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Data-driven approaches that make timely predictions about pollutant concentrations in the effluent of
constructed wetlands are essential for improving the treatment performance of constructed wetlands.
However, the effect of the meteorological condition and flow changes in a real scenario are generally
neglected in water quality prediction. To address this problem, in this study, we propose an approach
based on multi-source data fusion that considers the following indicators: water quality indicators, water
quantity indicators, and meteorological indicators. In this study, we establish four representative
methods to simultaneously predict the concentrations of three representative pollutants in the effluent
of a practical large-scale constructed wetland: (1) multiple linear regression; (2) backpropagation neural
network (BPNN); (3) genetic algorithm combined with the BPNN to solve the local minima problem; and
(4) long short-term memory (LSTM) neural network to consider the influence of past results on the
present. The results suggest that the LSTM-predicting model performed considerably better than the
other deep neural network-based model or linear method, with a satisfactory R%. Additionally, given the
huge fluctuation of different pollutant concentrations in the effluent, we used a moving average method
to smooth the original data, which successfully improved the accuracy of traditional neural networks and
hybrid neural networks. The results of this study indicate that the hybrid modeling concept that com-
bines intelligent and scientific data preprocessing methods with deep learning algorithms is a feasible
approach for forecasting water quality in the effluent of actual engineering.
© 2022 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences,
Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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sewage treatment method to address various point and non-point
source pollution [5]. To maximize the treatment efficiency of

1. Introduction

Compared with wastewater treatment plants, constructed
wetlands (CWSs) are widely applied in developing countries to
deeply purify urban water pollution because of their low con-
struction and operation costs, excellent treatment capacity and
high ecological benefits [1,2]. Additionally, in the context of global
warming, new requirement has been presented for wastewater
treatment, that is, the reduction of greenhouse gas (GHG) emissions
[3,4]. In this case, CWs are widely used as a low-carbon and green
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CWs, it is necessary to make timely predictions about the potential
changes in effluent and adjust the operation parameters of CWs to
guarantee the safety of urban water systems [6]. Therefore, based
on the optimization of previous effluent quality data from a CW,
establishing a satisfactory model to predict sudden future changes
will provide an effective strategy for the regulation of CWs, thereby
indirectly providing an approach to control urban water pollution
[7-9].

Mathematical models have been used frequently to not only
simulate CW purification mechanisms but also predict effluent
quality [10,11]. However, to predict the effluent quality of CWs
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based on mathematical models, it is not only necessary to contin-
uously monitor a series of key water quality indicators (biochemical
oxygen demand in five days (BODs), chemical oxygen demand
(COD), ammonia nitrogen (NH4-N), and total phosphorus (TP)) but
also to measure the absorption of wetland plants and the activity of
bacteria, which consumes a large amount of time and energy
[12,13]. For example [14], established a physical-mathematical
water quality model to simulate the interaction between overland
and subsurface flow that occurs in horizontal flow CWs. The pro-
cess not only required a series of specific formulas to simulate
biochemical processes but also needed to establish a water hy-
draulic model, which was extremely tedious. Therefore, time-
consuming sampling and measurement was a major obstacle in
water quality perception and the timely adjustment of CWs.

Meanwhile, various data-driven models have been used to
predict the purification capacity of CWs [15]. Although a model
requires a number of data points as an mechanistic or mathemat-
ical model, the data-driven method does not require detailed
fundamental and mechanistic knowledge. Therefore, data-driven
models have the potential for wider application and achieve bet-
ter prediction performance in terms of forecasting the water quality
of practically CWs than mathematical models [16,17].

