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Abstract

Linking phenotypes to specific gene expression profiles is an extremely important problem

in biology, which has been approached mainly by correlation methods or, more fundamen-

tally, by studying the effects of gene perturbations. However, genome-wide perturbations

involve extensive experimental efforts, which may be prohibitive for certain organisms. On

the other hand, the characterization of the various phenotypes frequently requires an

expert’s subjective interpretation, such as a histopathologist’s description of tissue slide

images in terms of complex visual features (e.g. ‘acinar structures’). In this paper, we use

Deep Learning to eliminate the inherent subjective nature of these visual histological fea-

tures and link them to genomic data, thus establishing a more precisely quantifiable correla-

tion between transcriptomes and phenotypes. Using a dataset of whole slide images with

matching gene expression data from 39 normal tissue types, we first developed a Deep

Learning tissue classifier with an accuracy of 94%. Then we searched for genes whose

expression correlates with features inferred by the classifier and demonstrate that Deep

Learning can automatically derive visual (phenotypical) features that are well correlated with

the transcriptome and therefore biologically interpretable. As we are particularly concerned

with interpretability and explainability of the inferred histological models, we also develop

visualizations of the inferred features and compare them with gene expression patterns

determined by immunohistochemistry. This can be viewed as a first step toward bridging the

gap between the level of genes and the cellular organization of tissues.

Introduction

Histological images have been used for biological research and clinical practice already since

the 19th century and are still employed in standard clinical practice for many diseases, such as

various cancer types. On the other hand, the last few decades have witnessed an exponential

increase in sophisticated genomic approaches, which allow the dissection of various biological

phenomena at unprecedented molecular scales. But although some of these omic approaches

have entered clinical practice, their potential has been somewhat tempered by the heterogene-

ity of individuals at the genomic and molecular scales. For example, omic-based predictors of

cancer evolution and treatment response have been developed, but their clinical use is still
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limited [1] and they have not yet replaced the century old practice of histopathology. So,

despite the tremendous recent advances in genomics, histopathological images are still often

the basis of the most accurate oncological diagnoses, information about the microscopic struc-

ture of tissues being lost in genomic data.

Thus, since histopathology and genomic approaches have their own largely non-overlap-

ping strengths and weaknesses, a combination of the two is expected to lead to an improve-

ment in the state of the art. Of course, superficial combinations could be easily envisioned, for

example by constructing separate diagnosis modules based on histology and omics respec-

tively, and then combining their predictions. Or, alternatively, we could regard both histopath-

ological images and genomic data as features to be used jointly by a machine learning module

[2].

However, for a more in-depth integration of histology and genomics, a better understand-

ing of the relationship between genes, their expression and histological phenotypes is neces-

sary. Linking phenotypes to specific gene expression profiles is an extremely important

problem in biology, as the transcriptomes are assumed to play a causal role in the development

of the observed phenotype. The definitive assessment of this causal role requires studying the

effects of gene perturbations. However, such genome-wide perturbations involve extensive

and complex experimental efforts, which may be prohibitive for certain model organisms.

In this paper we try to determine whether there is a link between the expression of specific
genes and specific visual features apparent in histological images. Instead of observing the

effects of gene perturbations, we use representation learning based on deep convolutional neu-

ral networks [3] to automatically infer a large set of visual features, which we correlate with

gene expression profiles.

While gene expression values are easily quantifiable using current genomic technologies,

determining and especially quantifying visual histological features has traditionally relied on

subjective evaluations by experienced histopathologists. However, this represents a serious

bottleneck, as the number of qualified experts is limited and often there is little consensus

between different histologists analyzing the same sample [4]. Therefore, we employ a more

objective visual feature extraction method, based on deep convolutional neural networks. Such

more objective visual features are much more precisely quantifiable than any subjective fea-

tures employed by human histopathologists. Therefore, although this correlational approach

cannot fully replace perturbational studies of gene-phenotype causation, it is experimentally

much easier and at the same time much more precise, due to the well-defined nature of the

visual features employed.

In our study, we concentrate on gene expression rather than other multi-omic modalities,

since the transcriptional state of a cell frequently seems to be one of the most informative

modalities [5].

There are numerous technical issues and challenges involved in implementing the above-

mentioned research.

The advent of digital histopathology [6] has enabled the large scale application of automated

computer vision algorithms for analysing histopathological samples. Traditionally, the inter-

pretation of histopathological images required experienced histopathologists as well as a fairly

long analysis time. Replicating this on a computer was only made possible by recent break-

throughs in Deep Learning systems, which have achieved super-human performance in image

recognition tasks on natural scenes, as in the ImageNet Large Scale Visual Recognition Com-

petition (ILSVRC) [7, 8]. However, directly transferring these results to digital histopathology

is hampered by the much larger dimensions of histological whole slide images (WSI), which

must be segmented into smaller image patches (or “tiles”) to make them fit in the GPU mem-

ory of existing Deep Learning systems. Moreover, since there are far fewer annotated WSI
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than natural images and since annotations are associated with the whole slide image rather

than the individual image tiles, conventional supervised Deep Learning algorithms cannot

always be directly applied to WSI tiles. This is particularly important whenever the structures

of interest are rare and thus do not occur in all tiles. For example, tumor cells may not be pres-

ent in all tiles of a cancer tissue sample. Therefore, we concentrate in this paper on normal tis-

sue samples, which are more homogeneous at not too high magnifications and for which the

above-mentioned problem is not as acute as in the case of cancer samples.

Only a few large-scale databases of WSI images are currently available, and even fewer with

paired genomic data for the same samples. The Cancer Genome Atlas (TCGA) [9] has made

available a huge database of genomic modifications in a large number of cancer types, together

with over 10,000 WSI. The Camelyon16 and 17 challenges [10] aimed at evaluating new and

existing algorithms for automated detection of metastases in whole-slide images of hematoxy-

lin and eosin stained lymph node tissue sections from breast cancer patients. The associated

dataset includes 1,000 slides from 200 patients, whereas the Genotype-Tissue Expression

(GTEx) [11] contains over 20,000 WSI from various normal tissues.

Due to the paucity of large and well annotated WSI datasets for many tasks of interest (such

as cancer prognosis), some research groups employed transfer learning by reusing the feature

layers of Deep Learning architectures trained on ordinary image datasets, such as ImageNet.

Although histopathological images look very different from natural scenes, they share basic

features and structures such as edges, curved contours, etc., which may have been well cap-

tured by training the network on natural images. Nevertheless, it is to be expected that training

networks on genuine WSI will outperform the ones trained on natural scenes [12].

The most active research area involving digital histopathology image analysis is computer

assisted diagnosis, for improving and speeding-up human diagnosis. Since the errors made by

Machine Learning systems typically differ from those made by human pathologists [13], classi-

fication accuracies may be significantly improved by assisting humans with such automated

systems. Moreover, reproducibility and speed of diagnosis will be significantly enhanced,

allowing more standardized and prompt treatment decisions. Other supervised tasks applied

to histopathological images involve [14]: detection and segmentation of regions of interest,

such as automatically determining the tumour regions in WSI [15], scoring of immunostain-

ing [16], cancer staging [13], mitosis detection [17], gland segmentation [18], or detection and

quantification of vascular invasion [19].

Machine Learning has also been used for discovering new clinical-pathological relation-

ships by correlating histo-morphological features of cancers with their clinical evolution, by

enabling analysis of huge amounts of data. Thus, relationships between morphological features

and somatic mutations [12, 20, 21], as well as correlations with prognosis have been tentatively

addressed. For example, [22] developed a prognosis predictor for lung cancer using a set of

predefined image features. Still, this research field is only at the beginning, awaiting extensive

validation and clinical application.

From a technical point of view, the number of Deep Learning architectures, systems and

approaches used or usable in digital histopathology is bewildering. Such architectures include

supervised systems such as Convolutional Neural Networks (CNN), or Recurrent Neural Net-

works (RNN), in particular Long Short Term Memory (LSTM) [23] and Gated Recurrent

Units [24]. More sophisticated architectures, such as the U-net [25], multi-stream and multi-

scale architectures [26] have also been developed to deal with the specificities of the domain.

Among unsupervised architectures we could mention Deep Auto-Encoders (AEs) and Stacked

Auto-Encoders (SAEs), Generative Adversarial Networks [3, 27], etc.

Currently, CNNs are the most used architectures in medical image analysis. Several differ-

ent CNN architectures, such as AlexNet [7], VGG [28], ResNet [29], Inception v3 [30], etc.
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have proved popular for medical applications, although there is currently no consensus on

which performs best. Many open source Deep Learning systems have appeared since 2012. The

most used ones are TensorFlow (Google [31]), Keras [32] (high level API working on top of

TensorFlow, CNTK, or Theano) and PyTorch [33].

In this paper we look for gene expression-phenotype correlations for normal tissues from

the Genotype-Tissue Expression (GTEx) project, the largest publicly available dataset contain-

ing paired histology images and gene expression data. The phenotypes consist in visual histo-

logical features automatically derived by various convolutional neural network architectures

implemented in PyTorch and trained, validated and tested on 1,670 whole slide images at 10x

magnification divided into 579,488 tiles. A supervised architecture was chosen, as the inferred

visual features should be able to discriminate between the various tissues of interest instead of

just capturing the components with the largest variability in the images.

Materials and methods

Our study of the correlations between visual histological features and gene expression involves

several stages:

1. Automated feature discovery using representation learning based on a supervised Convolu-

tional Neural Network (CNN) trained to classify histological images of various normal tis-

sues; validation and testing of the tissue classifier on completely independent samples.

2. Quantification of the inferred histological features in the various layers of the network and

their correlation with paired gene expression data in an independent dataset.

3. Visualization of features found correlated to specific gene expression profiles. Two different

visualization methods are used: guided backpropagation on specific input images, as well as

input-independent generation of synthetic images that maximize these features.

The following sections describe these analysis steps in more detail (see also Fig 1).

