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Abstract

Background: In a new influenza pandemic, travel data such as arrival times of cases seeded by the originating
country can be regarded as a combination of the epidemic size and the mobility networks of infections connecting
the originating country with other regions. It can be a complete and timely source for estimating the basic
reproduction number (R0), a key indicator of disease transmissibility.

Method: In this study, we developed a likelihood-based method using arrival times of infected cases in different
countries to estimate R0 for influenza pandemics. A simulation was conducted to assess the performance of the
proposed method. We further applied the method to the outbreak of the influenza pandemic A/H1N1 in Mexico.

Results: In the numerical application, the estimated R0 was equal to 1.69 with a 95% confidence interval (1.65, 1.73).
For the simulation results, the estimations were robust to the decline of travel rate and other parameter assumptions.
Nevertheless, the estimates were moderately sensitive to the assumption of infectious duration. Generally, the findings
were in line with other relevant studies.

Conclusions: Our approach as well as the estimate is potential to assist officials in planning control and prevention
measures. Improved coordination to streamline or even centralize surveillance of imported cases among countries will
thus be beneficial to public health.
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Background
In responding to infectious disease outbreaks in the 21st
century, a reliable method to estimate the transmission
intensity during the early phases of a new influenza pan-
demic is critical. The basic reproduction number (R0),
defined as the average number of secondary infections
produced by a typical infectious individual in a whole
susceptible population, is a common measure of disease
transmissibility. Valid and reliable estimate of the R0 can
assist officials in planning control and prevention mea-
sures for an influenza pandemic. On the contrary,
underestimation of the disease transmissibility will in-
duce an insufficient public awareness on the risk of in-
fection and therefore lower the general public’s
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incentive to protect themselves against infectious diseases
through vaccines, hand washing or other protective
measures.
Many kinds of data such as sentinel surveillance of

influenza-like-illness (ILI), serological survey, and syn-
dromic data are able to infer the transmissibility of infec-
tious diseases. Common surveillance data can be fitted into
an exponential growth model or Kermack-McKendrick-
type models to estimate R0 [1, 2]. Likelihood-based methods
are an alternative [3, 4]. Chowell et al. [5] showed that
these types of methods are not sensitive on R0 estimation
given an acceptable goodness of fit. Nevertheless, one of
the caveats of using ILI surveillance data is the underre-
porting although several approaches were developed to
adjust this problem [6].
Serological data is another source for inferring trans-

missibility of an influenza virus [7, 8]. This kind of data
helps detecting subclinical infections and the sampling is
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not affected by the reporting practices. However, it is
comparatively costly and requires laboratory resources.
A longer time will be taken to ascertain a disease and
thus it cannot provide initial estimate for a pandemic
outbreak [9]. Seroprevalence surveys are usually sug-
gested to monitor the level of disease spread after a local
outbreak in community [8].
In a recent decade, syndromic data such as web

search queries [10] are alternative sources to infer
estimates of key epidemiological parameters. Never-
theless, the human behaviors of web searching can
be highly affected by intensive media coverage and
changes of public’s perceptions on disease severity.
Apart from the abovementioned data sources,

travel data related to imported cases could be an al-
ternative information to provide an estimate of
transmissibility for a new influenza outbreak. During
the initial outbreak of a new influenza pandemic,
control measures will be initiated at the border
points of entry by various concerned countries. On
preventing infected persons from seeding local
epidemics, local governments may identify the symp-
tomatic passengers by implementing thermal screen-
ing, monitor the suspected cases having a travel
history to the originating country and even take
quarantine measures [11]. Some travel information
such as arrival times of infected cases seeded by the
originating country is a combination of the epidemic
size and the transport network between the originat-
ing country and other at-risk countries. By adapting
this information, the transmissibility of an originat-
ing country during the initial phase of a pandemic
can be back-calculated in order to reduce errors
from the underestimation of routine surveillance
data [9, 12, 13]. The data about importation events
is usually timelier than other available data sources
such as seroprevalence data. In the H1N1 pandemic,
empirical evidence showed that the flow of airline
passenger from Mexico had a significant correlation
to the detection of exported cases [14]. Because of
intense screening for ILI travelers returning from
Mexico, ascertainment of early cases in at-risk coun-
tries was timelier and complete compared with rou-
tine surveillance in Mexico. Hence, it is believed
that the data type is able to provide a reliable esti-
mate on disease transmissibility.
In this paper, we developed a likelihood-based