Among the diverse data-driven methods, deep learning has
become a widely used technology in hydrological time series pre-
diction because of its strong nonlinear mapping and prediction
capabilities, higher error tolerance and better generalizability [18].
For example [19], optimized energy consumption and effluent
quality during wastewater treatment using novel dynamic opti-
mization control based on multi-objective ant lion optimization
and deep learning algorithms [20]. applied an artificial neural
network (ANN) to simulate the denitrification rate of CWs and
concluded that the ANN achieved a much better simulation effect
than the traditional multiple linear regression (MLR) model or
simplified mechanistic model because of its excellent regression
capabilities for nonlinear problems [21]. used a genetic algorithm
(GA) combined with an ANN model to simulate and predict paper-
making wastewater treatment. The results demonstrated that,
through its excellent global searchability, the GA can substantially
reduce the BPNN's error and improve accuracy, which makes it a
powerful tool for predicting complex problems [22]. Additionally
[23], used a long short-term memory (LSTM) model combined with
the wavelet domain threshold denoising method to predict his-
torical changes in chlorophyll A in lake water and predict future
concentration changes. Furthermore [24], proposed an integrated
empirical mode decomposition (EMD)-LSTM model to predict
water quality in urban drainage networks, which combined an
EMD-centric data preprocessing module and LSTM neural network
prediction module to improve the model-based accuracy of the
detection method. These results demonstrated that LSTM per-
formed well in multi-time-step prediction problems.

To date, the large-scale application of deep learning methods for
predicting effluent quality in real vertical flow CWs has not been
investigated systematically. Previous applications have either been
in small-scale CWs in the laboratory or mostly focused on pre-
dicting the concentration of specific pollutants based on several
accessible parameters, such as temperature, flow rate, and dis-
solved oxygen [25—29]. However, considering that the water
influent concentration of CWs under actual conditions is highly
volatile and that a large number of parameters affect the processing
capacity of CWs in large-scale applications, such as temperature,
rainfall, atmospheric pressure, and humidity, it remains a challenge
to establish a suitable method to predict multiple pollutants
simultaneously with the help of multi-source data.

Therefore, our purpose in this study is to simulate and predict
the effluent quality of large-scale CWs in time through a
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combination of deep learning algorithms and multi-source data-
driven methods. First, given the multi-source data that affect the
processing capacity of CWs, we investigate the mapping relation-
ship between the data of the previous day and the concentration of
pollutants in the CW effluent of the next day. Then, we develop
various typical approaches for predicting the concentrations of
three conventional pollutants and compare them with each other
so that we can identify the best model for this complex environ-
ment at large spatial scales. Finally, because of the high volatility of
the effluent concentration of CWs, we propose a data preprocessing
module that can smooth the original data, remove high-frequency
noise, and effectively increase model prediction accuracy. Our
research provides new methods and ideas for improving the pre-
diction accuracy of the large-scale application of water quality
models in practical scenarios.

2. Materials and methods
2.1. Preprocessing of raw data

In this study, we divide data preprocessing methods into two
parts: moving average and normalization. The moving average is a
data smoothing method that is capable of smoothing high-
frequency noise, and making the pattern more visible than orig-
inal is required to ensure the stability of model performance [30].
The smoothing formula is shown in Equation (1). Because of the
difference in dimensions between the indicators, some indicators
are ignored in the modeling process, and the original variables are
normalized through a linear transformation of the raw data (Zhou
2020). For example, if there are i indicators, vy, Vo, ..., Vj, that
represent the attributes of j objects, then the raw dataset is as
shown in Equation (2). “Min” and “max” are the minimum and
maximum values of an index, respectively. These values map the
original value v;; of an index to the value v'j; in the interval [0, 1]
through min-max normalization, as shown in Equation (3):

_Xt + X1 +Xe 2+ ... +Xeon
n

Ye (1)
where X; is the effluent concentration on day ¢t, Y; is the effluent
concentration on day t after averaging, and n is the average number
of days;

Vin Vg
Vig=1| + "~ ] (2)
Vin -V

where i represents the number of indicators and j represents the
number of attributes of each indicator; and

Vi —min(Vpp)
" max(Vy) — min(Vi,)

(3)

m

where V'p, represents the normalized value, and max(Vy) and
min(Vy,) are the maximum and minimum values of the sample,
respectively.