Developing a classifier of histological images

First, we developed a normal tissue classifier based on histological whole slide images stained

with hematoxylin and eosin (H&E). Such a tissue classifier is also useful in its own right, since

it duplicates the tasks performed by skilled histologists, whose expertise took years or even

decades to perfect. Such a task could not even be reliably performed by computer before the

recent advent of Deep Learning. But although Deep Learning has been able to surpass humans

in classifying objects from natural images (as in the ImageNet competition [8]), transferring

these results to digital histopathology is far from trivial [14]. This is mainly because histopa-

thology images are far larger (up to tens of billions of pixels) and labelled data much sparser

than for natural images used in other visual recognition tasks, such as ImageNet. Whole slide

images (WSI) thus need to be divided in tiles of sizes small enough (typically 224x224, or

512x512 pixels) to allow Deep Learning mini-batches to fit in the memory of existing GPU

boards. Moreover, since there are far fewer annotated WSI than natural images and since

annotations are associated with the whole slide image rather than the individual image tiles,

conventional supervised Deep Learning algorithms cannot always be directly applied to WSI

tiles. This is particularly important whenever the structures of interest are rare and thus do not

occur in all tiles. (For example, tumor cells may not be present in all tiles of a cancer tissue

sample.) Thus, the main strength of Deep Learning in image recognition, namely the huge

amounts of labelled data, is not available in the case of histopathological WSI. More sophisti-

cated algorithms based on multiple instance learning [34] or semi-supervised learning are
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Fig 1. The main analysis steps.

https://doi.org/10.1371/journal.pone.0242858.g001
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needed, but haven’t been thoroughly investigated in this domain. In multiple instance learn-

ing, labels are associated to bags of instances (i.e. to the whole slide image viewed as a bag of

tiles), rather than individual instances, making the learning problem much more difficult. In

contrast, semi-supervised learning employs both labelled and unlabelled data, the latter for

obtaining better estimates of the true data distribution.

Therefore, we concentrate in this paper on normal tissue samples, which are more homoge-

neous at not too high magnifications and for which the above-mentioned problem is not as

acute as in the case of cancer samples. In the following, we used data from the Genotype-Tissue
Expression (GTEx) project, the largest publicly available dataset containing paired histology

images and gene expression data.

The GTEx dataset. GTEx is a publicly available resource for data on tissue-specific gene

expression and regulation [35]. Samples were collected from over 50 normal tissues of nearly

1,000 individuals, for which data on whole genome or whole exome sequencing, gene expres-

sion (RNA-Seq), as well as histological images are available.

In our application, we searched for subjects for which both histological images and gene

expression data (RNA-Seq) are available. We selected from these 1,670 histological images

from 39 normal tissues, with 1,778 associated gene expression samples (for 108 of the histolog-

ical images there were duplicate gene expression samples). The 1,670 histological images were

divided into three data sets:

• training set (1,006 images, representing approximately 60% of the images),

• validation set (330 images, approximately 20% of images),

• test set (334 images, approximately 20% of images).

Fig 2A and 2B show such a histological whole slide image (WSI) and a detail of a thyroid

gland sample.

Another very important aspect specific to WSI is the optimal level of magnification to be

fed as input to the image classification algorithms. As tissues are composed of discrete cells,

critical information regarding cell shape is best captured at high resolutions, whereas more

complex structures, involving many cells, are better visible at lower resolutions. The maximum

image acquisition resolution in GTEx SVS files corresponds to a magnification of 20x (0.4942

mpp—microns per pixel). In this paper, we chose an intermediate magnification level of 10x

(0.9884 mpp), which represents a reasonable compromise between capturing enough cellular

Fig 2. Whole slide image of thyroid sample GTEX-11NSD-0126. (A) Whole slide. (B) Detail. (C) Tile of size 512x512.

https://doi.org/10.1371/journal.pone.0242858.g002
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details, and allowing a field of view of the image tiles large enough to include complex cellular

structures. The whole slide images were divided into tiles of size 512x512 pixels (506μm x

506μm), which were subsequently rescaled to 224x224, the standard input dimension for the

majority of convolutional neural network architectures. Image tiles with less than 50% tissue,

as well as those with a shape factor other than 1 (with a non-square shape, originating from

WSI edges) were removed so as not to distort the training process, and the remaining tiles

were labelled with the identifier of the tissue of origin of the whole image. A 512x512 image

tile of the WSI from Fig 2A can be seen in Fig 2C.

The image tiles dataset contains 579,488 such tiles (occupying 72GB of disk space) and was

further split into distinct training, validation and test datasets as follows:

• 349,340 tiles in the training set (taking up 44GB of disk space),

• 114,123 tiles in the validation set (14GB),

• 116,025 tiles in the test set (15GB).

S1 Table shows the numbers of images and respectively image tiles in the three datasets

(training, validation and test) for each of the 39 tissue types (see also S2 File for the list of

GTEx samples). By comparison, the ImageNet dataset (from the ILSVRC-2012 competition)

had 1.2 million images and 1,000 classes (compared to 39 classes in the GTEx dataset).

Since to the best of our knowledge, we could not find, for validation purposes, other compa-

rable datasets with paired histological images and gene expression data, we did not perform a

color normalization optimized to the GTEx dataset, as it might not extrapolate well to other

datasets with different color biases. Therefore, we used the standard color normalization

employed in the ImageNet dataset. Such a normalization may be slightly suboptimal, but this

is expected to have little impact on the classification results, due to the complexity of the CNNs

employed.

Training and validation of deep learning tissue classifiers. We trained and validated

several different convolutional neural network architectures on the image tile dataset described

above (Table 1).

The VGG16_1FC model is a modification of the VGG16 model, in which the final three

fully connected layers have been replaced by a single fully connected layer, preceded by a drop-

out layer. This not only significantly reduces the very large number of parameters of the

VGG16 architecture (from 134,420,327 to 15,693,159), but also attempts to obtain more intui-

tive representations on the final convolutional layers.

Since the last convolutional layer of VGG16 is of the form 7x7 x 512 channels and since

location is completely irrelevant in tissue classification, we also extended the convolutional

part of VGG16 by an average pooling layer (over the 7x7 spatial dimensions), followed as in

VGG16_1FC by a single fully connected layer. We refer to this new architecture as

VGG16_avg1FC.

Architectures with the suffix “bn” use “batch normalization” [36].

Note that in the case of ResNet34, the internal layers of the residual blocks do not make up

complete representations, since their outputs are added to the skip connections. Therefore, the

ResNet features considered here involve only layers that are not “skipped over”.

On the other hand, the Inception_v3 architecture contains many redundant representa-

tions, since it combines by concatenation individual multi-scale filter outputs (the individual

filter outputs are repeated in the concatenated layer). To avoid this representational redun-

dancy, we only consider as features the elementary layers with non-negative outputs (ReLU,

max- or average pooling) that are not on the auxiliary branch.
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We report, in the following, the accuracies of the classifiers on both validation and test data-

sets, after training for 90 epochs on the training dataset, with the initial learning rate of 0.01

and reducing it by a factor of 10 every 30 epochs. The mini-batch sizes were chosen according

to the available GPU memory (11GB): 256 for AlexNet and 40 for the other models,

respectively.

Note that although the validation dataset has not been used for model construction, it has

been employed for model selection (corresponding to the training epoch with the best model

accuracy on the validation data). Therefore, we use a completely independent test dataset for

model evaluation.

The models were implemented in Pytorch 1.1.0 (https://pytorch.org/) [33], based on the

torchvision models library (https://github.com/pytorch/vision/tree/master/torchvision/

models).

As the histological images contain multiple tiles, we also constructed a tissue classifier for
whole slide images (WSI) by applying the tile classifier on all tiles of the given WSI and aggre-

gating the corresponding predictions using the majority vote.

Correlating histological features with gene expression data

From a biological point of view, the visual characteristics of a histological image, its phenotype,

is determined by the gene expression profiles of the cells making up the tissue. But the way in

which transcriptomes determine phenotypes was practically impossible to determine automat-

ically until the advent of machine learning methods for learning representations based on

Table 1. Convolutional neural network architectures used in this paper. For ResNet34, the features considered involve only layers that are not “skipped over”, while for

Inception_v3 only elementary layers with non-negative outputs (ReLU, max/avg-pooling) that are not on the auxiliary branch.

Network Number of

features flz
Number of trainable

parameters

Reference

AlexNet 2,816 57,163,623 Krizhevsky, 2012 [7]

VGG11 6,976 128,926,119 Simonyan, 2014 [28]

VGG13 7,360 129,110,631 Simonyan, 2014 [28]

VGG16 9,920 134,420,327 Simonyan, 2014 [28]

(0)Conv2d(3,64) (1)ReLU (2)Conv2d(64,64) (3)ReLU (4)MaxPool2d (5)Conv2d(64,128) (6)ReLU (7)

Conv2d(128,128) (8)ReLU (9)MaxPool2d (10)Conv2d(128,256) (11)ReLU (12)Conv2d (256,256) (13)

ReLU (14)Conv2d(256,256) (15)ReLU (16)MaxPool2d (17)Conv2d (256,512) (18)ReLU (19)Conv2d

(512,512) (20)ReLU (21)Conv2d(512,512) (22)ReLU (23)MaxPool2d (24)Conv2d(512,512) (25)ReLU

(26)Conv2d(512,512) (27)ReLU (28)Conv2d(512,512) (29)ReLU (30)MaxPool2d (31)Linear

(25088,4096) (32)ReLU (33)Dropout(0.5) (34)Linear(4096,4096) (35)ReLU (36)Dropout(0.5) (37)

Linear(4096,39)

VGG19 12,480 139,730,023 Simonyan, 2014 [28]

VGG11_bn 9,728 128,931,623 Simonyan, 2014 [28]; Ioffe, 2015 [36]

VGG13_bn 10,304 129,116,519 Simonyan, 2014 [28]; Ioffe, 2015 [36]

VGG16_bn 14,144 134,428,775 Simonyan, 2014 [28]; Ioffe, 2015 [36]

VGG19_bn 17,984 139,741,031 Simonyan, 2014 [28]; Ioffe, 2015 [36]

ResNet34 28,992 21,304,679 He, 2016 [29]

Inception_v3 27,712 24,453,166 Szegedy, 2016 [30]

VGG16_1FC 9,920 15,693,159 This paper: same convolutional part as VGG16, but with a single fully connected layer: Conv(VGG16);

Dropout(0.5); Linear(25088,39)

VGG16_avg1FC 10,432 14,734,695 This paper: the convolutional part as VGG16, followed by an average pooling layer and a single fully

connected layer: Conv(VGG16); AvgPool2d(7,7,512;1,1,512); Dropout(0.5); Linear(512,39)

https://doi.org/10.1371/journal.pone.0242858.t001
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Deep Learning, mainly because most histological phenotypes were hard to define precisely and

especially difficult to quantify automatically.