method to estimate the R0 for a new influenza pan-
demic using the information of imported cases i.e.
time of the first introduction of infected individuals
in different countries seeded by the originating
country. The method was demonstrated to the influ-
enza pandemic A/H1N1 (pH1N1) in mid-March
2009.
Methods
Mathematical model
Susceptible-Infectious-Recovered (SIR) model is a com-
mon model to describe the dynamic system of the infec-
tious disease [1]. For each time point t (t = 0, 1, 2, 3…), a
closed population is divided into three groups (‘compart-
ments’), namely the susceptible (S(t)), the infectious (I(t))
and the recovered (R(t)) populations. In this compart-
mental model, susceptible individuals (S(t)) are in-
fected at a transmission rate β; infectious individuals
(I(t)) recover at a rate γ. Given an exponential as-
sumption, the length of the infectious period is equal
to 1/γ. Using S, I, and R to represent each compart-
ment, the system dynamics can be described by the
differential equations:

dS
dt

¼ −
β

N
SI ¼ −

β

N
SL þ SMð ÞI

dI
dt

¼ β

N
SI−γI

dR
dt

¼ γI

ð1Þ
SL is the susceptible size of local population and SM is

the number of visitors in the originating country. Be-
cause SM is far smaller than SL i.e. SL≫ SM, the number
of susceptible individuals is approximately equal to the
population N i.e. SL ≈N in the initial phase of a new epi-
demic. We assumed that there is no prior immunity for
all subjects. We approximated

−
β

N
SI ¼ −

β

N
SL þ SMð ÞI≈− β

N
SLI ð2Þ

and

dI
dt

¼ β

N
SI−γI≈ β−γð ÞI ð3Þ

In the disease transmission process, the basic re-
production number R0 is a measure of disease transmis-
sion intensity. By using the linearization method [2], R0

is always equal to β/γ by assuming that the whole popu-
lation is susceptible at first. Given only one infection at
time 0, the prevalence I(t) in Eq. (2) is

I tð Þ ¼ I 0ð Þ exp β−γð Þt½ � ¼ exp R0−1ð Þγt½ � ð4Þ

Distribution of arrival times of infected individuals in
countries seeded by originating country
Supposed the passengers counts between the seed country
and a particular country i-th at day t is mi(t) and d is the
average length of stay the travellers in the seed country i.e.
SM(t) = d∑imi(t), the product (βd/N)mi(t)I(t) is the average
number of infected cases arisen in country i-th at time t.
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Same daily exposure risk to the domestic cases I(t) and
uniformity of duration of stay are assumed. By assuming
Poisson generations, the probability of importing at least
an infected individual (Yi) from the originating country at
time t is

pi;t ¼ P Y i≥1jt;mi tð Þð Þ
¼ 1−θð Þ 1− exp −

βd
N

mi tð ÞI tð Þ
� �� �

ð5Þ

where θ is the proportion of asymptomatic individuals
that cannot be discovered by surveillance measures such
as border screening [11, 15]. By substituting I(t) obtained
from the Eq. (4), the probability pi,t is

pi;t ¼ 1−θð Þ 1− exp −
γdR0mi tð Þ

N
exp R0−1ð Þγt½ �

� �� �

ð6Þ
The first introduction of an infection that arrives on

day t in country i-th follows a geometric distribution
with a time-varying parameter pi,t. The probability distri-
bution is

Pi T ¼ tð Þ ¼ pi;t
Y

j<t
1−pi;j

� �
ð7Þ

where j = 1, 2, 3…t-1. Due to different reporting details
for case detections in various countries, the times of ar-
rival are sometimes unavailable and only the days of ill-
ness onset will be reported during the early period of
pandemic. When the time of arrival is unknown, we
have assumed that it follows a multinomial distribution
with a probability vector u = {uk}, k = kmin,…-1, 0, 1,…
kmax (the minus numbers of days represent previous
days with a minimum kmin number of days, and the posi-
tive days represent following days with a maximum kmax

number of days) as the days from arrival to illness onset
can be varied [15]. Given that the distribution is known,
the adjusted probability is

qi ¼
X

k<t
ukPi T ¼ t−kð Þ ð8Þ

s:t:
X

uk ¼ 1

Likelihood formulation
Given fixed parameters of γ, d, and θ, the likelihood for
the arrival times of the first infected individuals for all
countries is