2.2. Prediction models

2.2.1. Multiple linear regression (MLR)

In regression analysis, if more than one independent variable
(input variables x;) are used to predict dependent variables (output
variable Y) through linear regression, this is called MLR [31], which
can be expressed as follows:
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Y= k]X] + k2X2 + k3X3 + + ijj + kO (4)

where ki, ko, ..., ky are the regression coefficients and kg is the
intercept of MLR. The coefficients of each variable reflect its effect
on the predictive results.

Multicollinearity is a common problem in MLR. When there is
strong collinearity between variables, the prediction performance
of the model decreases. Therefore, it is necessary to calculate the
variance inflation factor (VIF) value between the variables. The VIF
value of each independent variable is calculated as

1
VIF=—— (5)
1-R?

where Ry is the negative correlation coefficient of the independent
variable xi for the regression analysis of the remaining independent
variables. The larger the VIF, the greater the possibility of collin-
earity among independent variables. Therefore, it is critical to
guarantee that variables with high VIF (VIF >5) are eliminated to
ensure that the variables are independent of each other in the final
model [32].

2.2.2. Backpropagation neural network (BPNN)

As shown in Fig. 1a, the BPNN is a neural network with a large
number of neurons. All neurons in each layer are directly connected
to the neurons in the next layer; hence, the BPNN can also be called
a fully connected neural network. The BPNN contains an input layer,
output layer, and series of intermediate or hidden layers. Each layer
of neurons contains one or more neurons. The weights and biases of
the BPNN are updated according to the gradient drop during
training. Each part of BPNN is divided into several connection
neuron layers [33]. The value of each neuron is

Y—f(ixi*wij-i-bj) (6)

i=1

where X; is the input variable, n is the number of neurons in the
current layer, Wj; is the weight of the connection between the
neuron and the next layer of neurons, b; is the bias of the neuron, *
represents the scalar product of two vectors, and fis the activation
function. The neurons in the previous layer are all connected to
each neuron in the current layer. A sigmoid function is a commonly
used activation function that has an output value between 0 and 1.
The specific formula is as follows:

1

sigmod(x) = Trex

(7)

Backpropagation is a widely used training algorithm. Simulta-
neously, the BPNN is the most basic neural network model. Its
output is propagated forward and the error is propagated back-
ward. With the help of the returned error, the weights and biases
can be updated, which finally achieves the purpose of optimizing
the model. For the backpropagation of errors, the gradient descent
method is generally used to update the weights. The first-order and
second-order partial derivatives of all function variables of the er-
ror function are computed to obtain the gradient descent direction
and speed of the function to determine the fastest descent direc-
tion, and correct the weights and thresholds of the network.

2.2.3. Genetic algorithm-backpropagation neural network (GA-
BPNN)

In this study, we adopt a GA as an optimization method to adjust
the weights and biases of the initial BPNN. A GA is the process of
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Fig. 1. Structure of the deep learning neural network model. a, Back Propagation
Neural Network (BPNN). b, Genetic Algorithm (GA). ¢, Long Short Term Memory
(LSTM) network.

imitating biological evolution to select the most suitable results
among all possible solutions. The optimization process mainly in-
cludes obtaining a large amount through selection, crossover, and
mutation, in addition to selecting individuals with the best fitness,
which is shown in Fig. 1b.

Selection: The selection process is based on the fitness evalua-
tion of individuals in the group: the fitter the individuals, the more
offspring they produce, as shown in Equation (8).

Crossover: Crossover is the process of recombining two separate
chromosomes to create a new individual. The calculation process is
shown in Equation (9).

Mutation: The mutation operation randomly changes some of
the values on the chromosome to create new individuals. Its
calculation is shown in Equations (10) and (11):

fi
Pj=— 8
7 (8)
aii(1 — b) +a;b
@ = { ay(1— b) + agb ©)
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. J @+ (a5 — amax)*f(g) r>05
%= { a,~j+ (ar:n'n —a;)*f(g) r<05 (10)
C \2

where P; is the selection probability of individual i, f; is the fitness of
individual i, and n is the number of individuals in the population. a;;
is the jth gene of the ith individual, ay; is the jth gene of the kth
individual, and ami, and amax are the upper and lower bounds of the
gene, respectively. G is the current iteration number, Gpayx is the
maximum generation number, and r is a random number in the
interval [0,1].

