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Simple Summary: Acute myeloid leukemia (AML) is a type of blood malignancy particularly affect-
ing the myeloid lineage and one of the most common types of leukemia in adults. It is characterized by
high heterogeneity among patients leading to immune escape and disease relapse, which challenges
the development of immunotherapies such as chimeric antigen receptor (CAR) T-cells. In this way, the
aim of our work was to establish the modular RevCAR platform as a combinatorial tumor targeting
approach for the treatment of AML. Herein, we demonstrate the preclinical flexibility and efficiency
of RevCAR T-cells in targeting patient-derived AML cells expressing CD33 and CD123. Furthermore,
AND gate logic targeting these antigens was successfully established using the RevCAR platform.
These accomplishments pave the way towards the future clinical translation of such an improved
and personalized immunotherapy for AML patients aiming long-lasting anticarcinogenic responses.

Abstract: Clinical translation of novel immunotherapeutic strategies such as chimeric antigen re-
ceptor (CAR) T-cells in acute myeloid leukemia (AML) is still at an early stage. Major challenges
include immune escape and disease relapse demanding for further improvements in CAR design.
To overcome such hurdles, we have invented the switchable, flexible and programmable adaptor
Reverse (Rev) CAR platform. This consists of T-cells engineered with RevCARs that are primarily
inactive as they express an extracellular short peptide epitope incapable of recognizing surface
antigens. RevCAR T-cells can be redirected to tumor antigens and controlled by bispecific antibodies
cross-linking RevCAR T- and tumor cells resulting in tumor lysis. Remarkably, the RevCAR platform
enables combinatorial tumor targeting following Boolean logic gates. We herein show for the first
time the applicability of the RevCAR platform to target myeloid malignancies like AML. Applying
in vitro and in vivo models, we have proven that AML cell lines as well as patient-derived AML
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blasts were efficiently killed by redirected RevCAR T-cells targeting CD33 and CD123 in a flexible
manner. Furthermore, by targeting both antigens, a Boolean AND gate logic targeting could be
achieved using the RevCAR platform. These accomplishments pave the way towards an improved
and personalized immunotherapy for AML patients.

Keywords: chimeric antigen receptor (CAR); tumor immunotherapy; combinatorial gated targeting;
acute myeloid leukemia (AML)