L R0jm;tð Þ ¼
Yn
i¼1

qi ð9Þ

where m = {m1(t), m2(t), m3(t), …, mn(t)} and t = {t1, t2,
t3, …, tn} for n total number of countries that have
reported their importing cases from the originating
country. The estimate can be obtained by the maximum
likelihood estimation (MLE).
Simulation testing
The simulation testing aimed to assess the performance
of the proposed method by varying the levels of disease
transmissibility and travel rates. The simulation tested
the robustness of decreasing trend of travels and other
parameter assumptions on the estimation. In each set-
ting, 10,000 datasets were simulated for each settings of
samples size (n) i.e. numbers of countries having
imported cases. The population N was fixed at 1,000,000
people. The mean, standard deviation (SD), average
standard errors of means (SE), and 95% credible inter-
vals (Crl) of an estimate in a simulation were obtained
to evaluate the performances.
Performance at different levels of reproduction numbers
and travel rates
The estimation approach was evaluated at different
plausible values of R0 (1.2, 1.7, and 2.2) [16, 17]. We de-
fined the low and high travel volumes by setting the
daily rates of travel of each country (m) which followed
uniform distributions (100, 1000) and (1000, 2000) re-
spectively. The average duration of individual stay was
fixed at 3 days. The length of infectious period was set
as 3 days and the θ was fixed at 30%. Based on these set-
tings, the occurrence of infections at day t could be sim-
ulated by Eq. (6) assuming a Bernoulli distribution, and
the arrival times could be further obtained. By fitting the
simulated data, the estimation performances at different
levels of R0 and travel rates were assessed.
Robustness against a decreasing trend of travel
In a pandemic outbreak, the travel rate could be reduced
by time due to the risk perception of publics from mass
media and international travel advice [18]. A scenario
was designed to test the robustness of constant travelling
rate assumption against the decreasing pattern of travels.
Using the same scenario settings, we considered a
linear decreasing trend of daily travel rates by assuming
mi(t) = mmax(1-rt), where r is the daily dropping rate
and mmax is the passenger rate in the initial day. With
reference to the information of pH1N1 pandemic, we
assumed mmax during an epidemic period followed a
uniform distribution (200, 2500) with fixing r to be
0.4% and 0.8%.
Sensitivity analysis of parameter assumptions
In order to examine the sensitivity of parameter as-
sumptions, the following distributional assumptions
were considered:
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� 1/γ ~Gamma distribution with a mean of 3 days
and 1 day SD

� θ ~Uniform distribution ranged from 10 to 50%
� d ~ Uniform distribution ranged from 1 day to 7

days

The datasets were simulated based on these assump-
tions. Their impacts on the precision levels were drawn
by fixing the values of parameters (1/γ = 3 days, θ = 30%,
d = 3 days) in the estimation.
Numerical study: 2009 influenza pandemic a/H1N1
We applied the estimation approach to the Mexico
pH1N1 in mid-March 2009. According to the World
Health Organization (WHO), there had been an unex-
pected increase of influenza-like illness cases shown by
the routine influenza surveillance in mid-April, which
was not the peak of an influenza season for normal out-
breaks to take place, of 2009. Subsequent to a report re-
vealing that two cases of an acute respiratory illness
were discovered in two children living in the Southern
California of the United States and further confirmed as
infections of a new strain of H1N1 virus, additional
cases were soon discovered in the country. By the end of
April, WHO had further raised the pH1N1 alert to
Phase Five, although both the general public and the
governments still lacked adequate knowledge on the
early stages of pH1N1 at that time. Several years later,
there was an estimate of around 284 thousands deaths as-
sociated with the 2009 pH1N1 [19].
Table 1 Travel information and case data during the initial outbreak