The optimization process consists of encoding and decoding the
input, creating the initial population, calculating fitness, iterative
operations, and adjusting the parameters. After the first generation
is obtained, the most suitable individuals are selected from each
generation according to the fitness result, and then a new genera-
tion is obtained using iterative operations until the set number of
generations is reached. Therefore, the GA-BPNN is a method that
first uses a GA to optimize the weights and biases that need to be
set in advance for the BPNN, and then uses the most suitable co-
efficients set in advance to complete the training and testing of the
BPNN.

2.24. Long short-term memory (LSTM)

The data flow of LSTM is similar to that of other recurrent neural
networks (RNN) in that the data flow passes through each neuron
using backforward propagation during training. The structural
difference between LSTM and other RNNs is the difference in the
results and functions of its neurons, which makes it an excellent
solution to the problems of vanishing and exploding gradients [34],
as shown in Fig. 1c.

The core aspects of the LSTM neural network are its storage cell
form and gate structure. The memory cell is a way of disseminating
previous data and can be considered as the memory of the network.
The gate structure can be roughly divided into three types of gates:
input gates, output gates, and forget gates. Each of these gates and
memory cells are described in detail as follows:

Input Gate (I): The information input from the input layer at
each moment first passes through the input gate, and the switch of
the input gate determines whether the information is input into the
memory cell at this moment, as shown in Equation (12).

Output Gate (O): The information output from the memory cell
at each moment is determined by this gate, and its calculation is
shown in Equations (13) and (14).

Forget Gate (F): Every time the value in the memory cell will
undergo a process of choosing whether to be forgotten or not by the
gate. If the data are marked, the value in the memory cell is cleared,
that is, forgotten. The calculation process is shown in Equation (15).

Memory Cell (M): The information in the memory cell depends
on the input at the previous moment and the forget gate. Addi-
tionally, at this moment, the information is input into the training
process through the output gate. Its calculation is shown in Equa-
tion (16):

I =f(XeWj + H Wi + M1 Wi + by) (12)
O¢ =f(XeWo + Hr_1Wop, + Mi_1Wom + bo) (13)
Ht:Ot*tanh(Mt,]) (14)
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Fe = (XeWr + Het We + My Wi + by ) (15)

M; =Ft*M;_1 + I;*tanh(Xe W + Hi_1{ W + bm), (16)

where X; represents the input variables; fis the activation function
— in this model, we choose the sigmoid function (as shown in
Equation (7)); Wg, Wi, Wp, and W, are the weights of X; in the forget
gate, input gate, memory cell state, and output gate, respectively;
Wrin, Win, Wmn, and Wy, are the weights of He.1 at the forget gate,
input gate, memory cell state, and output gate, respectively; Wy,
Wim, and Wy, are weights related to the connection between the
memory cell state and different structures; b, bj, be, and b, are the
biases in the each structure, respectively; and * represents the
scalar product of two vectors. (The other variables not given were
defined in previous equations.)

The backpropagation algorithm is used throughout the training
process of the LSTM, and the associated variable matrix is contin-
uously optimized to finally determine the optimal set of variables.
The problems of exploding and vanishing gradients during training
and learning are easily solved by LSTM [35].

2.3. Model performance evaluation

In this study, we use two performance evaluation metrics:
relative root-mean-square error (RMSE) and coefficient of deter-
mination (R?). The RMSE measures the deviation between obser-
vations and true values; the formula is shown in Equation (17). R? is
generally used in regression models to evaluate the conformity
between the predicted and actual values, which is calculated as
shown in Equation (18):

t=1

1<& 2
RMSE = J =D -y) (17)

where y2is the actual value and yP"™is the predictive value; and

2
R2_1_ X0 —y)

S (et — i€ e
=1Vt

where y?“‘represents the actual value, yP'® represents the predictive

value, and ¥2* represents the average of the actual data values.