The internal representations constructed by a convolutional neural network can be viewed

as visual features detected by the network in a given input image. These visual features, making

up the phenotype, can be correlated to paired gene expression data to determine the most sig-

nificant gene-phenotype relationships. However, to compute these correlations, we need a pre-

cise quantification of the visual features.

The quantification of the inferred visual features for a given input image is non-trivial, as it

needs to be location invariant–the identity of a given tissue should not depend on spatial loca-

tion. Although the activations Ylzxy(X) of neurons (x,y,z) in layer l for input image X obviously

depend on the location (x,y), we can construct location invariant aggregates of these values of

the form:

flzðXÞ ¼
X

x;y

YlzxyðXÞ
p
:

We have experimented with various values of p, but in the following we show the simplest

version, p = 1. This is equivalent to computing the spatial averages of neuron values in a given

layer l and channel z. Thus, we employ spatially invariant features of the form flz, which are

quantified by forward propagation of histological images X using the formula above.

Since histological whole slide images W were divided into multiple tiles X, we also sum over

these tiles to obtain the feature value for W:

flzðWÞ ¼
X

X2W

flzðXÞ:

After quantification of features flz(Wi) over all samples i, we compute pairwise gene-feature

Pearson correlations r(g,flz), where gi are the gene expression values of gene g in the samples i
(for each sample i, we have simultaneous histological whole slide image Wi and gene expres-

sion data gi for virtually all human genes g).

To avoid any potential data leakage, we compute gene-feature correlations on the test data-
set, which is completely independent from the datasets used for model construction and

respectively selection (training and respectively validation datasets).

Note that since we are in a ‘small sample’ setting (the number of variables greatly exceeds

the number of samples), we performed a univariate analysis rather than a multivariate one,

since multivariate regression is typically not recommended for small samples. For example, in

the case of the VGG16 architecture, we have 9,920 features flz, 56,202 genes (totaling

557,523,840 gene-feature pairs) and just 334 samples in the test dataset.

The selection of significantly correlated gene-feature pairs depends on the correlation- and

gene expression thresholds used. Genes with low expression in all tissues under consideration

should be excluded, but determining an appropriate threshold is non-trivial, since normal

gene expression ranges over several orders of magnitude. (For example, certain transcription

factors function at low concentrations).

We compared the different CNN architectures from Table 1 in terms of the numbers of sig-

nificant gene-feature pairs (as well as unique genes, features and respectively tissues involved

in these relations) using fixed correlation- (RT = 0.8) and log2 expression thresholds (ET = 10).

More precisely, the expression threshold ET constrains the gene expression value E as follows:

log2(1+E)� ET.

We also assessed the significance of gene-feature correlations using permutation tests (with

N = 1,000 permutations).
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Since one may expect the final layers of the CNN to be better correlated with the training

classes (i.e. the tissue types), we studied the layer distribution of features with significant gene

correlations.

We also studied the reproducibility of gene-feature correlations w.r.t. the dataset used.

More precisely, we determined the Pearson correlation coefficient between the (Fisher trans-

formed) gene-feature correlations computed w.r.t. the validation and respectively test datasets.

Visualization of histological features

The issues of interpretability and explainability of neural network models is essential in many

applications. Deep learning based histological image classifiers can be trained to achieve

impressive performance in days, while a human histopathologist needs years, even decades, to

achieve similar performance. However, despite their high classification accuracies, neural net-

works remain opaque about the precise way in which they manage to achieve these classifica-

tions. Of course, this is done based on the visual characteristics automatically inferred by the

network, but the details of this process cannot be easily explained to a human, who might want

to check not just the end result, but also the reasoning behind it. This is especially important in

clinical applications, where explainable reasoning is critical for the adoption of the technology

by clinicians, who need explanations to integrate the system’s findings in their global assess-

ment of the patient.

In our context, it would be very useful to obtain a better understanding of the visual features

found to be correlated to gene expression, since these automatically inferred visual features

make up the phenotype of interest. As opposed to features detected by human experts which

are much more subjective and much harder to quantify, these automatically derived features

have a precise mathematical definition that allows a precise quantification. Their visualization

would also enable a comparison with expert domain knowledge.

In contrast to fully connected network models, convolutional networks tend to be easier to

interpret and visualize. We have found two types of visualizations to be particularly useful in

our application.

1. The first looks for elements (pixels) of the original image that affect a given feature most.

These can be determined using backpropagation of the feature of interest w.r.t. a given

input image. In particular, we employ guided backpropagation [37], which tends to produce

better visualizations by zeroing negative gradients during the standard backpropagation

process through ReLU units. Such visualizations, which we denote as gBPðf ;XÞ ¼ rþX f
depend on the given input image X and were constructed for images from the test dataset,
which is completely independent from the datasets used for model construction and respec-

tively selection (training and respectively validation datasets).

2. The second visualization is independent of a specific input and amounts to determining a

synthetic input image that maximizes the given feature arg max
X

f ðXÞ [38].

Note that unfortunately, guided backpropagation visualization cannot be applied exhaus-

tively because it would involve an unmanageably large number of feature-histological image (f,
X) pairs. To deal with this problem, we developed an algorithm for selecting a small number of

representative histological image tiles to be visualized with guided backpropagation (see S1

File). The problem is also addressed by using the second visualization method mentioned

above, which generates a single synthetic image per feature.

Guided backpropagation visualizations of select features are compared with synthetic images

and immunohistochemistry stains for the genes found correlated with the selected feature.
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Since the network features were optimized to aid in tissue discrimination, while many

genes are also tissue-specific, it may be possible that certain gene-feature correlations are indi-

rect via the tissue variable. To assess the prevalence of such indirect gene(g)-tissue(t)-feature(f)
correlations, we performed conditional independence tests using partial correlations of the

form r(g,f | t) with a significance threshold p = 0.01.

Results

First, we developed a classifier of histological images that is able to discriminate between 39 tis-

sues of interest. A convolutional neural network enables learning visual representations that

can be used as visual features in the subsequent stages of our analysis.

The resulting visual features are then quantified on an independent test dataset and corre-

lated with paired gene expression data from the same subjects.

Finally, the features that are highly correlated to genes are visualized for better

interpretability.

The following sections describe the results of these analysis steps in more detail.

Deep learning tissue classifiers achieve high accuracies

We trained and validated several different convolutional neural network architectures (from

Table 1) on the GTEx image tile dataset. Table 2 shows the accuracies of the classifiers on both

validation and test datasets, after training for 90 epochs on the training dataset. Note that the

test dataset is completely independent, while the validation dataset has been used for model

selection.

As expected, AlexNet turned out to be the worst classifier among the ones tested. The vari-

ous VGG architectures produced comparable results, regardless of their size. This may be due

to the smaller number of classes (39) compared to ImageNet (1,000). On the other hand, batch

normalization leads to improved classification accuracies, but also to representations that

show much poorer correlation with gene expression data (see next section).

The modified architectures VGG16_1FC and VGG16_avg1FC perform slightly better than

the original VGG16.

Table 2. Classification accuracies for image tiles.

Network accuracy (tiles)

validation test
AlexNet 77.02% 74.76%

VGG11 80.18% 77.49%

VGG13 80.77% 78.19%

VGG16 80.35% 78.00%

VGG19 79.61% 76.93%

VGG11_bn 83.24% 80.74%

VGG13_bn 83.94% 81.56%

VGG16_bn 84.24% 81.46%

VGG19_bn 84.44% 81.54%

ResNet34 82.51% 80.09%

Inception_v3 81.13% 78.99%

VGG16_1FC 82.66% 79.82%

VGG16_avg1FC 83.79% 80.92%

https://doi.org/10.1371/journal.pone.0242858.t002
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Overall, accuracies of 80–82% in identifying the correct tissue based on a single image tile

are significant, but still not comparable to human performance. This is because single image

tiles allow only a very limited field of view of the tissue.

However, as the images contain multiple tiles, we constructed a tissue classifier for whole
slide images (WSI) by applying the tile classifier on all tiles of the given WSI and aggregating

the corresponding predictions using the majority vote. Table 3 show the accuracies of the

whole slide image classifiers obtained using the convolutional neural network models from

Table 1.

Note that all architectures, except AlexNet, lead to similar WSI classification accuracies (in

the range 92–94%), with the best around 93–94%. (See S4 Table for the associated confusion

matrix.) Most of the errors concern confusions between quite similar tissues, such as ‘Skin—

Sun Exposed’ versus ‘Skin—Not Sun Exposed’. Merging the following groups of histologically

similar tissues (Artery—Aorta, Artery—Coronary, Artery—Tibial), (Colon—Sigmoid, Colon

—Transverse), (Esophagus—Gastroesophageal Junction, Esophagus—Muscularis), (Heart—

Atrial Appendage, Heart—Left Ventricle), (Skin—Not Sun Exposed, Skin—Sun Exposed)

leads to a WSI classification accuracy for 33 tissues of 97.9% in the case of VGG16.

Histological features inferred by VGG architectures correlate well with

gene expression data

We calculated the correlations between the visual features of convolutional networks trained

on histopathological images and paired gene expression data. We found numerous genes

whose expression is correlated with many visual histological features.

Table 4 shows the numbers of significant gene-feature pairs (as well as unique genes, fea-

tures and respectively tissues involved in these relations) for the various CNN architectures

using fixed correlation- (RT = 0.8) and log2 expression thresholds ET = 10 (where log2(1+E)�

ET). Histograms of features, genes and their correlations are shown in S1 Fig.

Note that although batch normalization slightly improved tile classification accuracies (but

not WSI classification accuracies), it also produced visual representations (features) with dra-

matically poorer correlation with gene expression data. For example, for VGG16_bn, we could

identify only 51 significant gene-feature pairs, involving just 20 unique genes and 11 unique

Table 3. Classification accuracies for whole slides.