Country Number of passengersa Arrival

United States 2,474,897 -

Canada 101,313 April 8

El Salvador 15,090 April 19

Colombia 24,535 -

United Kingdom 20,513 April 21

Spain 65,724 April 22

France 61,960 -

Costa Rica 16,950 April 25

Argentina 24,609 April 25

Cuba 42,802 April 25

The Netherlands 27,640 April 27

Germany 35,772 -

Hong Kong 35,706 April 30

Italy 12,060 April 29

Guatemala 39,460 -
aThe total number of passengers on flights from Mexico to different countries betw
bOther supporting information from press and other articles in additional to Fraser
According to the National Council for Population of
Mexico, we fixed the population of Mexico (N) as
106,682,518 in 2009 [20]. The start date of the pandemic
outbreak was set as March 14, 2009 [21]. The arrival time
and illness onset time of infected cases seeded by Mexico,
and the number of passengers were retrieved from the
studies of Fraser et al. [9], Balcan et al. [12], other articles
[22–24] and some news from press [25, 26] with evidence
that cases were imported from Mexico. Given the number
of passengers from Mexico [9], we assumed the daily rate
of passengers: 1. distributed uniformity (mi(t) =mi) and, 2.
linearly decreased (mi(t) = mmax(1-rt), where r is the daily
dropping rate and mmax is the passenger rate in the initial
day with the total number of passengers during the epi-
demic period held fixed. The dropping rate was assumed
to be 40% divided by the length of the study period [18].
For those cases with missing arrival dates, the probability
of arrival was adjusted with the illness onset date adapting
the information from Sakaguchi et al. [15] in Eq. (8) i.e. u
= {u−6,…, u4 } = {0.007,…,0.014}. The information for the
estimation is listed in Table 1.
In addition, the length of the infectious period was fixed

at 3 days and the proportion of asymptomatic infections
was fixed at 30% [13]. The average duration of stay of trav-
ellers was fixed as 3 days. A sensitivity analysis for the pa-
rameters was also conducted. The sensitivity of the
estimate was tested by setting the infectious duration
equal to 2 days and 4 days, θ as 10% and 50%, and d
as 3 days and 5 days respectively.
The simulation was performed on R 2.15.2 [27] and

the code can be provided upon requested.
of 2009 pH1N1

dates Illness onset date Additional referenceb

March 28 -

April 11 -

- -

April 14 [26]

April 24 -

April 25 -

April 23 [18]

April 25 -

April 27 [27]

- -

- -

April 28 -

April 30 [30]

May 3 [31]

May 1 -

een March and April 2009
et al. [9] and Balcan et al. [12]
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Results
Simulations
Table 2 summarizes the estimation performances at
different levels of R0 and travel rates. The estimates of the
proposed method were close to the true values of different
R0 settings. Given n = 4, the 95% CrI ranged from 2.08 to
2.43 for an expected R0 of 2.2, whereas the 95% CrI ranged
from 1.18 to 1.25 for an expected R0 of 1.2. The results
showed that with a low transmissibility, small samples could
still achieve a stable precision level, for example, the 95%
CrIs were around 1.19 to 1.22 when n ≥ 8 in the setting of
R0 = 1.2. Higher values of R0 were associated with a slightly
lower precision of the estimates. The estimation perform-
ance did not show any obvious difference between travel
volumes. Apart from that, the estimates from our proposed
method were robust to plausible drops of travel rates
(Table 3). It was because most cases probably arose in the
early phase of pandemic in which changes of travel may not
subject to any impact in such a short period of time. The
robustness of parameter assumptions was also assessed
(Fig. 1). As with other studies, R0 estimation was moder-
ately sensitive to the infectious duration (or the generation
interval). Given a plausible distributional assumption, the
bias increased and the precision levels decreased with the
increase of R0. For example, the estimate was around 2.4
and the 95% CrI ranged from 1.7 to 3.7 for an expected R0
of 2.2. Nevertheless, the estimation performance was not
sensitive in the scenarios with lower values of R0. Besides,
the simulation results were robust to the assumptions of
average stay duration and the proportion of asymptomatic
Table 2 Estimation performances at different levels of reproduction

Low travel volumes

n Mean SD SE 95

R0 = 1.2 4 1.21 0.02 0.01 (1

8 1.21 0.01 0.01 (1

12 1.21 0.01 0.01 (1

16 1.21 0.01 0.01 (1

20 1.21 0.01 0.01 (1

R0 = 1.7 4 1.72 0.05 0.05 (1

8 1.71 0.04 0.03 (1

12 1.71 0.03 0.03 (1

16 1.71 0.02 0.02 (1

20 1.70 0.02 0.02 (1

R0 = 2.2 4 2.22 0.09 0.08 (2

8 2.21 0.06 0.06 (2

12 2.21 0.05 0.05 (2

16 2.21 0.04 0.04 (2

20 2.20 0.04 0.04 (2

n numbers of countries having imported cases; SD Standard deviation of estimates
95% non-parametric credible intervals
infections. Like most simulation scenarios, the perfor-
mances were better for a low transmissibility setting.