2.4. Description of the experimental data

The set of plant data used in this study originated from a CW
located in a city in southern China, with a total construction area of
42,500 m? (31,000 m? is a vertical flow CW) (as shown in Fig. 2a). It
undertakes 20,000 m? tail water from the first phase of the up-
stream Longhua Wastewater Treatment Plant every day.

We took sampling points at 10:00 in the morning every day. The
dataset included the following environmental indicators: meteo-
rological indicators (temperature, relative humidity, and rainfall),
water quantity indicators (flow velocity), water quality indicators
(NHZ-N'inf, TPinf, CODjnf, SSint, PH, BODs_int, NHZ-N'efr, TPefr, and
CODefr). We surveyed and collected meteorological indicators at
sampling points from the local meteorological bureau, whereas
water quality indicators and water quantity indicators sampled and
collected from sampling points. The cumulative number of days for
data collection was 186 days (from January 28, 2021 to August 31,
2021) However, some raw data exhibited diverse and irregular
patterns, which implied that data-driven modeling would fail to
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Previous day’s data

Temperature
Relative humidty

Rainfall (r)
‘
Water quality
data
Water quantity
data

Fig. 2. Diagram and model description of the constructed wetland. a, Satellite photo. b,
Prediction model.

achieve great model performance. The structure of our model is
shown in Fig. 2b.

We performed moving average processing on each water
effluent indicator using Equation (1). Therefore, three moving

Table 1
Summary statistics for the 16 variables.
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average indicators plus 13 environmental indicators provided a
total of 16 indicators, a total of 2960 indicators. Table 1 illustrates
the average, standard deviation, minimum, and maximum values of
the 16 indicators.

We divided the dataset into two subsets, that is, the training set
(January 29, 2021 to July 13, 2021, 166 days) and testing set (July 14,
2021 to August 31, 2021, 19 days), which corresponded to a total of
90% and 10% data for training and testing, respectively. We mainly
used the training set to train the parameters in the neural network,
which is associated with input-output models. We used the testing
set to verify the performance of the model. After training on the
training set, we compared and assessed the performance of each
model using the testing set.

2.5. Computing environment

We implemented the MLR model using SPSS 22.0 software. We
implemented the BPNN, GA-BPNN, and LSTM models in MATLAB
2020b using the Neural Network Toolbox, Genetic Algorithm
Optimization Toolbox, and Deep Learning Toolbox.

3. Results and discussion
3.1. Raw data analysis

Through continuous monitoring of the influent and effluent, we
analyzed the basic variation rules of water quality in the large-scale
CW. Fig. 3 shows the concentration of TP, COD, and NHZ-N, and the
removal efficiency for each indicator (Text S1). It is obvious that, in
most cases, CWs had a certain removal effect on pollutants; how-
ever, there were still cases in which there was no removal effect.
There may be three main reasons for these results: (1) The con-
centration of pollutants in the influent water was too low, which
led to the description of the substances in the original soil of the
wetland and induced the increase of pollutant concentration in the
wetland. For example, the concentration of TP and NH4-N in the
water was too low, which resulted in the low removal rate of
wetlands on the 145th to 180th days. (2) The COD:TP ratio in the tail
water of the sewage treatment plant was too low. For example, the
COD:TP ratio was significantly lower than 100:1 around the 5th and
40th days, which resulted in an insufficient carbon source, which
was not conducive to the removal of phosphorus in water. (3) The
pollutant removal efficiencies of CWs are greatly affected by
external conditions, such as temperature and rainfall. During strong
rainfall, the concentrations of pollutants in water are affected. For
these reasons, the effluent quality of the CW in the actual

variables Indicators Max value Min value Average value Standard deviation
121 temperature 32.8 144 25.99 4.72

v Relative humidity 100 30 64.58 11.98
V3 rainfall 84.8 0 4.0135 11.82
Vg flow velocity 35,442 10,576 17,372.816 4211.12
Vs NHi —N'jn¢ 0.9 0.009 0.1585 0.1456
Vg TPine 0.83 0.004 0.09427 0.073
vy CODjp¢ 25.31 0.053 15.14 3.277
Vg SSinf 7 1 3.357 0.88