Network accuracy (slides)

validation test
AlexNet 91.82% 90.42%

VGG11 93.33% 92.22%

VGG13 93.94% 92.81%

VGG16 92.73% 93.71%

VGG19 93.33% 93.11%

VGG11_bn 93.94% 92.81%

VGG13_bn 93.03% 92.51%

VGG16_bn 93.64% 92.22%

VGG19_bn 93.94% 92.81%

ResNet34 93.33% 92.51%

Inception_v3 92.12% 92.22%

VGG16_1FC 93.33% 93.11%

VGG16_avg1FC 93.64% 94.01%

https://doi.org/10.1371/journal.pone.0242858.t003
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features, compared to 2,176 gene-feature pairs implicating 74 unique genes and 346 unique

features for VGG16 without batch normalization.

Unless stated otherwise, we concentrate in the following on visual representations obtained

using the VGG16 architecture. (The results for AlexNet and the other VGG architectures with-

out batch normalization are similar).

VGG16 was selected not just based on it achieving one of the highest WSI classification

accuracies on the test dataset (93.71%, Table 3), but also since its last convolutional layer is not

directly connected to the output classes (as in the case of VGG16_1FC and VGG16_avg1FC).

This is assumed to enable a higher degree of independence of the final convolutional layers

from the output classes, rendering them more data oriented.

Table 5 shows the numbers of significantly correlated gene-feature pairs for various correla-

tion- and log2 gene expression thresholds (for the VGG16 network).

Using a correlation threshold RT = 0.7 and a log2 expression threshold ET = 7, we obtained

27,671 significant correlated gene-feature pairs involving 995 unique genes and 1,947 features

(for the VGG16 architecture and the test dataset). We call these gene-feature pairs significant,

because the p-values computed using permutation tests (with N = 1,000 permutations) were all

p<10−3.

Fig 3 shows the numbers of significantly correlated genes for the 31 layers of VGG16 (num-

bered 0 to 30). All features (channels) of a given layer were aggregated, since VGG16 has a too

Table 4. Numbers of significantly correlated gene-feature pairs for various network architectures. Fixed correlation- and log2 gene expression thresholds are used: RT
= 0.8, ET = 10. Numbers of unique genes, features and tissues involved are also shown (test dataset).

Network gene-feature pairs unique genes unique features unique tissues

AlexNet 424 55 112 11

VGG11 1,175 70 204 12

VGG13 2,149 70 307 13

VGG16 2,176 74 346 13

VGG19 1,227 71 321 14

VGG11_bn 34 19 7 3

VGG13_bn 59 22 17 6

VGG16_bn 51 20 11 4

ResNet34 3 2 3 2

Inception_v3 23 12 7 2

VGG16_1FC 2,714 69 363 13

VGG16_avg1FC 3,114 83 448 15

https://doi.org/10.1371/journal.pone.0242858.t004

Table 5. Numbers of significantly correlated gene-feature pairs for various correlation- and log2 gene expression thresholds. Numbers of unique genes, features and

tissues involved are also shown (VGG16 network, test dataset).

Correlation threshold log2 expression threshold gene-feature pairs unique genes unique features unique tissues

0.8 10 2,176 74 346 13

0.75 10 4,308 115 647 22

0.7 10 7,984 213 1,146 28

0.75 8 9,624 312 926 26

0.8 7 8,055 365 576 18

0.75 7 15,062 535 1,046 31

0.7 7 27,671 995 1,947 36

https://doi.org/10.1371/journal.pone.0242858.t005
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large number of features (9,920 in total). (See also S2A Fig for numbers of correlated genes for

individual features.) The correlated genes were broken down according to their tissues of max-

imal expression. Note that the highest numbers of correlated genes correspond to layers with

non-negative output (ReLU or MaxPool2d –cf. layer numbers in the VGG16 entry in Table 1).

We also remark that the features with significant gene correlations do not necessarily

belong to the final layers of the convolutional neural network, even though one may have

expected the final layers to be better correlated with the training classes (i.e. the tissue types).

Also note that certain tissues with a simpler morphology, such as liver (blue in Fig 3) show cor-

related genes with features across many layers of the network, from lower levels to the highest

levels. Other morphologically more complex tissues, such as testis (orange in Fig 3) express

genes correlated almost exclusively with the final layers 29 and 30 (which are able to detect

such complex histological patterns). See also examples of histological images for these tissues

in Fig 6 (column 1, rows 1 and 2).

For an increased specificity and in order to reduce the number of gene-feature pairs subject

to human evaluation, we initially performed an analysis with higher thresholds RT = 0.8 and

ET = 10 (resulting in 2,176 gene-feature pairs, involving 74 genes and 346 features).

Fig 3. Numbers of significantly correlated genes for the 31 layers of VGG16. Significantly correlated genes were aggregated for all features (channels) belonging

to a given layer (i.e. for all features of the form [layer]_[channel]). The correlated genes were broken down according to their tissues of maximal expression. Tissues

are color-coded. Colors of the figure bars scanned bottom-up correspond to colors in the legend read top to bottom.

https://doi.org/10.1371/journal.pone.0242858.g003
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A second analysis with lower thresholds (RT = 0.75, ET = 7) was performed with the aim of

improving the sensitivity of the initial analysis (15,062 gene-feature pairs, involving 535 genes

and 1,046 features—S2 Table).

Since gene-feature correlations do not necessarily indicate causation (i.e. the genes involved

are not necessarily causal factors determining the observed visual feature), we tried to select a

subset of genes, based on known annotations that are more likely to play a causal role in shap-

ing the histological morphology of the tissues. In the following, we report on the subset of

genes with Gene Ontology ‘developmental process’ or ‘transcription regulator activity’ annota-

tions (either direct, or inherited) [39, 40] (Table 6 and S3 Table). While some developmental

genes are turned off after completion of the developmental program, many continue to be

expressed in adult tissue, to coordinate and maintain its proper structure and function.

Many of the genes significantly correlated with histological features have crucial roles in the

development and maintenance of the corresponding tissues. The transcription factors ZIC1,

ZIC2, ZIC4, NEUROD1 and NEUROD2 are known to be involved in brain and more specifi-

cally cerebellar development [41, 42], NKX2-5 and BMP10 are implicated in heart develop-

ment [43, 44], POU1F1 regulates expression of several genes involved in pituitary

development and hormone expression [45], NKX2-1, PAX8 and FOXE1 are key thyroid tran-

scription factors, with a fundamental role in the proper formation of the thyroid gland and in

maintaining its functional differentiated state in the adult organism [46], etc. (Table 6, S3

Table). While a correlational approach such as the present one cannot replace perturbational

tests of causality involved in shaping tissue morphology, it can provide appropriate candidates

for such tests.

We also studied the reproducibility of gene-feature correlations w.r.t. the dataset used.

More precisely, we determined the Pearson correlation coefficient between the (Fisher trans-

formed) gene-feature correlations computed w.r.t. the validation and respectively test datasets

(S3 Fig):

rðzðrðlog
2
ð1þ gÞ; f ÞÞjval; zðrðlog

2
ð1þ gÞ; f ÞÞjtestÞ ¼ 0:9233

rðrðlog
2
ð1þ gÞ; f Þjval; rðlog

2
ð1þ gÞ; f ÞjtestÞ ¼ 0:9205

where z(r) is the Fisher transform of correlation r. Gene-feature correlations thus show a good

reproducibility across datasets.

Visualization of histological features

To investigate the biological relevance of the discovered gene-feature correlations, we analyzed

in detail different methods of visualizing the features inferred by convolutional networks. We

applied two different visualization methods. The first based on ‘guided backpropagation’ deter-

mines the regions of a histopathological image that affect the feature of interest most. How-

ever, this visualization method cannot be applied exhaustively because it would involve an

unmanageably large number of feature-histological image pairs. To deal with this problem, we

developed an algorithm for selecting a small number of representative histological image tiles

to be visualized with guided backpropagation (S1 File). We also considered a second feature

visualization method that is independent of any input image. The method involves generating

a synthetic input image that optimizes the network response to the visual feature of interest.

Such synthetic images look similar to real histological images that strongly activate the visual

feature of interest.

Figs 4–6 show such visualizations of select histological features. Note that guided backpropa-
gation (column 2) emphasizes important structural features of the original histological images

(column 1). For example, performing guided backpropagation (gBP) of feature 29_499 on a
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Table 6. Developmental and transcription regulation genes correlated with visual features.

Gene Gene name Tissue with highest

expression

Highest median tissue

expression (log2)

Best correlated

feature

r

FABP4 Fatty acid-binding protein, adipocyte Adipose—Visceral

(Omentum)

12.6 1_14 0.767

CYP17A1 Steroid 17-alpha-hydroxylase/17,20 lyase Adrenal Gland 12.4 20_467 0.805

HSD3B2 3 beta-hydroxysteroid dehydrogenase/Delta 5—>

4-isomerase type 2

Adrenal Gland 11.2 29_123 0.791

STAR Steroidogenic acute regulatory protein, mitochondrial Adrenal Gland 12.5 29_132 0.770