Numerical study
By employing the estimation method, we analyzed the data
of the initial outbreak of pH1N1 in Mexico. The estimation
results are summarized in Table 4. Showed in the table, the
estimation results only have slightly difference in the
settings between the constant and linearly decreasing daily
rate of passengers. The estimated R̂0 was equal to 1.69 with
a 95% confidence intervals (CI) (1.65, 1.73) in a general
situation i.e. 1/γ = 3 days, d = 3 days, and θ = 30%. The re-
sults were robust to the parameter assumptions (Table 4).
Overall the estimated R̂0 s were in range from 1.41 to 2.00
for our tested ranges of parameters. In line with the simu-
lation testing, the effects from d and θ were comparatively
small. The impacts on the estimate were minor for θ =
10% ( R̂0 ¼ 1:67 ) and θ = 50% ( R̂0 ¼ 1:73 ). Apart from
that, the length of infectious period contributed more im-
pact on the R̂0 . The estimate R̂0 was equal to 1.45 (95%
CI: 1.42, 1.48) when the infectious duration was equal to 2
days, whereas R̂0 was equal to 1.94 (95% CI: 1.88, 1.99)
when the infectious duration was equal to 4 days.

Discussion
Apart from influenza-like-illness, serological survey, and
syndromic data, travel data can be an alternative source
to timely infer the transmissibility for a new influenza
pandemic. Arrival times of cases seeded by the
numbers and travel rates

High travel volumes

% CrI Mean SD SE 95% CrI

.18, 1.25) 1.21 0.02 0.02 (1.17, 1.25)

.18, 1.23) 1.21 0.01 0.01 (1.18, 1.23)

.19, 1.22) 1.20 0.01 0.01 (1.18, 1.22)

.19, 1.22) 1.20 0.01 0.01 (1.19, 1.22)

.19, 1.22) 1.20 0.01 0.01 (1.19, 1.22)

.64, 1.82) 1.72 0.06 0.05 (1.63, 1.85)

.65, 1.79) 1.71 0.04 0.04 (1.64, 1.80)

.66, 1.76) 1.71 0.03 0.03 (1.65, 1.78)

.66, 1.75) 1.71 0.03 0.03 (1.66, 1.77)

.67, 1.74) 1.70 0.02 0.02 (1.66, 1.75)

.08, 2.43) 2.23 0.11 0.09 (2.04, 2.50)

.11, 2.35) 2.21 0.07 0.07 (2.08, 2.38)

.11, 2.32) 2.21 0.05 0.05 (2.12, 2.32)

.13, 2.29) 2.21 0.05 0.05 (2.12, 2.31)

.14, 2.28) 2.21 0.04 0.04 (2.13, 2.31)

in a simulation, SE Mean standard error of estimates in a simulation, 95% CrI



Table 3 Robustness of estimates against a decreasing trend of travel rates

r = 0.4% r = 0.8%

n Mean SD SE 95% CrI Mean SD SE 95% CrI

R0 = 1.2 4 1.20 0.04 0.02 (1.16, 1.30) 1.20 0.04 0.03 (1.14, 1.28)

8 1.20 0.02 0.02 (1.16, 1.24) 1.20 0.02 0.02 (1.14, 1.25)

12 1.19 0.01 0.01 (1.17, 1.23) 1.18 0.02 0.01 (1.15, 1.22)

16 1.19 0.01 0.01 (1.17, 1.22) 1.18 0.01 0.01 (1.15, 1.22)

20 1.19 0.01 0.01 (1.17, 1.21) 1.18 0.01 0.01 (1.16, 1.21)

R0 = 1.7 4 1.74 0.09 0.07 (1.61, 1.95) 1.75 0.1 0.07 (1.62, 1.97)

8 1.72 0.06 0.05 (1.62, 1.83) 1.73 0.06 0.05 (1.63, 1.88)

12 1.72 0.05 0.04 (1.64, 1.82) 1.73 0.05 0.04 (1.65, 1.83)