1. Introduction

Treatment of acute myeloid leukemia (AML) is still challenged by inadequate long-
lasting anticarcinogenic responses due to its heterogeneity and poorly known resistance
mechanisms [1]. Due to the lack of beneficial outcomes for the patients that undergo
conventional therapy, which mainly comprises chemotherapy usually followed by stem
cell transplantation [2], there is an urgent need for innovative strategies. Thus, in the past
years, the treatment of AML has been significantly shifted towards the development of
targeted approaches [3]. Current targeted strategies clinically implemented mainly include
the administration of gemtuzumab ozogamicin (GO), an antibody (Ab)-drug conjugate
targeting the surface antigen CD33 [4]. Alternatively, other promising approaches such
as novel T-cell-based immunotherapies have shown better outcomes for the treatment of
acute lymphoblastic leukemia (ALL), lymphoma and multiple myeloma [5]. Examples
of such successful clinical translation are CD19- and BCMA-specific CAR T-cells [6–9].
However, preclinical and early clinical trials using targeted immunotherapeutic approaches
demonstrated the challenging setting of AML, in which relapse driven by residual leukemic
stem cells (LSCs), tumor escape variants as well as the lack of suitable targetable surface
antigens are the main obstacles. Even though an ideal target has not yet been identified,
CD33 and CD123 are promising candidates being expressed on AML bulk cells and LSCs at
initial diagnosis and relapse cases. Normally, AML cells express CD33, CD123, or even both,
while lack of expression of both antigens (CD33 and CD123) is extremely rare [10,11]. Given
this, the enthusiasm to exploit CAR T-cell-based technologies targeting these antigens is
reflected by the promising number of early clinical trials currently ongoing. In this regard,
an impressive and promising phase I clinical trial using UniCAR T-cells targeting CD123 for
the treatment of CD123-positive hematologic and lymphoid malignancies (NCT04230265)
proved to be a breakthrough. These promising results have demonstrated functionality
and switchability of adaptor CAR T-cell systems for the first time in humans [12]. Given
the heterogeneity of antigen expression on AML cells, combinatorial targeting approaches
are required as an improved therapeutic tool. Bearing this in mind, and based on our
experience working with conventional CAR T-cells [13] and modular Ab-based systems
to redirect T-cells [14], we developed the adaptor Reverse CAR (RevCAR) platform [15].
This was particularly developed based on the established UniCAR system [16–20], aiming
controllable and programmable combinatorial tumor targeting to improve tumor specificity
and safety of CAR T-cell therapy. Particularly, RevCAR T-cells are engineered to express
RevCARs that consist of the peptide epitopes E5B9 or E7B6 instead of a single-chain
fragment variable (scFv) that is commonly used as extracellular domain in conventional
second-generation CARs. Due to the lack of an antigen-binding motif, RevCARs do
not recognize a tumor antigen and thus are primarily inactive. Cross-linkage between
RevCAR T-cells and tumor cells is exclusively mediated by bispecific target modules
(RevTMs). These RevTMs consist of two scFvs, one targeting the respective RevCAR E5B9
or E7B6 epitope and the other one the tumor antigen of interest (Figure 1a). The modular
feature of this system allows the steering and rapid on/off switch of the RevCAR T-cell
activity by dosing of the RevTMs, avoiding side-effects like on-target/off-tumor toxicity
and cytokine release syndrome (CRS) commonly reported for conventional CAR T-cell
approaches [21,22]. The small size of the RevCAR epitope molecules, with the E5B9 epitope
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consisting of 10 amino acids (aa) or the E7B6 of 18 aa, accordingly reduce the length of the
RevCAR encoding genes. These features are of considerable value allowing the expression
of multiple CAR genes using a single construct. Consequently, we have successfully
generated Dual-RevCAR T-cells that can be used for targeting of prostate tumor cells
following the Boolean logic gating [15]. These Dual-RevCAR T-cells express two separate
RevCARs with different specificities, one RevCAR transmitting the activation signal and
the other one mediating the costimulatory signal upon recognition of different antigens on
the same tumor cell.

Figure 1. RevCAR platform targeting CD33 and CD123. (a) Schematic overview of the RevCAR
system and (b) design of the RevTMs. (a) RevCARs consist of the extracellular peptide epitope E5B9
or E7B6 and CD28 (28) hinge domain (HiD), CD28 transmembrane domain (TMD), the intracellular
CD28 costimulatory (CSD) and CD3 zeta (3z) activating signaling domain (ASD). RevCAR-E5B9-
28/3z or RevCAR-E7B6-28/3z modified T-cells are redirected towards CD33 or CD123 expressed on
AML blasts via adaptor target modules, named RevTMs. RevTMs are bispecific antibodies (bsAbs)
consisting of two different single-chain fragments variable (scFvs) binding on the one hand to E5B9
or E7B6 of the RevCAR and on the other hand to CD33 or CD123 on the surface of AML blasts. (b) In
detail, the scFvs of the RevTMs are constructed with the variable heavy (VH) and light chain (VL)
domains derived from the monoclonal antibodies (mAbs) CD33, CD123, 5B9, or 7B6 connected via
glycine (G)-serine (S) linkers. RevTMs are expressed in eukaryotic cell lines and secreted into the cell
culture supernatant mediated by the Ig kappa leader sequence (Igk). After purification via histidine
tag (His), RevTMs were separated by SDS-PAGE and analyzed using Coomassie staining (c) and
immunodetection after blotting on nitrocellulose membrane via anti-His Ab and AP-conjugated
anti-mouse Ab (d). The whole western blot figures can be found in Figure S3.