Vg PH 7.98 5.61 7.21 0327
Vio BODs._jns 5.6 0.8 3.0196 0.637
Vi1 NHi —N'egr 0.546 0.006 0.121 0.104
V12 TPefr 0.325 0.012 0.0889 0.039
Vi3 CODesr 22 0.076 13.935 3.14

Via NHZ —N'effma) 0.351 0.033 0,1211 0.0694
Vis TPefi(ma) 0.213 0.0253 0.089 0.0257
Vig CODeffma) 17.393 6.58 13.903 1.943
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Fig. 3. Water quality parameters measured from influent and effluent in the study constructed wetland. a, NH4-N. b, COD. ¢, TP.

environment was similar to that in the specific environment in the
laboratory; that is, it was generally still lower than the discharge
standard. However, the complexity of the data and model charac-
teristics in the actual environment was much higher than that in
the laboratory during the construction of the data-driven model.

3.2. Structure determination and model results

3.2.1. MLR modeling result

For MLR models, it is necessary to ensure that the variables are
independent of each other and not affected by multicollinearity
problems. Fortunately, the VIF values of the ten independent vari-
ables in the MLR model were all small, such as NH4-N j,r and PH
being 1.11 and 1.07. The remaining VIF values were between 1.18
and 2.119, that is, all less than 5. This demonstrates that the

correlation between independent variables was small and there
was no multicollinearity problem. All the results are shown in
Table 2. Therefore, we used the two subsets described in Section 3.2
to train and test the model, and calculated the regression coefficient
of the model using regression analysis. The detailed results of MLR
modeling are shown in Table 3.

3.2.2. Neural network modeling results

The neural network models were used by the two back-
propagation algorithms (BPNN and LSTM) during the entire
training process. Additionally, we used a GA to optimize the
weights and biases of the BPNN as the third network model. To the
best of our knowledge, the structure of a network model is deter-
mined by the quantity of layers, total number of neurons in each
layer, and characteristic of the transmission functions, and is a vital

Table 2

Multicollinearity analysis results of independent variables in MLR model.
Input indicator Temp RH Rainfall Flow NHZ-N inf TPins CODijpe SSinf PHin¢ BODs_int
Independent X4 X5 X3 X4 Xs X6 X7 Xs X9 X10
Variable VIF 1.18 1.30 1.34 117 1.11 1.25 2.12 1.17 1.07 2.09
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Table 3
The MLR model equations.
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Output indicator Response variable Model equation

NHZ-N (ma) YRH4-Neeff (ma)
NHi -N YNH4 -Neff
COD (ma) Ycopeff (ma)
cob Ycopefr

TP (ma) Yrpeff (ma)

P Yrpett

~0.002x;+0.001x,—0.001x3—1.904 x 10~6x44-0.184x5+0.001x5—0.003x7+0.007x5+0.018x0+0.025x10—0.065
—0.002x;+0.001x,—0.001x3-9.459 x 10~ 7x4+0.253x5-+0.164 + Xg-0.001x7-+-0.009x5-+0.052x9+0.008x9—0.346
—0.079x1+0.038x5+0.011x3+4.994 x 10~°x;4—1.479x5-+0.734x5-+0.448x7—0.077xg+1.337x9—0.697x10—5.918
0.139x;+0.036x,+0.003x3+4.222 x 10~5x4—3.669x5+1.933xg+0.119x7-0.046x5-+0.214x9+0.086x19+3.939
0.000314x;—0.001x,+0.00046x3+5.143 x 10~7x4+0.009x5+0.108 + xg+0.001x,—0.000359x5—0.002x9—0.001x;0+0.112
0.000348x;—0.000482x,-+0.001x3+6.324 x 10~7x4+0.025x5+0.274.X5—1.138 x 10~5x7-+0.001x3—0.001xe+0.001x;0--0.069

