related mech-
anisms: pharmacological inhibition of V-ATPase, azole therapy,
and Pma1p inhibition.

PHARMACOLOGICAL INHIBITION OF V-ATPase
V-ATPase inhibitors have been used for over 20 years to study the
function and mechanism of V-ATPase activity in organisms rang-
ing from fungi to humans. As of 2009, eight types of V-ATPase
inhibitors had been described, including the best characterized
plecomacrolide class (Huss and Wieczorek, 2009). The pleco-
macrolides include bafilomycin and concanamycin, which are
antibiotics that bind to the Voc subunit of V-ATPase to prevent
c-ring rotation and interfere with ATP hydrolysis and proton trans-
port simultaneously (Bowman et al., 1988; Drose et al., 1993).
Notably, both bafilomycin and concanamycin have been shown
to inhibit V-ATPase from C. albicans (Calvert and Sanders, 1995;
Chan et al., 2012). However, none of the molecules belonging to
the aforementioned eight classes of V-ATPase inhibitors are cur-
rently used to treat C. albicans infection in a clinical setting; many
cannot differentiate between the fungal target and mammalian

FIGURE 2 | V-ATPase in non-vacuolar organelles (Stv1p-containing

complexes) plays a yet unknown role in C. albicans virulence. Wild-type:
When functional, V-ATPase-mediated acidification of vacuoles, Golgi, and
secretory vesicles maintains organelle pH and supports traffic of Pma1p to
the cell surface for proton efflux and maintenance of an alkaline cytosol. VPH1
deficient : C. albicans grows normally at neutral pH when only
Vph1p-containing V-ATPase complexes (vacuolar membrane) are missing.
Only modest filamentation defects are obvious, despite the concomitant
vacuolar alkalinization and defective Pma1p activity (Raines et al., 2013 and

unpublished results). VMA3 deficient : Vacuolar alkalinization and defective
Pma1p activity occur at levels equal to that of VPH1 deficient cells when all
V-ATPase function is missing (Stv1p- and Vph1-containing V-ATPase
complexes; Rane et al., 2013 and unpublished results). However, VMA3
deficient C. albicans exhibits growth defects at neutral pH and severely
reduced filamentation under these conditions. We therefore hypothesize that
the presence of Stv1p-containing V-ATPase in non-vacuolar organelles
maintains virulence in the face of defective vacuolar and cytoplasmic pH
homeostasis. Pink = acidic/acidified, blue = alkaline/alkalinized.
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hostV-ATPase (Bowman and Bowman, 2005; Huss and Wieczorek,
2009).

Recently, our laboratory developed a high-throughput screen-
ing method to identify new V-ATPase inhibitors in S. cerevisiae
(Chan et al., 2012). In this method, S. cerevisiae cells are trans-
formed with the gene for pHluorin, a pH-sensitive version of GFP
(Brett et al., 2005). The fluorescence intensity of pHluorin can be
used to identify molecules that acidify the cytosol of S. cerevisiae
following V-ATPase inhibition. We screened the Prestwick Chem-
ical Library (a collection of 1120 off-patent drug compounds)
using this method and identified alexidine dihydrochloride and
thonzonium bromide as novel and specific V-ATPase inhibitors
(Chan et al., 2012). Cells treated with these drugs showed a V-
ATPase-specific pH-sensitive growth phenotype (vma phenotype)
exclusive of fungi species. These inhibitors belong to a unique
class of V-ATPase uncouplers that inhibit proton transport with-
out affecting ATP hydrolysis. We also confirmed that disulfiram,
a compound identified previously by a high-throughput screen-
ing method that identifies drugs that alkalinize vacuoles (Johnson
et al., 2010), inhibits V-ATPase activity via the pHluorin screening
method.