Given the demonstrated potential of the Dual-RevCARs and bearing in mind the
challenges faced by immunotherapies targeting AML, we adapted the RevCAR system
to target such prevalent myeloid malignancy aiming for an advanced CAR T-cell control,
improved targeting specificity, efficient killing of tumor escape variants and reduction
of on-target/off-tumor toxicity. We hereby demonstrate efficient activation of RevCAR
T-cells and specific killing of AML cells and blasts expressing the markers CD33 and/or
CD123 both in vitro and in vivo. In order to overcome tumor escape variants, universal
RevCAR T-cells can be flexibly adapted to target CD33 or CD123 AML markers without re-
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engineering of T-cells. Moreover, we provide proof-of-concept of AND gate logic targeting
of AML cells and blasts using the Dual-RevCAR platform.

2. Materials and Methods
2.1. Cell Lines

HEK-293T and 3T3 cells were obtained from ATCC (Manassas, VA, USA), while
MOLM-13 and OCI-AML3 were purchased from DSMZ (Braunschweig, Germany) without
further authentication. For in vivo and in vitro studies, MOLM-13 cells were genetically
modified to express the firefly Luciferase (Luc) using lentiviral transduction and termed
MOLM-13-Luc. OCI-AML3, HEK-293T and 3T3 cells were kept in DMEM complete, while
MOLM-13 and MOLM-13-Luc were cultured in RPMI 1640 complete [14,15] supplemented
with 20% fetal bovine serum (FBS). All cells were maintained at 37 ◦C in a humidified
atmosphere of 5% CO2. AML cell lines were cultured for a time period not longer than
three months. All cells were regularly tested for Mycoplasma infection.

2.2. Isolation of Human Peripheral Blood Mononuclear Cells (PBMCs), Patient-Derived AML
Blasts and Lentiviral Transduction of Human T-Cells

Primary T-cells were obtained from buffy coats (German Red Cross, Dresden, Ger-
many) of healthy voluntary donors provided by the German Red Cross (Dresden, Germany)
after written consent of the donors. The research with human T-cells was approved by
the local ethics committee of the Medical Faculty Carl Gustav Carus, Technical Univer-
sity Dresden, Germany (EK27022006). Isolation and cultivation of PBMCs and T-cell
subpopulations were performed as previously described [14,15,18]. In a similar way,
patient-derived mononuclear cells (MNCs) containing high percentage of AML blasts were
isolated from bone marrow aspirates or peripheral blood from newly diagnosed patients
and termed patient-derived AML blasts. These were cultured in StemSpanTM SFEM
media (StemCell, Cologne, Germany) supplemented with FBS, penicillin, streptomycin,
glutamine, fms-related tyrosine kinase 3 ligand (FLT3-L), stem cell factor, thrombopoietin
(TPO) and interleukin-3 (IL-3). The respective AML patients were recruited within the
Study Alliance Leukemia (SAL) registry. Written informed consent has been obtained
and the institutional ethics review board has approved the SAL AML registry and inte-
grated biobank (EK98032010). After isolation, cells were stained with fluorescently labeled
monoclonal Abs (mAbs) directed against human CD3 (#130-113-138), CD33 (#130-113-
350), CD45 (#130-092-880) and CD123 (#130-115-265) (all purchased from Miltenyi Biotec,
Bergisch Gladbach, Germany).

2.3. Design and Generation of RevCAR T-Cells

Essentially, the RevCAR constructs consist of a signal peptide (SP) derived from hu-
man IL-2; the peptide epitope E5B9 or E7B6, derived from the human La/SS-B protein [23]
the extracellular hinge (HiD), transmembrane (TMD) and intracellular costimulatory do-
main (CSD) of the human CD28 (28) connected to the human CD3z (3z) intracellular
activating signaling domain (ASD); the peptide T2A (Thosea asigna virus) and the marker
EGFP [15]. Furthermore, the Dual-RevCAR vector encodes for two separate RevCARs
bicistronically expressed under the control of one promoter. On the one hand, the sig-
naling (SIG) RevCAR-E7B6-3z is flanked by the IL-2-derived SP and the P2A (porcine
teschovirus-1) peptide. On the other hand, the costimulatory (COS) RevCAR-E5B9-28 is
flanked by the Ig-kappa signal peptide, T2A peptide and EGFP as expression marker [15].
Lentiviral transduction, activation and maintenance of primary T-cells has been performed
as previously described [15]. Transduction efficiency of RevCAR T-cells was assessed based
on the expression of the marker EGFP.