16 1.71 0.04 0.04 (1.64, 1.79) 1.72 0.04 0.04 (1.66, 1.81)

20 1.71 0.04 0.03 (1.66, 1.79) 1.72 0.03 0.03 (1.66, 1.79)

R0 = 2.2 4 2.27 0.14 0.13 (2.03, 2.60) 2.29 0.16 0.13 (2.04, 2.65)

8 2.25 0.11 0.09 (2.08, 2.49) 2.27 0.1 0.09 (2.10, 2.48)

12 2.23 0.08 0.07 (2.09, 2.42) 2.25 0.08 0.07 (2.13, 2.42)

16 2.23 0.07 0.06 (2.11, 2.37) 2.26 0.07 0.06 (2.13, 2.41)

20 2.23 0.06 0.06 (2.12, 2.36) 2.26 0.06 0.06 (2.15, 2.39)

n numbers of countries having imported cases, r daily decreasing rate of travels, SD Standard deviation of estimates in a simulation, SE Mean standard error of
estimates in a simulation, 95% CrI 95% non-parametric credible intervals
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originating country can be regarded as an integration of
the number of infected individuals in the originating
country and their mobility networks connecting with
other regions [28, 29]. By adapting such travel data as a
proxy of the size of epidemic expansion, the transmissi-
bility of the influenza virus can be estimated. The esti-
mation based on this information can prevent the bias
induced by underestimations of different surveillance
data. Undoubtedly, numbers of cases reported by sur-
veillance systems are usually underestimated due to
sampling methods, under-detection, and changes of
capacities and requirements over time [9, 13, 30]. Apart
from that, routine seroprevalence studies that require
laboratory resources and a considerably long sample
collection time may no longer serve as a suitable moni-
toring approach during the initial outbreak of a pan-
demic [31]. In consideration that serological data can
refine parameter estimates, a reliable way of using serial
cross-sectional serological data alongside with surveil-
lance data to estimate infection rate can be adopted [8].
To address possible errors in the estimation, multi-
faceted surveillance measures shall be adopted,
especially during the early stages of new influenza
outbreaks.
In this study, we developed a likelihood-based approach

that employed the arrival times of cases to estimate R0 for
a new influenza pandemic. We also conducted a simula-
tion to assess the performance of proposed method. The
method was applied to the initial outbreak of influenza
pH1N1 in Mexico. We showed that the estimated R̂0 was
equal to 1.69 with a 95% CI (1.65, 1.73). The estimated R̂0
and the corresponding range of sensitivity were consistent
to other findings of pH1N1, mentioned in the review of R0
from Boëlle et al., the R0s of the 2009 pH1N1 were in
range from 1.2 to 2.3 [16]. Compared with other similar
studies, Fraser et al. developed a Bayesian method to draw
a posterior distribution of R0 for the pH1N1 in Mexico by
assuming that tourists infected at a rate proportional to
the density of tourists per local resident [12]. The ap-
proach adopted the number of infected travelers within a
fixed period rather than using the times of exporting in-
fections to countries. Although their estimate (posterior
median R0 = 1.4) was similar to us, time to event data
combining the mobility and pattern of epidemic inva-
sion is usually preferred to the count data. Balcan
et al. used a MLE approach to fit the arrival time
data to the simulated epidemics through a highly pa-
rameterized meta-population model in which the R0

was their parameter of interest [12]. Their estimate (
R̂0 ¼ 1:75 ) was also closer to our finding. Although
their transmission model required many details for
parameterization and was computational intensive, it
provides an estimate closer to the biological realism
over a large population. Nevertheless, we believe our
method provides a comparatively simpler way for the
transmissibility estimation.
The reliability of the proposedmethod depends on the qual-

ity and quantity of travel data available during the early stage
of a influenza pandemic. On estimating the transmissibility,
data can be closely aligned with the proposed estimation
method when provided with a timely collection of informa-
tion during the early outbreak. Yet, with this proposedmethod



Table 4 Estimates and 95% confidence intervals (CI) of R0 for the 2009 pH1N1 in Mexico with different lengths of infectious period
(1/γ), proportions of asymptomatic infections (θ), average duration of stays (d), and trends of travel rates