TPM4 Tropomyosin alpha-4 chain Artery—Aorta 9.1 19_468 0.767

S100A6 Protein S100-A6 Artery—Aorta 11.6 19_162 0.760

YAP1 Transcriptional coactivator YAP1 Artery—Aorta 7.6 19_162 0.758

MARVELD1 MARVEL domain-containing protein 1 Artery—Tibial 7.8 19_162 0.764

GNG12 Guanine nucleotide-binding protein G(I)/G(S)/G(O)

subunit gamma-12

Artery—Tibial 7.1 12_209 0.755

ZIC4 Zinc finger protein ZIC 4 Brain—Cerebellum 7.0 29_447 0.922

NEUROD2 Neurogenic differentiation factor 2 Brain—Cerebellum 7.2 29_463 0.915

NEUROD1 Neurogenic differentiation factor 1 Brain—Cerebellum 7.8 29_479 0.873

CRTAM Cytotoxic and regulatory T-cell molecule Brain—Cerebellum 7.2 29_479 0.868

ZIC2 Zinc finger protein ZIC 2 Brain—Cerebellum 7.9 29_463 0.854

SLC12A5 Solute carrier family 12 member 5 Brain—Cerebellum 7.5 27_140 0.850

ZIC1 Zinc finger protein ZIC 1 Brain—Cerebellum 8.1 29_479 0.844

ELAVL3 ELAV-like protein 3 Brain—Cerebellum 8.0 29_463 0.834

PVALB Parvalbumin alpha Brain—Cerebellum 9.1 29_463 0.781

HPCAL4 Hippocalcin-like protein 4 Brain—Cerebellum 7.5 29_463 0.781

CPLX2 Complexin-2 Brain—Cerebellum 8.7 27_140 0.762

SPOCK2 Testican-2 Brain—Cerebellum 8.6 27_148 0.761

SLC1A2 Excitatory amino acid transporter 2 Brain—Cortex 8.7 18_8 0.844

GRIN1 Glutamate receptor ionotropic, NMDA 1 Brain—Cortex 7.9 18_8 0.812

HPCA Neuron-specific calcium-binding protein hippocalcin Brain—Cortex 7.5 29_485 0.811

PACSIN1 Protein kinase C and casein kinase substrate in neurons

protein 1

Brain—Cortex 8.5 29_463 0.810

SLC17A7 Vesicular glutamate transporter 1 Brain—Cortex 9.3 18_8 0.799

CAMK2A Calcium/calmodulin-dependent protein kinase type II

subunit alpha

Brain—Cortex 9.2 23_417 0.786

DDN Dendrin Brain—Cortex 7.9 25_478 0.775

CEND1 Cell cycle exit and neuronal differentiation protein 1 Brain—Cortex 8.6 29_485 0.755

KIF5A Kinesin heavy chain isoform 5A Brain—Cortex 10.0 29_485 0.754

NBL1 Neuroblastoma suppressor of tumorigenicity 1 Cervix—Ectocervix 9.6 19_162 0.758

CRTAP Cartilage-associated protein Cervix—Ectocervix 8.1 12_223 0.756

HMGB1 High mobility group protein B1 Cervix—Ectocervix 7.4 19_468 0.753

PIAS3 E3 SUMO-protein ligase PIAS3 Cervix—Endocervix 7.0 19_468 0.764

SPIN1 Spindlin-1 Cervix—Endocervix 7.2 19_333 0.752

PLXNB2 Plexin-B2 Cervix—Endocervix 8.0 12_164 0.750

NKX2� 5 Homeobox protein Nkx-2.5 Heart—Atrial Appendage 7.0 30_214 0.903

BMP10 Bone morphogenetic protein 10 Heart—Atrial Appendage 8.3 29_313 0.855

NPPA Natriuretic peptides A Heart—Atrial Appendage 14.9 29_481 0.777

NMRK2 Nicotinamide riboside kinase 2 Heart—Atrial Appendage 9.8 30_72 0.751

MYBPC3 Myosin-binding protein C, cardiac-type Heart—Left Ventricle 10.8 23_270 0.783

TNNI3 Troponin I, cardiac muscle Heart—Left Ventricle 12.0 25_28 0.780

TNNT2 Troponin T, cardiac muscle Heart—Left Ventricle 11.6 25_31 0.759

(Continued)
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Table 6. (Continued)

Gene Gene name Tissue with highest

expression

Highest median tissue

expression (log2)

Best correlated

feature

r

CSRP3 Cysteine and glycine-rich protein 3 Heart—Left Ventricle 9.4 30_72 0.755

AQP2 Aquaporin-2 Kidney—Cortex 7.6 29_280 0.890

UMOD Uromodulin Kidney—Cortex 7.4 27_274 0.874

PLG Plasminogen Liver 8.7 29_234 0.959

APOA5 Apolipoprotein A-V Liver 8.8 29_192 0.954

SERPINC1 Antithrombin-III Liver 10.1 29_192 0.952

HRG Histidine-rich glycoprotein Liver 9.2 29_234 0.952

F2 Prothrombin Liver 9.4 29_192 0.949

AHSG Alpha-2-HS-glycoprotein Liver 10.7 29_192 0.946

APCS Serum amyloid P-component Liver 10.7 29_192 0.942

BAAT Bile acid-CoA:amino acid N-acyltransferase Liver 7.7 29_192 0.938

ANGPTL3 Angiopoietin-related protein 3 Liver 7.3 29_234 0.934

APOA2 Apolipoprotein A-II Liver 12.2 29_192 0.931

CYP4A11 Cytochrome P450 4A11 Liver 8.3 29_234 0.924

CPB2 Carboxypeptidase B2 Liver 8.5 29_192 0.922

PROC Vitamin K-dependent protein C Liver 7.9 29_234 0.919

APOH Beta-2-glycoprotein 1 Liver 11.7 29_234 0.919

FGB Fibrinogen beta chain Liver 12.6 29_192 0.896

FGL1 Fibrinogen-like protein 1 Liver 10.2 18_231 0.879

G6PC Glucose-6-phosphatase Liver 7.1 29_234 0.872

FGA Fibrinogen alpha chain Liver 12.2 30_192 0.858

ASGR2 Asialoglycoprotein receptor 2 Liver 8.8 30_192 0.854

CRP C-reactive protein Liver 12.6 29_192 0.852

VTN Vitronectin Liver 11.2 18_279 0.851

FGG Fibrinogen gamma chain Liver 12.2 30_192 0.829

IGFBP1 Insulin-like growth factor-binding protein 1 Liver 7.2 29_75 0.802

APOB Apolipoprotein B-100 Liver 8.5 30_438 0.784

CREB3L3 Cyclic AMP-responsive element-binding protein 3-like

protein 3

Liver 8.2 20_481 0.777

CPS1 Carbamoyl-phosphate synthase [ammonia], mitochondrial Liver 8.6 29_192 0.775

ARG1 Arginase-1 Liver 9.0 20_194 0.768

SFTPB Pulmonary surfactant-associated protein B Lung 12.2 29_383 0.789

SCGB1A1 Uteroglobin Lung 9.2 29_155 0.776

STATH Statherin Minor Salivary Gland 7.7 25_200 0.767

MYF6 Myogenic factor 6 Muscle—Skeletal 7.2 25_409 0.872

NEB Nebulin Muscle—Skeletal 9.9 25_409 0.851

XIRP2 Xin actin-binding repeat-containing protein 2 Muscle—Skeletal 8.0 18_102 0.828

RYR1 Ryanodine receptor 1 Muscle—Skeletal 8.6 29_362 0.827

TMOD4 Tropomodulin-4 Muscle—Skeletal 8.6 30_16 0.827

KLHL40 Kelch-like protein 40 Muscle—Skeletal 7.8 25_409 0.824

SMTNL1 Smoothelin-like protein 1 Muscle—Skeletal 7.2 30_362 0.820

TTN Titin Muscle—Skeletal 8.7 18_136 0.810

MYPN Myopalladin Muscle—Skeletal 7.3 30_72 0.805

LMOD3 Leiomodin-3 Muscle—Skeletal 7.4 18_136 0.802

MYLPF Myosin regulatory light chain 2, skeletal muscle isoform Muscle—Skeletal 10.9 30_161 0.798

LMOD2 Leiomodin-2 Muscle—Skeletal 8.9 30_72 0.798

(Continued)
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Table 6. (Continued)

Gene Gene name Tissue with highest

expression

Highest median tissue

expression (log2)

Best correlated

feature

r

NRAP Nebulin-related-anchoring protein Muscle—Skeletal 10.0 18_136 0.794

MYL2 Myosin regulatory light chain 2, ventricular/cardiac

muscle isoform

Muscle—Skeletal 13.7 18_136 0.781

MYLK2 Myosin light chain kinase 2, skeletal/cardiac muscle Muscle—Skeletal 7.7 30_161 0.777

TNNT1 Troponin T, slow skeletal muscle Muscle—Skeletal 12.5 18_272 0.776

TNNI1 Troponin I, slow skeletal muscle Muscle—Skeletal 10.0 30_161 0.773

MB Myoglobin Muscle—Skeletal 13.1 30_72 0.772

MYH7 Myosin-7 Muscle—Skeletal 12.4 18_136 0.770

KLHL41 Kelch-like protein 41 Muscle—Skeletal 11.6 20_171 0.766

ANP32B Acidic leucine-rich nuclear phosphoprotein 32 family

member B

Nerve—Tibial 8.2 19_468 0.775

CNTF Ciliary neurotrophic factor Nerve—Tibial 8.3 29_36 0.769

MXRA8 Matrix remodeling-associated protein 8 Nerve—Tibial 8.5 19_468 0.751

RBPJL Recombining binding protein suppressor of hairless-like

protein

Pancreas 9.5 30_467 0.935

INS Insulin Pancreas 10.8 18_158 0.913

CELA2A Chymotrypsin-like elastase family member 2A Pancreas 12.6 23_110 0.895

CEL Bile salt-activated lipase Pancreas 14.0 23_324 0.866

REG3G Regenerating islet-derived protein 3-gamma Pancreas 9.6 30_290 0.815

FSHB Follitropin subunit beta Pituitary 7.1 29_279 0.930

POU1F1 Pituitary-specific positive transcription factor 1 Pituitary 7.3 29_279 0.913