Alexidine dihydrochloride, thonzonium bromide, and disul-
firam also inhibit V-ATPase in isolated C. albicans vacuoles.
Alexidine dihydrochloride and thonzonium bromide also cause
general cellular toxicity in intact C. albicans cells (Chan et al.,
2012). These data suggest that these pre-existing drugs could be
repurposed as anti-fungal therapies. Indeed, the majority of com-
pounds in the Prestwick Chemical Library have known safety and
toxicity profiles (Wermuth, 2004), making drug repurposing a less
daunting task than de novo drug discovery.

AZOLE THERAPY
Azoles are a class of antifungal agents that are commonly used
to treat fungal infections in the clinical setting. Azoles inhibit
C-14α-demethylase, an enzyme necessary for the conversion of
lanosterol to ergosterol, an essential component of fungal mem-
branes (Chapman et al., 2008). At least four ergosterol biosynthesis
genes (ERG3, ERG4, ERG5, and ERG11) are affected by azoles. The
general membrane disruption resulting from azole treatment alters
the activity of several membrane-bound transporters and chan-
nels including those associated with the transport of amino acids
and other nutrients, chitin synthesis, and mitochondrial oxidation
(Vanden Bossche, 1985; Barrett-Bee et al., 1991; Georgopapadakou
and Walsh, 1996).

For some time, it was assumed that azoles caused fungal toxi-
city primarily through damage to the cell membrane resulting in
cell permeability and lysis (Chapman et al., 2008). However, recent
work has uncovered a critical role for ergosterol in V-ATPase func-
tion. In S. cerevisiae, mutants defective in ergosterol biosynthesis
display alkaline vacuoles and the vma phenotype (Zhang et al.,
2010). Surprisingly, the V-ATPase holoenzyme is properly assem-
bled at the vacuolar membrane despite ergosterol depletion. The
mutant phenotypes instead appear to result from reduced ATP
hydrolysis and proton pumping within the V-ATPase. Flucona-
zole treatment of C. albicans cells also results in alkaline vacuoles
(Zhang et al., 2010), further solidifying that azoles function in part
through inhibition of V-ATPase.

These studies by Zhang et al. (2010) have identified a new
regulatory pathway involved in V-ATPase function as well as eluci-
dated a novel mechanism underlying azole toxicity in C. albicans.
From a therapeutic standpoint, these studies provide proof-of-
principle that anti-V-ATPase agents could work in the clinical
setting. Importantly, drugs targeting V-ATPase may act mechanis-
tically similar to azoles while bypassing the multidrug resistance
that has plagued current anti-fungal therapies.

Pma1p INHIBITION
Given the interplay between V-ATPase and Pma1p in S. cerevisiae
(Perzov et al., 2000; Martinez-Munoz and Kane, 2008; Huang
and Chang, 2011) and C. albicans (unpublished results), anti-
fungal therapies that rely on Pma1p inhibition may affect pathways
downstream of V-ATPase function. Indeed, Bowman et al. (1997)
demonstrated that 64 of 66 mutations that rescued concanamycin
A-mediated V-ATPase inhibition in N. crassa were localized to the
PMA1 gene. The synthetic organoselenium compound ebselen is a
known inhibitor of Pma1p (Chan et al., 2007; Billack et al., 2009).
Ebselen exhibits anti-fungal activity against wild-type strains of
C. albicans (Soteropoulos et al., 2000; Bouhafs and Jarstrand,
2002; Wojtowicz et al., 2004) as well as fluconazole-resistant strains
(Billack et al., 2009). These results again demonstrate the prece-
dence that targeting components of the V-ATPase pathway, even
via a downstream element such as Pma1p, can circumvent the
drug resistance that has developed against presently available
therapies.

HYPOTHETICAL APPROACHES FOR TARGETING V-ATPase
THE DEVELOPMENT OF NEW ANTI-FUNGAL TREATMENTS AGAINST
V-ATPase MUST INVOLVE NOVEL STRATEGIES FOR IDENTIFYING
THERAPEUTIC TARGETS
Selectivity for fungal pathogens over innocuous host tissue is one
critical targeting factor to consider. The Voc′ subunit of V-ATPase,
encoded by VMA11, is a promising candidate target (Parra, 2012).
The Voc′ subunit is found specifically in fungi and lacks a mam-
malian homolog (Figure 1). Promisingly, previous studies have
demonstrated that C. albicans null mutants of vma11 do not
properly acquire iron from hemoglobin, a critical virulence fac-
tor within host tissue (Weissman et al., 2008). Future structural
studies of the Voc′ subunit will aid in the rational design of a
fungal-specific anti-V-ATPase drug.