2.4. Determination of Receptor and Antigen Density

Receptor density on RevCAR T-cells and antigen expression on cancer cells were
assessed using the QIFIKIT (Agilent, Santa Clara, CA, USA), as already described in
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detail [15]. Briefly, antigen expression on cancer cells was detected using a purified anti-
human CD123 mAb (BD Biosciences, Heidelberg, Germany; #554527) and an in-house
produced and purified anti-human CD33 mAb [24]. For detection, PE-conjugated anti-
mouse IgG mAb was used (BioLegend, San Diego, CA, USA; #405307).

2.5. Design, Expression and Purification of RevTMs

Recently, our group described the general structure of a RevTM [15]. Here, the
RevTMs were arranged by cloning the anti-CD33 [14] or the anti-CD123 [17] scFv either
to the anti-5B9 or to the anti-7B6 scFv [15], thus generating four different RevTMs. These
were further cloned separately into a lentiviral vector and 3T3 cell lines were established to
produce the respective RevTM. Purification from cell culture supernatants was achieved
via Ni-NTA affinity chromatography [15]. To estimate yield and purity, purified RevTMs
were separated via SDS-PAGE and analyzed using Coomassie staining or immunoblotting
as described elsewhere [15,18].

2.6. Cytokine-Release Assay

Tumor cells were cultured with or without RevCAR T-cells in the presence or absence
of RevTMs in a 96-well plate at an effector-to-target cell (e:t) ratio of 5:1 for 18 h or 24 h.
Cytokine concentration of TNF-α, IFN-γ, IFN-α, GM-CSF, IL-2, IL-4, IL-5, IL-6, IL-9, IL-
10, IL-12, and IL-17A present in cell free supernatants was quantified using the human
MACSPlex Cytokine 12 Kit (Miltenyi Biotec) according to manufacturer’s instructions.

2.7. Flow Cytometry Analysis

To assess binding of the RevTMs to the RevCAR T-cells and cancer cells, flow cy-
tometry analysis was performed as previously published [15]. For detection, PE- or FITC-
conjugated anti-His mAbs (Miltenyi Biotec; #130-120-718 and #120-003-744) were used.
Measurements were conducted on a MACSQuant Analyzer® (Miltenyi Biotec) and the
acquired data were analyzed using the MACSQuantify Software® (Miltenyi Biotec).

2.8. Cytotoxicity Assays

To evaluate the RevCAR T-cell mediated tumor killing, standard chromium (51Cr)
release, luminescence-based and flow cytometry assays were performed as previously
described [13,18,24]. Briefly, triplets of target cells were co-cultured with RevCAR T-cells
under several conditions: in the (I) absence, (II) presence or (III) combination of RevTMs
at different e:t ratios. For 51Cr release assays, MOLM-13 and OCI-AML3 cells were used,
for luminescence-based assays MOLM-13-Luc cells were chosen and for flow cytometry
assays patient-derived AML blasts were used labeled with eBioscience™ cell proliferation
dye eFluor™670 (Thermofisher Scientific, Germany). AML cell lysis was determined at
increasing RevTM concentrations in the co-culture cytotoxicity assays to calculate the
half-maximal effective concentration (EC50) using GraphPad Prism 8.

2.9. Tumor Xenograft Model and Optical Imaging

All animal procedures have been approved by the local ethics committee for animal
experiments (Landesdirektion Dresden, 24–9165.40-4/2013, 24.9168.21–4/2004-1) and were
performed at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) in accordance with the
German regulations of animal welfare. Five-week-old male NMRI-nude immunodeficient
mice (Rj:NMRI-Foxn1nu/nu) (Janvier Labs, Le Genest-Saint-Isle, France) were randomly
(unblinded) assigned to experimental groups of five animals and housed in a pathogen
free facility with 12 h light/dark cycle. The health status of the mice was supervised
daily by husbandry personnel. To assess in vivo functionality of RevCAR T-cells, 1 × 106

MOLM-13-Luc cells were injected subcutaneously alone or mixed with RevCAR T-cells
(1 × 106) and RevTM (17 µg) in a total volume of 100 µL PBS (Thermofisher Scientific). The
optical imaging was performed with the In-Vivo Xtreme (Bruker, Nehren, Germany) as
described before [15,25].
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2.10. Statistics

GraphPad Prism 8 (GraphPad Software Inc.) was used to statistically analyze the data.
As indicated in the figure legends either one-way or two-way ANOVA with Tukey’s, Dun-
nett’s or Bonferroni’s multiple comparisons test was used for statistical analysis. p values
below 0.0332 were considered significant: p < 0.0332 (*), p < 0.0021 (**), p < 0.0002 (***).
Data are shown as mean values ± SEM or SD.