part of model development. Increasing the number of neurons
could improve the accuracy of nonlinear fitting. However, an overly
complex network would lead to overfitting and prolong the
training time. Therefore, all applied models in this study had an
input layer with ten neurons, corresponding to Temp, RH, Rainfall,
Flow, NHZ-N jnf, TPinf, CODjnf, SSinf, PHinf, and BODs_i,r. The output
layer was composed of six neurons, corresponding to effluent
concentrations of NHZ-N eff, TPefr, CODef, NHI—Neff(ma), TPeff (ma),
and CODeff (ma). Additionally, for the three models, we conducted
experiments on one to four hidden layer structures, where we
attempted to use 3—30 neurons in each hidden layer.

Considering the training efficiency and prediction accuracy, the
resulting optimal topology of the hidden layers for the BPNN model
was a three-layer structure, with 18 neurons in hidden layer 1, 14
neurons in hidden layer 2, and six neurons in hidden layer 3
(Fig. S1). Additionally, the best performing GA-BPNN had three
hidden layers, with 16 neurons in layer 1, 11 neurons in layer 2, and
8 neurons in layer 3 (Figs. S2 and S3). The optimal structure of LSTM
had three hidden layers, with 17 neurons in layer 1, 14 neurons in
layer 2, and 12 neurons in layer 3 (Figs. S4 and S5).

3.3. Prediction performance on the raw testing set

A comparison of predicted versus measured data for three water
quality indicators (CODefr, NHZ-N off, and TPeg) is shown in Fig. 4.
Different types of models had very different prediction results. The
MLR predictions had a high degree of oscillation, and their R? values
were all less than 0.32 (as shown in Fig. 4). Even when NHZ-N e
was predicted (as shown in Fig. 4a), it was only 0.225, which means
that the prediction of the effluent quality of CWs is not a simple
linear problem. In comparison, the prediction results of the BPNN
were much better, and its R? was greater than 0.7; however, this is
still far from satisfactory. In predicting CODg¢r (as shown in Fig. 4b),
the BPNN underestimated the peak CODeg concentration, which
resulted in a smooth line. The inconsistency of the BPNN suggests
that it performed poorly compared with LSTM. However, when we
added a GA to optimize the BPNN, although the GA-BPNN was
unable to match the accuracy of LSTM, the GA-BPNN still achieved
an R? of 0.81, which was higher than that of a single BPNN. As
shown in Fig. 4, the prediction effect of using the weights and bias
generated by the GA to reduce the RMSE was much higher than that
of the neural network generated by randomly generated weights
and biases. LSTM outperformed the other models in the prediction
of all metrics, particularly in the prediction of CODgff (as shown in
Fig. 4b), where LSTM substantially outperformed the other models,
with an R? of 0.93. The reason for the satisfactory performance of
LSTM may be that it can take into account the influence of past
results on the present, which plays an important role in time series
problems.

3.4. Effect of the moving average on prediction performance

A comparison of predicted versus measured data for three water
quality indicators after the moving average (CODefima), NH4-N

efffma)» and TPefma)) is shown in Fig. 5. After we used the moving
average method, the processed data were much smoother than the
original data. We recreated new models using the processed data,
and the accuracy of each model improved considerably. The
improvement of the GA-BPNN when we used the moving average
method was the most substantial among the four models, and the
R? of the three types of water quality indicators was close to 0.9, or
even higher. By contrast, the accuracy of LSTM also improved;
however, the increased amplitude was not as obvious as for the
other models. Only in the prediction of NHZ-N effma) did R? achieve
an increase of 0.013 compared with the original data (as shown in
Figs. 4a and 5a). We speculate that the application of the moving
average method enabled the other three models, except LSTM, to
consider the influence of past results so that high-frequency errors
were eliminated, thereby improving accuracy.