Most fungal V-ATPase subunits are encoded by a single gene;
the Voa subunit is the only subunit encoded by two isoforms.
Mammalian V-ATPases are strikingly different, with seven dif-
ferent subunits displaying isoform variation (Jefferies et al., 2008;
Figure 1). This drastic difference between fungi and mammals
could be exploited for fungal-specific drug development. For
example, the V1C subunit exists as three isoforms in mammals.
If an inhibitor is designed to specifically target a domain of fungal
V1C that is missing from one or more of the mammalian isoforms,
all cellularV-ATPase activity will cease in the fungal pathogen while
the non-targeted mammalian isoforms compensate and main-
tain V-ATPase activity in the host cell. This strategy will require
high-resolution structures of all fungal and mammalian isoforms
and is therefore a longer-range possibility. However, it remains a
fascinating option for fungal-specific drug targeting.
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V-ATPase activity is regulated in part by reversible disassem-
bly, the process by which the V1 and Vo sectors separate from one
another to prevent ATP hydrolysis and proton transport (Kane
and Parra, 2000; Kane, 2006). Reversible disassembly is triggered
primarily by glucose deprivation, although extracellular pH and
salt stress are thought to contribute to the process. In mam-
mals, cell-specific regulatory pathways also control disassembly
in a tissue-specific manner (Kane, 2012). Disassembly in C. albi-
cans has not been studied, but conserved similarities between S.
cerevisiae and mammals suggest C. albicans will utilize similar
pathways. Notably, the Voa subunit and organelle environment
appear to regulate disassembly in S. cerevisiae; Vph1p-containing
complexes disassociate upon glucose deprivation while Stv1p-
containing complexes are less sensitive (Kawasaki-Nishi et al.,
2001). In contrast, mammalian cells contain four Voa isoforms
localized to different tissues. This suggests that differences in iso-
form structure and interaction, localization, or susceptibility to
environmental cues could be exploited for fungal-specific drug
development as described previously. Alternatively, indirectly tar-
geting the regulator proteins involved in disassembly may allow
for fungal-specific inhibition of V-ATPase activity (Kane, 2012).

Finally, Pma1p is a fungal-specific protein with no known
mammalian homologs. Simultaneous targeting of both V-ATPase
and Pma1p should therefore disrupt both vacuolar and cyto-
plasmic pH homeostasis in fungi versus vacuolar pH alone in
mammalian cells. This dual approach may thereby prove more
detrimental to the fungal pathogen than the host cell. This
method is also advantageous in that it can be achieved either by
creation of a novel V-ATPase/Pma1p dual inhibitor or by admin-
istration of an anti-fungal drug cocktail consisting of presently
available therapies. Additionally, as Pma1p is a plasma mem-
brane protein with access to the extracellular space, anti-Pma1p
drugs may function regardless of accumulation within the fun-
gal cell. This possibility is highly advantageous, as drug uptake
often limits efficacy in fungi due to a lack of specific uptake
systems.

A NOVEL HIGH-THROUGHPUT METHOD FOR FUTURE
V-ATPase DRUG DISCOVERY IN C. albicans
Our need for anti-V-ATPase therapies grows increasingly critical
as we improve our understanding of the function of V-ATPase
in fungal virulence. However, direct screening for anti-V-ATPase
drugs in C. albicans is typically hindered by the non-availability
of high-throughput screening tools in the pathogenic fungi. We
previously demonstrated the practical utility of measuring cytoso-
lic pH as a surrogate for V-ATPase function in a high-throughput
screen for inhibitors of S. cerevisiae V-ATPase (Chan et al., 2012).
This method uses pHluorin, a pH-sensitive GFP construct that
can be stably transformed, thereby avoiding expensive and time-
consuming single-use dyes. Recently, Ullah et al. (2013) were the
first to successfully express pHluorin in a pathogenic fungus, C.
glabrata. However, non-canonical codon use precludes the direct
application of the existing pHluorin construct in C. albicans.