3. Results
3.1. Design and Generation of the RevCAR Platform Targeting CD33 or CD123

Recently, we have introduced the novel versatile adaptor RevCAR platform for T-cell-
based cancer immunotherapy. Firstly, proof-of-concept was successfully demonstrated
targeting antigens expressed on solid tumors [15]. The purpose of this study was to show
the flexibility of the RevCAR platform to be adapted to target myeloid malignancies like
AML. As previously published [15] and shown in Figure 1, the RevCAR platform consists
of T-cells genetically modified to express RevCARs comprising either the extracellular
peptide epitope E5B9 or E7B6. Comparable to second generation CARs, RevCARs contain
the CD28 TMD, the intracellular CD28 CSD and the CD3z ASD. Since RevCARs lack an
antigen-binding moiety, they require the adaptor molecule named RevTM to recognize
malignant cells (Figure 1a). For redirection of RevCAR-E5B9-28/3z or RevCAR-E7B6-28/3z
T-cells against CD33 or CD123 expressing AML blasts, we have developed four novel
RevTMs, named RevTM CD33-5B9, CD123-5B9, CD33-7B6 or CD123-7B6 (Figure 1a,b).
These RevTMs are bispecific Abs (bsAbs) that consist of two scFvs, the first one with
specificity for the RevCAR epitope E5B9 or E7B6 and the second one directed against the
AML associated antigen CD33 or CD123. After cloning of the DNA sequences encoding the
respective RevTM into lentiviral vectors, stable eukaryotic cell lines were established by
lentiviral transduction to permanently express and secrete the RevTMs into the cell culture
supernatant. Using Ni-NTA affinity chromatography, full length recombinant RevTMs
were purified via their C-terminal His tag and analyzed after SDS-PAGE on Coomassie
stained gels and on immunoblots detected with an anti-His mAb (Figure 1c,d).