GHRHR Growth hormone-releasing hormone receptor Pituitary 8.9 29_279 0.900

TSHB Thyrotropin subunit beta Pituitary 9.2 29_436 0.869

LHB Lutropin subunit beta Pituitary 12.0 30_429 0.844

MYO15A Unconventional myosin-XV Pituitary 7.2 29_436 0.803

PRL Prolactin Pituitary 15.5 29_436 0.799

TGFBR3L Transforming growth factor-beta receptor type 3-like

protein

Pituitary 8.0 29_436 0.787

GH1 Somatotropin Pituitary 16.8 30_429 0.763

COL22A1 Collagen alpha-1(XXII) chain Pituitary 7.2 30_436 0.753

KLK3 Prostate-specific antigen Prostate 12.8 29_458 0.900

KLK4 Kallikrein-4 Prostate 9.4 29_430 0.821

HOXB13 Homeobox protein Hox-B13 Prostate 7.3 30_458 0.801

KRT77 Keratin, type II cytoskeletal 1b Skin—Not Sun Exposed 8.6 18_78 0.884

FLG2 Filaggrin-2 Skin—Sun Exposed 9.6 18_78 0.883

LCE2C Late cornified envelope protein 2C Skin—Sun Exposed 8.2 18_78 0.878

LCE1A Late cornified envelope protein 1A Skin—Sun Exposed 8.9 18_78 0.878

CDSN Corneodesmosin Skin—Sun Exposed 8.3 18_78 0.875

LCE2B Late cornified envelope protein 2B Skin—Sun Exposed 9.4 18_78 0.874

LCE1B Late cornified envelope protein 1B Skin—Sun Exposed 8.0 18_78 0.874

LCE1C Late cornified envelope protein 1C Skin—Sun Exposed 9.4 18_78 0.873

LCE6A Late cornified envelope protein 6A Skin—Sun Exposed 7.6 18_78 0.870

LCE1F Late cornified envelope protein 1F Skin—Sun Exposed 7.6 18_78 0.868

LCE5A Late cornified envelope protein 5A Skin—Sun Exposed 7.3 18_78 0.864

LCE2D Late cornified envelope protein 2D Skin—Sun Exposed 7.5 18_78 0.863

LCE2A Late cornified envelope protein 2A Skin—Sun Exposed 7.2 18_78 0.856

DSC1 Desmocollin-1 Skin—Sun Exposed 8.2 18_78 0.849

(Continued)
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Table 6. (Continued)

Gene Gene name Tissue with highest

expression

Highest median tissue

expression (log2)

Best correlated

feature

r

KRT2 Keratin, type II cytoskeletal 2 epidermal Skin—Sun Exposed 12.8 18_78 0.840

FLG Filaggrin Skin—Sun Exposed 9.0 18_78 0.835

SERPINB7 Serpin B7 Skin—Sun Exposed 7.4 18_78 0.830

KRT10 Keratin, type I cytoskeletal 10 Skin—Sun Exposed 14.6 18_78 0.826

CASP14 Caspase-14 Skin—Sun Exposed 9.4 18_78 0.820

PSAPL1 Proactivator polypeptide-like 1 Skin—Sun Exposed 7.4 22_265 0.812

CST6 Cystatin-M Skin—Sun Exposed 9.6 20_329 0.773

ASPRV1 Retroviral-like aspartic protease 1 Skin—Sun Exposed 9.6 18_78 0.772

ALOX12B Arachidonate 12-lipoxygenase, 12R-type Skin—Sun Exposed 7.4 25_227 0.757

NR5A1 Steroidogenic factor 1 Spleen; Adrenal Gland 8.0 27_423 0.780

CD19 B-lymphocyte antigen CD19 Spleen 7.9 27_389 0.759

KCNE2 Potassium voltage-gated channel subfamily E member 2 Stomach 8.3 29_287 0.782

DDX4 Probable ATP-dependent RNA helicase DDX4 Testis 7.5 29_39 0.951

DMRTB1 Doublesex- and mab-3-related transcription factor B1 Testis 7.1 29_39 0.949

SHCBP1L Testicular spindle-associated protein SHCBP1L Testis 7.7 29_39 0.945

CALR3 Calreticulin-3 Testis 7.1 29_246 0.945

ZPBP2 Zona pellucida-binding protein 2 Testis 7.2 29_39 0.941

SPEM1 Spermatid maturation protein 1 Testis 7.5 29_246 0.939

ACSBG2 Long-chain-fatty-acid—CoA ligase ACSBG2 Testis 8.0 29_39 0.938

SPATA19 Spermatogenesis-associated protein 19, mitochondrial Testis 8.0 29_168 0.937

RNF151 RING finger protein 151 Testis 8.5 29_39 0.937

FSCN3 Fascin-3 Testis 7.2 29_246 0.933

TCP11 T-complex protein 11 homolog Testis 8.7 29_258 0.930

ODF1 Outer dense fiber protein 1 Testis 9.6 29_39 0.929

IQCF1 IQ domain-containing protein F1 Testis 7.8 29_246 0.926

PRM3 Protamine-3 Testis 7.0 29_246 0.926

TDRG1 Testis development-related protein 1 Testis 7.0 29_39 0.923

SYCP3 Synaptonemal complex protein 3 Testis 7.2 29_39 0.917

CABS1 Calcium-binding and spermatid-specific protein 1 Testis 7.9 29_73 0.915

DKKL1 Dickkopf-like protein 1 Testis 9.3 29_39 0.914

RPL10L 60S ribosomal protein L10-like Testis 7.5 29_246 0.908

SYCE3 Synaptonemal complex central element protein 3 Testis 7.9 29_39 0.906

CAPZA3 F-actin-capping protein subunit alpha-3 Testis 8.7 29_258 0.906

GTSF1 Gametocyte-specific factor 1 Testis 7.0 29_246 0.905

CCDC42 Coiled-coil domain-containing protein 42 Testis 7.0 29_73 0.903

TXNDC2 Thioredoxin domain-containing protein 2 Testis 7.1 29_246 0.898

TPPP2 Tubulin polymerization-promoting protein family

member 2

Testis 8.2 29_73 0.888

AKAP3 A-kinase anchor protein 3 Testis 7.3 29_39 0.880

TNP1 Spermatid nuclear transition protein 1 Testis 13.1 29_39 0.874

TSSK6 Testis-specific serine/threonine-protein kinase 6 Testis 8.2 29_246 0.869

MAEL Protein maelstrom homolog Testis 7.3 29_39 0.864

TCP10L T-complex protein 10A homolog 1 Testis 8.1 29_39 0.864

CCIN Calicin Testis 7.3 29_73 0.862

PRAME Melanoma antigen preferentially expressed in tumors Testis 7.3 30_39 0.860

PRM1 Sperm protamine P1 Testis 14.3 29_73 0.850

(Continued)
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thyroid sample produces patterns that clearly overlap known histological structures of thyroid

tissues, namely follicular cells in blue and follicle boundaries in yellow (row 3, column 2 of

Fig 5). More precisely, the blue “dots” in the gBP image precisely overlap the follicular cells,

while the yellow patterns correspond to boundaries of follicles (please compare with the origi-

nal image from column 1).

On the other hand, column 3 displays a synthetically generated image that maximizes the

corresponding feature (29_499). The image was generated by optimization of the feature using

incremental changes to an initially random input image. Still, the synthetic image shows a

remarkable resemblance to the histological structure of thyroid tissue (except for color differ-

ences due to color normalization).

We also show in column 4 the expression of PAX8 in an immunohistochemistry (IHC)

stain of thyroid tissue from the Human Protein Atlas [47]. Note that PAX8 was identified as a

correlate of the above-mentioned feature (29_499) with correlation r = 0.802 (Table 6) and is

specifically expressed in the follicular cells (corresponding to the blue “dots” in the gBP image

from column 3). PAX8 encodes a member of the paired box family of transcription factors and

is known to be involved in thyroid follicular cell development and expression of thyroid-spe-

cific genes. Although PAX8 is expressed during embryonic development and is subsequently

turned off in most adult tissues, its expression is maintained in the thyroid [46].

Note that the features with significant gene correlations do not necessarily belong to the

final layers of the convolutional neural network (as one may expect the final layers to be better

correlated with the training classes, i.e. the tissue types). Fig 4 illustrates this by showing four

features at various layers (8, 18, 23 and 30) of the VGG16 architecture (which has in total 31

layers, numbered 0 to 30) for a pancreas slide. Lower layers tend to capture simpler visual fea-

tures, such as blue/yellow edges in the synthetic image of feature 8_55 (row 1, column 3 of

Table 6. (Continued)

Gene Gene name Tissue with highest

expression

Highest median tissue

expression (log2)

Best correlated

feature

r

PRM2 Protamine-2 Testis 14.3 29_73 0.849

GGN Gametogenetin Testis 7.5 29_39 0.845

ROPN1L Ropporin-1-like protein Testis 9.0 29_39 0.844

CABYR Calcium-binding tyrosine phosphorylation-regulated

protein

Testis 8.0 29_39 0.840

INSL3 Insulin-like 3 Testis 8.9 29_39 0.802

ACRBP Acrosin-binding protein Testis 9.3 30_246 0.798

PHOSPHO1 Phosphoethanolamine/phosphocholine phosphatase Testis 7.3 29_246 0.782

SPATA24 Spermatogenesis-associated protein 24 Testis 7.5 29_73 0.778

SPINK2 Serine protease inhibitor Kazal-type 2 Testis 9.2 29_73 0.773

PCSK4 Proprotein convertase subtilisin/kexin type 4 Testis 8.2 30_39 0.773

PRSS21 Testisin Testis 7.0 30_168 0.773

NKX2� 1 Homeobox protein Nkx-2.1 Thyroid 8.5 29_202 0.870

TG Thyroglobulin Thyroid 12.3 30_93 0.869

PAX8 Paired box protein Pax-8 Thyroid 10.4 29_499 0.802

FOXE1 Forkhead box protein E1 Thyroid 7.5 27_376 0.778

TRIP6 Thyroid receptor-interacting protein 6 Uterus 7.6 12_209 0.762

Genes with Gene Ontology ‘developmental process’ or ‘transcription regulator activity’ annotations are grouped w.r.t. tissues and ordered by correlation—for each gene

we only show the best correlated feature, in the form [layer]_[channel] (for the architecture VGG16 and the test dataset; correlation threshold = 0.75, log2 gene

expression threshold = 7). Genes with ‘transcription regulator activity’ are shown in red.

https://doi.org/10.1371/journal.pone.0242858.t006
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Fig 4). In the corresponding guided backpropagation image (column 2), these edges are suffi-

cient to emphasize the yellow boundaries between the blue pancreatic acinar cells. Higher

layer features detect more complex histological features, such as round “cell-like” structures

that tile the entire image (feature 18_13, row 2, column 3 of Fig 4), or more complex blue cell-

like structures (including red nuclei) separated by yellow interstitia (feature 23_324, row 3, col-

umn 3 of Fig 4). The highest level feature, 30_467 (row 4, column 3 of Fig 4) seems to detect

even more complex patterns involving mostly yellow connective tissue and surrounding red/

blue “cells”.