1/γ = 3 days 1/γ = 2 days 1/γ = 4 days

Settings R̂0 95% CI R̂0 95% CI R̂0 95% CI

Uniformly travels d = 3 days θ = 30% 1.69 (1.65, 1.73) 1.45 (1.42, 1.48) 1.94 (1.88, 1.99)

θ = 10% 1.67 (1.63, 1.70) 1.44 (1.41, 1.46) 1.91 (1.86, 1.95)

θ = 50% 1.73 (1.69, 1.78) 1.48 (1.44, 1.51) 1.99 (1.93, 2.06)

d = 5 days θ = 30% 1.66 (1.62, 1.70) 1.43 (1.40, 1.45) 1.90 (1.84, 1.95)

θ = 10% 1.64 (1.60, 1.67) 1.41 (1.39, 1.44) 1.86 (1.81, 1.91)

θ = 50% 1.70 (1.65, 1.74) 1.45 (1.42, 1.48) 1.95 (1.88, 2.01)

Decreasing travels d = 3 days θ = 30% 1.70 (1.66, 1.74) 1.46 (1.43, 1.48) 1.95 (1.89, 2.00)

θ = 10% 1.68 (1.64, 1.71) 1.44 (1.41, 1.46) 1.92 (1.87, 1.96)

θ = 50% 1.74 (1.69, 1.79) 1.48 (1.45, 1.51) 2.00 (1.93, 2.06)

d = 5 days θ = 30% 1.68 (1.63, 1.71) 1.43 (1.40, 1.46) 1.90 (1.85, 1.96)

θ = 10% 1.64 (1.60, 1.68) 1.42 (1.39, 1.44) 1.87 (1.82, 1.92)

θ = 50% 1.70 (1.66, 1.75) 1.46 (1.43, 1.49) 1.95 (1.89, 2.01)

Fig. 1 95% credible intervals of the sensitivity analysis for parameter assumptions (1/γ ~ Gamma(mean = 3, SD = 1), θ ~ U(0.1, 0.5), and d ~ U(1, 7)
for top, middle, and bottom panels respectively) with true value of R0 equal to 1.2, 1.7, and 2.2 (left, middle, and right columns respectively)
in simulations
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based on a variety of data sources from the originating country
and other regions, differences and incompatibility of surveil-
lance systems across countries, in addition to disparate
policies on international reporting and collaboration, have
posed challenges to the acquisition of large-scale samples.
In pH1N1 of 2009, for instance, not many countries have
reported their confirmed cases with known travel history
to Mexico [9, 12, 13]. For the betterment of public health
in the future, improvements shall be made on the coord-
ination and technical innovation of the streamline or even
the centralized surveillance systems for monitoring the
imported cases of infections among countries.
One of the advantages of using likelihood-based approach

lies in the flexibility in incorporating other available data
source. For example, the likelihood can potentially adapt
the distribution of days from arrival to illness onset given
that the information is available. Moreover, incorporation
of demographic data in the transmission model will make
the likelihood more informative, as, for instance, younger
individuals are more likely to be infected by pH1N1. Yet,
the reliability of such extension of the method shall be fur-
ther justified by sufficient data.
There are several caveats for our study. We did not cap-

ture the effects from multi-step journeys in the model
although previous articles revealed a single- and multi-step
travels did not differ much [32]. Moreover, no adjustment
for disease transmissions on aircrafts was incorporated in
the estimation. Nevertheless, a retrospective cohort study
indicated in-flight transmissions were unlikely [33]. As with
many other approaches, we assumed homogeneous mix-
ings at a country level and same risks of infections between
travelers and the domestic population. In the early stage of
a pandemic, stochastic effects usually induce spatial varia-
tions [9]. Apart from that, since airports are the main hubs
of connection between countries, passengers will be more
likely to be infected in the areas near the airport than areas
far from the airports especially for an infectious disease
with a short generation interval. Some cases would even re-
cover before their travels. Further developments can take
these issues into a consideration.
Conclusions
The study presents how to use travel data in an influ-
enza pandemic to estimate the basic reproduction num-
ber (R0), a key parameter to determine what level of
control measures should be used. Compared with other
data sources, travel data is relatively more complete and
timely for a new pandemic outbreak. Our approach as
well as the estimate is potential to assist officials in plan-
ning control and prevention measures. Improved coord-
ination as well as centralizing surveillance of imported
cases among various regions would thus be beneficial to
global health.
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