Our lab is currently working to create a pHluorin con-
struct optimized for C. albicans (CapHluorin) that will enable
easy, inexpensive, and high-throughput measurement of cytoso-
lic pH for use in screening for V-ATPase inhibitors. Additionally,

alkalinization of the cytoplasm is a general determinant of fungal
virulence (Stewart et al., 1988), and CapHluorin-mediated drug
screens may result in the rapid discovery of new anti-fungal thera-
pies that function independently of V-ATPase. Previous studies in
S. cerevisiae proved the feasibility of modifying pHluorin for tar-
geting to specific cellular compartments such as the Golgi (Tarsio
et al., 2011). CapHluorin will facilitate similar studies to examine
the importance of organelle-specific V-ATPase function and pH
homeostasis in C. albicans. Importantly, the CapHluorin construct
optimized for non-canonical codon use will enable cytosolic pH
measurements not just in C. albicans, but in all fungal species that
utilize the CTG clade, including the human pathogens C. dublin-
iensis, C. tropicalis, C. parapsilosis, and C. lusitaniae (Papon et al.,
2012).
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KEY CONCEPTS
VACUOLAR H+-ATPase (V-ATPase) PUMPS ARE LARGE MULTI-SUBUNIT
MOLECULAR MOTORS THAT COUPLE ACTIVE TRANSPORT OF PROTONS
WITH ATP HYDROLYSIS
V-ATPase activity is required for acidification of intracellular com-
partments and generates and sustains the pH gradient required for
function of the endomembrane system organelles.

Candida albicans IS THE MOST FREQUENTLY DIAGNOSED FUNGAL
PATHOGEN
Although it exists commensally with humans, it can cause
life-threatening blood infections under optimal pathogenic con-
ditions. C. albicans has developed resistance to many currently
available anti-fungal drugs, and mortality rates can reach 35% even
with proper treatment. There is therefore a dire need to develop
new anti-fungal therapies.

Candida albicans VIRULENCE IS REGULATED BY pH AT THE
EXTRACELLULAR, VACUOLAR, AND CYTOPLASMIC LEVEL
Extracellular pH triggers a morphological switch to the pathogenic
form of the fungus. Vacuolar acidification allows for activa-
tion/secretion of virulence enzymes. Cytoplasmic alkalinization
precedes the formation of germ tubes during C. albicans filamen-
tation.

GENETIC STUDIES IN VARIOUS PATHOGENIC FUNGI HAVE
ESTABLISHED A LINK BETWEEN V-ATPase ACTIVITY, VACUOLAR
ACIDIFICATION, AND FUNGAL VIRULENCE
Studies in Histoplasma capsulatum, Cryptococcus neoformans, and
Candida albicans have demonstrated that loss of all cellular V-
ATPase leads to alkaline vacuoles and a host of in vitro and in vivo
virulence defects.

V-ATPase IS AN ATTRACTIVE TARGET FOR DRUG DISCOVERY
Current anti-fungal therapies that involve the V-ATPase path-
way include direct pharmacological inhibition of V-ATPase, the
clinically prescribed azole class of drugs, and Pma1p inhibitors.
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However, the emergence of multidrug resistant strains of C.
albicans makes additional drug discovery imperative.

THE DEVELOPMENT OF NEW ANTI-FUNGAL TREATMENTS AGAINST
V-ATPase MUST INVOLVE NOVEL STRATEGIES FOR IDENTIFYING
THERAPEUTIC TARGETS
Such strategies include targeting the fungal-specific Voc′ subunit,
utilizing differences in isoform composition and complex dis-
assembly between fungi and mammals, dual V-ATPase/Pma1p
inhibition, and creation of a high-throughput screen in C. albicans.
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