Fig 4. Visualizations of select histological features. The following features (of the form [layer]_[channel]) found correlated with

specific genes are visualized on each row: row 1: 8_55—CTRC (r = 0.85), row 2: 18_13—CUZD1 (r = 0.866), row 3: 23_324—

CELA3B (r = 0.868), row 4: 30_467—AMY2A (r = 0.928). Original image (column 1), guided backpropagation of the feature on the

original image (column 2), synthetic image of the feature (column 3), immunohistochemistry image for the corresponding gene

from the Human Protein Atlas (column 4). All visualizations are for pancreas sample tile GTEX-11NSD-0526_32_5.

https://doi.org/10.1371/journal.pone.0242858.g004
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Fig 5. Visualizations of select histological features. The following features (of the form [layer]_[channel]) found correlated with specific genes are visualized on each

row: row 1: 22_405 NKX2-1 (r = 0.726) Thyroid GTEX-11NSD-0126_31_16, row 2: 27_343 TG (r = 0.801) Thyroid GTEX-11NSD-0126_31_16, row 3: 29_499 PAX8

(r = 0.802) Thyroid GTEX-11NSD-0126_31_16, row 4: 25_260 NEB (r = 0.831) Muscle—Skeletal GTEX-145ME-2026_39_19. Original image (column 1), guided

backpropagation of the feature on the original image (column 2), synthetic image of the feature (column 3), immunohistochemistry image for the corresponding gene

from the Human Protein Atlas (column 4).

https://doi.org/10.1371/journal.pone.0242858.g005
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Other examples of visualizations of features from different layers are shown in rows 1–3 of

Fig 5 for a thyroid slide. The lower level feature 22_405 detects boundaries between blue follic-

ular cells and yellow follicle lumens, while the higher level features 27_343 and 29_499 are acti-

vated by more complex, round shapes of blue follicular cells surrounding yellow-red follicle

interiors. All of these features are significantly correlated with thyroglobulin TG expression r
(TG,22_405) = 0.805, r(TG,27_343) = 0.801, r(TG,29_499) = 0.781, but also with other key

Fig 6. Visualizations of select histological features. The following features (of the form [layer]_[channel]) found correlated with specific genes

are visualized on each row: row 1: 29_234 AGXT (r = 0.939) Liver GTEX-Q2AG-1126_9_7, row 2: 29_118 CALR3 (r = 0.829) Testis GTEX-

11NSD-1026_5_27, row 3: 30_244 KLK3 (r = 0.828) Prostate GTEX-V955-1826_8_13, row 4: 20_137 CYP11B1 (r = 0.850) Adrenal Gland

GTEX-QLQW-0226_25_9. Original image (column 1), guided backpropagation of the feature on the original image (column 2), synthetic image

of the feature (column 3), immunohistochemistry image for the corresponding gene from the Human Protein Atlas (column 4).

https://doi.org/10.1371/journal.pone.0242858.g006
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thyroidal genes, such as TSHR, NKX2-1, PAX8 and FOXE1: r(TSHR,22_405) = 0.828, r
(TSHR,27_343) = 0.819, r(TSHR,29_499) = 0.824, r(FOXE1,22_405) = 0.744, r(NKX2-

1,22_405) = 0.726, r(NKX2-1,29_499) = 0.711, r(PAX8,29_499) = 0.802. Note that NKX2-1,

FOXE1 and PAX8 are three of the four key thyroid transcription factors, with a fundamental

role in the proper formation of the thyroid gland and in maintaining its functional differenti-

ated state in the adult organism [46]. The fourth thyroid transcription factor, HHEX, is miss-

ing from our analysis due to its expression slightly below the log2 expression threshold used

(the median HHEX expression is 6.84, just below the threshold 7). For illustration purposes,

we show, in column 4 of Fig 5, IHC stains for distinct thyroid genes (NKX2-1 for feature

22_405, TG for 27_343 and respectively PAX8 for 29_499). Note that all of these IHC images

are remarkably similar to the corresponding guided backpropagation (gBP) images from col-

umn 2 and the synthetic images from column 3.

It is remarkable that spatial expression patterns of genes, as assessed by IHC, are frequently

very similar to the gBP images of their correlated features. Still, not all significantly correlated

gene-feature pairs display such a good similarity between the gBP image of the feature and the

spatial expression pattern of the gene. This is due to the complete lack of spatial specificity of

the RNA-seq gene expression data, as well as to the rather coarse-grained classes used for train-

ing the visual classifier—just tissue labels, without spatial annotations of tissue substructure.

This is the case of tissue-specific genes, which may display indirect gene-tissue-feature correla-
tions with distinct spatial specificities of the gene-tissue and respectively feature-tissue correla-

tions. (The gene may be specifically expressed in a certain tissue substructure, while the visual

feature may correspond to a distinct substructure of the same tissue. As long as the two differ-

ent tissue substructures have similar distributions in the tissue slides, we may have indirect

gene-tissue-feature correlations without perfect spatial overlap of gene expression and the

visual feature).

For example, the high-level feature 30_467 seems to detect primarily yellow connective tis-

sue in pancreas samples, rather than acinar cells, which express the AMY2A gene (row 4, col-

umn 2 of Fig 4). The partial correlation r(g,f | t) = 0.107 is much lower than r(g,f) = 0.928, with

a p-value of the conditional independence test p = 0.0501 > 0.01. Therefore, the AMY2A

expression and the feature 30_467 are independent conditionally on the tissue (i.e. their corre-

lation is indirect via the tissue variable).

To assess the prevalence of such indirect gene(g)-tissue(t)-feature(f) correlations, we per-

formed conditional independence tests using partial correlations of the form r(g,f | t) with a

significance threshold p = 0.01. Table 7 shows the resulting numbers of indirect dependencies

for two different significance thresholds of the conditional independence test (α = 0.01 and

0.05). The gene-tissue-feature (g-t-f) case corresponds to the indirect gene-feature correlations

mediated by the tissue variable, discussed above. Indirect feature-gene-tissue (f-g-t) dependen-

cies correspond to genes that mediate the feature-tissue correlation (for which the classifier is

Table 7. Numbers of significant gene-feature pairs with indirect dependencies gene-tissue-feature (g-t-f), feature-gene-tissue (f-g-t), gene-feature-tissue (g-f-t). Con-

ditional independence tests with α = 0.01 and respectively α = 0.05.

Thresholds g−f pairs g−t−f f−g−t g−f−t
α = 0.01 α = 0.05 α = 0.01 α = 0.05 α = 0.01 α = 0.05

corr 0.7

log2 expr 7

27,671 12,442 10,133 5,068 1,486 931 647

corr 0.8

log2 expr 10

2,176 1,495 1,254 37 12 1 1

https://doi.org/10.1371/journal.pone.0242858.t007
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responsible). There are significantly fewer such indirect dependencies, and even fewer ones of

the form g-f-t.
The visualizations of the prostate sample from row 3 of Fig 6 illustrate an interesting inter-

mediary case in which although conditioning on the tissue leads to a big drop in correlation

(from r(g,f) = 0.828 to r(g,f | t) = 0.167), the conditional independence test still rejects the null

hypothesis (p = 0.00215 < 0.01, i.e. there is still conditional dependence, although a weak one).

The gene-feature correlation is therefore not entirely explainable by the indirect gene-tissue-

feature influence. This can also be seen visually in the gBP image of feature 30_244, which

detects blue glandular cells and surrounding yellow stroma (row 3, column 2 of Fig 6), similar

to the spatial expression pattern of the KLK3 gene, which is specifically expressed in the glan-

dular cells (see IHC image from column 4). The imperfect nature of the dependence is due to

the feature detecting mostly basally situated glandular cells (blue) rather than all glandular

cells.

Discussion

Due to the limited numbers of high-quality datasets comprising both histopathological images

and genomic data for the same subjects, there are very few research publications trying to com-

bine visual features with genomics. Also, the relatively small numbers of samples compared to

genes and image features make such integration problems difficult (‘small sample problem’).

The sparse canonical correlation analysis (CCA) used in [48] is an elegant and very general

technique of determining correlations between two sets of variables (more precisely, finding

linear combinations of variables from each of the two sets that are maximally correlated to one

another). Since the sets of genes and respectively image features are very large, CCA is ideal for

determining general trends (CCA components) in the complicated correlation structure of

genes and features. On the other hand, in this paper we are interested in determining individ-
ual visual features correlated with genes, rather than CCA composites of such features, which

may be hard to visualize and interpret. Such individual visual features might also be essential

for discriminating between visually similar tissues (especially in the case of the number of vari-

ables exceeding the number of samples—sparsity constraints mitigate this problem, but do not

eliminate it altogether). Moreover, multivariate regression analysis is typically not recom-

mended for small samples. Also, while we use spatially invariant feature encodings obtained by

aggregating feature values over both spatial and tile dimensions, [48] average their feature

encodings only over the tile (“window”) dimension and not over the spatial dimensions.

Other work searched for relationships between histological images and somatic cancer

mutations. For example, [12] trained a CNN to predict the mutational status of just 10 genes

(the most frequently mutated genes in lung cancer, rather than a genome-wide study). Similar

mutation predictors were developed for hepatocellular carcinoma [20] and prostate cancer

[21]. But the focus of these studies was obtaining mutation predictors, rather than correlating

the mutational status with visual histological features.

There is a much larger body of research on purely visual algorithms for analyzing histologi-

cal slides (without considering correlations with transcriptomics). However, a direct compari-

son of tissue classification accuracies is probably not very meaningful, since different sets of

tissues were used in most papers.

The GTEx dataset was also used to obtain tissue classifiers in [49], for 5, 10, 20 and respec-

tively 30 tissues. The highest tile classification accuracies reported in [49] for 30 tissues are

61.8% for VGG pretrained on Imagenet and respectively 77.1% for the network retrained from

scratch on histological images, compared to our 81.5% accuracy for classifying 39 tissues (30

tissue WSI classification accuracies are not reported in [49]). The dataset in [49] contains
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53,000 tiles obtained from 787 WSI images from GTEx, for 30 tissues. However, as already

mentioned above, some of the additional tissues in our extended set of 39 tissues are hard to

distinguish (e.g. ‘Artery—Aorta’ and ‘Artery—Coronary’ versus ‘Artery—Tibial’).