3.5. Comparison of the models

By comparing RMSE and R? (as shown in Fig. 6), we can more
intuitively identify the strength of the predictability of the four
models. For the original dataset, based on the MLR model, the RMSE
of the BP model decreased considerably, and R? for the CODef, TP,
and NHZ-N g prediction results increased by 49.1%, 47.2%, and
43.2%, respectively. This suggests that traditional machine learning
can solve multiple regression problems better than linear methods
because machine learning can fit more complex functions and
achieve higher accuracy. However, because of the influence of the
possible local minimum problem, the accuracy of the prediction
results obtained by the BPNN only was still not satisfactory. After
we optimized the BPNN using a GA, the RMSE of each model further
decreased, and the R? of the three predictors increased by 8.55%,
6.4%, and 7.31%, respectively. The reason for this is that we opti-
mized the weights and biases of the network with the goal of
reducing the RMSE of the prediction results. After we compared
LSTM with the GA-BPNN, the RMSE of LSTM decreased more sub-
stantially, and R? for each indicator increased by 9.9%, 10.49%, and
7.8% sequentially. This is because water quality data are complex
time series data, and LSTM considers the effect of past results on
the present, thereby achieving higher prediction accuracy.

Finally, after we processed the original data using the moving
average method, the accuracy of the results of each model
improved because some noise was removed. The improvement
effect on the GA-BPNN was the most notable, and the increase in R
reached above 8%, on average, whereas the R? of LSTM was only 2%.
We assume that this is because we averaged three days of data in
the smoothing process, which transferred the previous influence
into the other models; however, LSTM considered the influence of
previous data, and thus achieved an insignificant improvement.

3.6. Future perspectives

In the future, we will attempt to develop a hybrid algorithm of
RNNs to achieve higher accuracy or a faster model construction
speed. Additionally, the prediction effect of the neural network had
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Fig. 4. Comparison of the three water quality indices predicted by the MLR model, the BPNN model, the GA-BPNN model, and the LSTM model with the measured results and their
corresponding R? values. a—b, Scatter plot (a) and line plot (b) for NH-Nef. c—d, Scatter plot (c) and line plot (d) for COD.. e—f, Scatter plot (e) and line plot (f) for TP

a high correlation with the amount of input data; however, an
excessively high amount of data leads to a large consumption of
human and material resources. Therefore, on the premise of not
affecting the prediction effect of the model, we will also attempt to
reduce the amount of data used. Additionally, we will further
improve the forecast model of CWs to analyze GHG emissions. The
timely prediction of carbon emissions or the absorption of CWs is
important for helping the entire urban system to achieve carbon
neutrality and further improve the intelligent management of ur-
ban water environments.

4. Conclusion

The deep learning network successfully predicted the next-day
effluent quality of large-scale CWs and reveals the mapping rela-
tionship between the collected multi-source datasets and effluent
quality. By comparing the prediction effects of the four models for

three water effluent indicators, we obtained three main research
conclusions: (1) Based on the original data with large fluctuations,
the moving average method can be used to remove high-frequency
noise in an actual large-scale application, and smoothed data can be
obtained to improve the prediction effect. (2) Compared with MLR,
backward feedback neural network, and neural network based on
GA optimization, a deep learning neural network (LSTM) that can
take into account previous training results achieves a better pre-
diction effect on time series problems, such as water quality pre-
diction. (3) A deep learning network can be quickly established to
predict water quality in a real scenario by collecting a large number
of simple and easy-to-obtain water quality indicators. The LSTM
neural network can solve the disadvantage of time and money
wasting to perform miniature experiments to obtain various pa-
rameters in the modeling of CWs. With the widespread application
of CW sewage treatment methods, the prediction of CWs’ effluent
quality not only plays a crucial role in the regulation of the urban
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water environment but also provides a feasible basis for solving
urban non-point source pollution.
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