While many researches have already covered normal and diseased tissue classification in

digital histopathology, only a small minority have begun to address the problem of interpret-

ability of the resulting models. From this perspective, there are two main contributions of this

work, one dealing with the visual interpretability of the models, the second involving their bio-
logical interpretability.

Firstly, we develop visualization methods for the features that are inferred automatically by

deep learning architectures. These histological features have certain domain-specific character-

istics, namely they are location independent, as well as precisely quantifiable. Quantifiability

involves being able to estimate the numbers of occurrences of a specific feature in a given his-

tological image, such as the numbers of specific cellular structures in a slide.

The second main contribution consists in assessing the biological interpretability of the

deep learning models by correlating their inferred features with matching gene expression

data. Such features correlated with gene expression have more than a visual interpretation—

they correspond to biological processes at the level of the genome.

It is remarkable that the synthetic images of certain features resemble the corresponding tis-

sue structures extremely well. Genes predominantly expressed in tissues with simpler mor-

phologies tend to be correlated with simpler, lower level visual features, while genes specific to

more complex tissue morphologies correlate with higher level features.

However, not all CNN architectures infer features that tend to be well correlated with gene

expression profiles, for example VGG networks with batch normalization, Inception_v3 or

ResNet (which need batch normalization to deal with their extreme depth). It seems that batch

normalization produces slight improvements in tile classification accuracies (though not for

whole slides) at the expense of biological interpretability (i.e. significantly worse correlations of

inferred features with the transcriptome—see Table 4).

Conclusions

Current artificial intelligence systems are still not sufficiently developed to fully take over the

tasks of the histopathologist, who is ultimately responsible for the final clinical decision. But

the AI system could prove invaluable in assisting the clinical decision process. To do so, it

needs to provide the histologist with as much meaningful knowledge as possible. Unfortu-

nately, there is at present no established way to easily explain why a specific decision was made

by a network when dealing with a given histopathology image. This is generally unacceptable

in the medical community, as clinicians typically need to understand and justify the reasons

for a specific decision. A reliable diagnosis must be transparent and fully comprehensible. This

is also especially important for obtaining regulatory approval for use in clinical practice [50].

Of particular concern in the medical field is the uncertainty of the decisions taken by a deep

network, which can be radically affected even by the change of very few pixels in an image, in

case of a so-called adversarial attack [51].

Visualizations of the features automatically inferred by a deep neural network are a first

step toward making the decisions of the network more interpretable and explainable. More-

over, correlating the visual histological features with specific gene expression profiles increases

the confidence in the biological interpretability of these features, since the genes and their

expression are responsible for the cell structures that make up these visual features.

This paper deals with identifying transcriptomic correlates of histology using Deep Learn-

ing, at first just in normal tissues, as a small step towards bridging the wide explanatory gap
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between genes, their expression and the complex cellular structures of tissues that make up his-

tological phenotypes. Of course, the relationships discovered in this study are only correla-

tional. For elucidating causality, more complicated, perturbational experiments are needed,

but the methodology used here is still applicable.

Supporting information

S1 Fig. Histograms of features, genes and their correlation. (A) Histogram of feature values.

(B) Histogram of log2 transformed gene expression values log2(1+g). (C) Histogram of gene-

feature correlations (for genes with highest median tissue log2 expression over 10). (D) Histo-

gram of gene-feature correlations separately for non-negative features (e.g. outputs of ReLU

units) and potentially negative features.

(PDF)

S2 Fig. Numbers of correlated genes for individual features and respectively correlated fea-

tures per gene. (A) Numbers of correlated genes for individual features. Features are sorted in

decreasing order of the corresponding numbers of correlated genes. (B) Numbers of correlated

features per gene. Genes are sorted in decreasing order of the corresponding numbers of cor-

related features. Various correlation thresholds are applied (from 0.7 to 0.95).

(PDF)

S3 Fig. Reproducibility of gene-feature correlations between datasets. Scatter plots of gene-

feature correlations computed on the validation- and respectively test dataset. (A) scatter plot

of correlations (R = 0.9205). (B) scatter plot of Fisher transformed correlations (R = 0.9233).

(PDF)

S1 Table. The numbers of slides and respectively tiles for each data set and tissue type.

(PDF)

S2 Table. Genes correlated with visual histopathological features. Genes are grouped w.r.t.

tissues and ordered by correlation—for each gene we only show the best correlated feature, in

the form [layer]_[channel] (for the architecture VGG16 and the test dataset; correlation

threshold = 0.75, log2 gene expression threshold = 7).

(PDF)

S3 Table. Developmental and transcription regulation genes correlated with visual fea-

tures. Genes with Gene Ontology ‘developmental process’ or ‘transcription regulator activity’

annotations are grouped w.r.t. tissues and ordered by correlation—for each gene we only show

the best correlated feature, in the form [layer]_[channel] (for the architecture VGG16 and the

test dataset; correlation threshold = 0.75, log2 gene expression threshold = 7). Genes with ‘tran-
scription regulator activity’ are shown in red.

(PDF)

S4 Table. Confusion matrix for the whole slide tissue classifier. VGG16 architecture, test

dataset.

(PDF)

S1 File. Supporting information.

(PDF)

S2 File. List of GTEx samples. List of GTEx samples with their associated dataset (training,

validation, test).

(TXT)

PLOS ONE Identifying transcriptomic correlates of histology using deep learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0242858 November 25, 2020 27 / 30

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0242858.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0242858.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0242858.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0242858.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0242858.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0242858.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0242858.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0242858.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0242858.s009
https://doi.org/10.1371/journal.pone.0242858


Acknowledgments

We are deeply grateful to the GTEx consortium for making the gene expression data and histo-

logical images publicly available. The Genotype-Tissue Expression (GTEx) Project was sup-

ported by the Common Fund of the Office of the Director of the National Institutes of Health,

and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. The data used for the analyses

described in this manuscript were obtained from the GTEx Portal (https://gtexportal.org/

home/). LB is forever grateful to Eugenia Badea.

Author Contributions

Conceptualization: Liviu Badea.

Data curation: Liviu Badea, Emil Stănescu.

Formal analysis: Liviu Badea.

Investigation: Liviu Badea, Emil Stănescu.

Methodology: Liviu Badea.

Project administration: Liviu Badea.

Software: Liviu Badea.

Supervision: Liviu Badea.

Validation: Liviu Badea, Emil Stănescu.

Visualization: Liviu Badea, Emil Stănescu.

Writing – original draft: Liviu Badea.

Writing – review & editing: Liviu Badea, Emil Stănescu.

References
1. Xin L, Liu YH, Martin TA, Jiang WG. The era of multigene panels comes? The clinical utility of Oncotype

DX and Mammaprint. World journal of oncology. 2017 Apr; 8(2):34. https://doi.org/10.14740/

wjon1019w PMID: 29147432

2. Mobadersany P, Yousefi S, Amgad M, Gutman DA, Barnholtz-Sloan JS, Vega JE, et al. Predicting can-

cer outcomes from histology and genomics using convolutional networks. Proceedings of the National

Academy of Sciences. 2018 Mar 27; 115(13):E2970–9. https://doi.org/10.1073/pnas.1717139115

PMID: 29531073

3. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial

nets. In Advances in neural information processing systems 2014 (pp. 2672–2680).

4. Baak JP, Lindeman J, Overdiep SH, Langley FA. Disagreement of histopathological diagnoses of differ-

ent pathologists in ovarian tumors—with some theoretical considerations. European Journal of Obstet-

rics & Gynecology and Reproductive Biology. 1982 Feb 1; 13(1):51–5. https://doi.org/10.1016/0028-

2243(82)90037-5

5. Yuan Y, Van Allen EM, Omberg L, Wagle N, Amin-Mansour A, Sokolov A, et al. Assessing the clinical

utility of cancer genomic and proteomic data across tumor types. Nature biotechnology. 2014 Jul; 32

(7):644–52. https://doi.org/10.1038/nbt.2940 PMID: 24952901

6. Aeffner F, Zarella MD, Buchbinder N, Bui MM, Goodman MR, Hartman DJ, et al. Introduction to digital

image analysis in whole-slide imaging: a white paper from the digital pathology association. Journal of

pathology informatics. 2019;10.

7. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks.

In Advances in neural information processing systems 2012 (pp. 1097–1105).

8. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. Imagenet large scale visual recogni-

tion challenge. International journal of computer vision. 2015 Dec 1; 115(3):211–52.

PLOS ONE Identifying transcriptomic correlates of histology using deep learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0242858 November 25, 2020 28 / 30

https://gtexportal.org/home/
https://gtexportal.org/home/
https://doi.org/10.14740/wjon1019w
https://doi.org/10.14740/wjon1019w
http://www.ncbi.nlm.nih.gov/pubmed/29147432
https://doi.org/10.1073/pnas.1717139115
http://www.ncbi.nlm.nih.gov/pubmed/29531073
https://doi.org/10.1016/0028-2243(82)90037-5
https://doi.org/10.1016/0028-2243(82)90037-5
https://doi.org/10.1038/nbt.2940
http://www.ncbi.nlm.nih.gov/pubmed/24952901
https://doi.org/10.1371/journal.pone.0242858


9. Weinstein JN, Collisson EA, Mills GB, Shaw KR, Ozenberger BA, Ellrott K, et al. Cancer Genome Atlas

Research Network. The cancer genome atlas pan-cancer analysis project. Nature genetics. 2013 Sep

26; 45(10):1113. https://doi.org/10.1038/ng.2764 PMID: 24071849

10. Litjens G, Bandi P, Ehteshami Bejnordi B, Geessink O, Balkenhol M, Bult P, et al. 1399 H&E-stained

sentinel lymph node sections of breast cancer patients: the CAMELYON dataset. GigaScience. 2018

Jun; 7(6):giy065.

11. Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, et al. The genotype-tissue expression

(GTEx) project. Nature genetics. 2013 Jun; 45(6):580–5. https://doi.org/10.1038/ng.2653 PMID:

23715323

12. Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M, Fenyö D, et al. Classification and
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