3.2. Binding Capability of Bispecific RevTMs to RevCARs and AML Target Antigens

The first step to prove functionality of the novel RevTMs was to analyze binding
capability of the bispecific scFv-based RevTMs on the one hand towards CD33 or CD123
expressed on the AML cell lines MOLM-13 and OCI-AML3, and on the other hand towards
the RevCAR-E5B9-28/3z or RevCAR-E7B6-28/3z expressed on genetically modified T-cells.
This was accomplished by performing cell surface staining using flow cytometry. As a
prerequisite, expression of the antigens CD33 or CD123 on the AML cell lines MOLM-13
and OCI-AML3 was confirmed and quantitatively determined using an anti-CD33 mAb and
anti-CD123 mAb, respectively (Figure 2a,b). Moreover, analysis of the antigen expression
pattern enables a detailed characterization of the different AML cell lines that were used as
target cells for subsequent functional assays. In general, the MOLM-13 and OCI-AML3 cell
lines expressed both markers, CD33 and CD123, but with different abundance and density.
With regard to the antigen density level, MOLM-13 cells expressed clearly more CD33
than CD123 on their cell surface. Conversely, OCI-AML3 cells showed a lower surface
expression of CD33 compared to CD123, while the level of CD123 was nearly comparable
on both cell lines. It is worth mentioning that the recombinant expression of Luc did
not affect the expression level of the target antigens on MOLM-13-Luc cells, which were
also used as target cells in subsequent functional assays. Furthermore, the expression of
RevCAR-E5B9-28/3z or RevCAR-E7B6-28/3z on genetically modified T-cells was proven
and the number of receptors was quantified using anti-5B9 and anti-7B6 mAbs, respectively
(Figure 2c,d). Most importantly, all generated RevTMs were able to bind to CD33 or CD123
antigens on the AML cell lines MOLM-13 and OCI-AML3 as well as to the RevCARs on
the RevCAR-E5B9-28/3z or RevCAR-E7B6-28/3z T-cells as shown in Figure 2b,d.
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Figure 2. Expression of target antigens and RevCARs and binding capability of RevTMs.
(a) Number of tumor-associated antigens CD33 or CD123 presented on the surface of MOLM-13,
Luciferase (Luc) expressing MOLM-13-Luc or OCI-AML3 cells is shown for three individual experi-
ments as mean ± SD. (b) Expression of CD33 and CD123 on MOLM-13 and OCI-AML3 cells was
confirmed by flow cytometry after staining with APC-conjugated anti-CD33 mAb or PE-conjugated
anti-CD123 mAb. Binding of His tagged RevTMs on AML cells was detected via FITC-conjugated
anti-His mAb. (c) Number of RevCAR-E5B9-28/3z or RevCAR-E7B6-28/3z on RevCAR modified
T-cells is quantified for three independent T-cell donors and represented as mean ± SD. (d) Ex-
pression of RevCAR-E5B9-28/3z or RevCAR-E5B9-28/3z on modified T-cells was confirmed by
staining with anti-E5B9 mAb or anti-E7B6 mAb and PE-conjugated anti-mouse-IgG mAb. Binding of
indicated RevTMs to RevCAR-E5B9-28/3z or RevCAR-E5B9-28/3z presenting T-cells was detected
using PE-conjugated anti-His mAb. (b,d) Stained cells (black lines) and respective controls (grey
lines) are presented as histograms. Percentage of positively stained cells is indicated.
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3.3. Cytokine Release from Redirected RevCAR T-Cells

Upon binding of RevTMs crosslinking AML cells and RevCAR T-cells, RevCAR T-cells
are activated resulting in cytokine release and cytotoxic reactivity. In order to prove that,
RevCAR-E5B9-28/3z or RevCAR-E7B6-28/3z T-cells were co-cultured with MOLM-13
or OCI-AML3 cells in the presence of RevTMs directed either against the E5B9- or E7B6-
RevCARs, respectively. As negative controls, AML cells and RevCAR-E5B9-28/3z T-cells
were incubated together with the irrelevant RevTMs CD33-7B6 or CD123-7B6 that are not
able to bind to RevCAR-E5B9-28/3z T-cells. Likewise, RevCAR-E7B6-28/3z T-cells were
co-cultured with AML cell lines in the presence of the irrelevant RevTMs CD33-5B9 or
CD123-5B9. As shown in Figure 3, RevCAR T-cells significantly secreted cytokines after
cross-linkage with target cells by the respective matching RevTMs, although high donor
variability was observed. These included the secretion of GM-CSF, IFN-γ, TNF-α, and
IL-2 among 12 human cytokines tested (Figure 3). Significant release was not detected for
the other tested cytokines including, e.g., IL-6. In the presence of irrelevant RevTMs no
cytokines were detected in the supernatants.

3.4. In Vitro and In Vivo Killing of AML Cell Lines by Redirected RevCAR T-Cells

Most importantly, we were interested in whether the cross-linkage of RevCAR T-cells
and target cells mediated by the RevTMs results in AML cell lysis. Therefore, RevCAR
T-cells were co-cultured in vitro with MOLM-13 or OCI-AML3 cells at different ratios in
the presence or absence of different RevTM concentrations in a 51Cr release cytotoxicity
assay. Additionally, in a control setting, irrelevant RevTMs that are not able to recognize
the RevCAR epitope were used. As shown in Figure 4, RevCAR-E5B9-28/3z or RevCAR-
E7B6-28/3z T-cells were effectively redirected by the appropriate cross-linking RevTMs
and significantly killed MOLM-13 and OCI-AML3 cells, even at low e:t ratios. In contrast,
in the presence of irrelevant RevTMs no specific lysis was observed (Figure 4a,b). Killing
of the targeted AML cell lines occurred efficiently even at low RevTM concentrations
in the picomolar range and could be controlled by dosing of the RevTM (Figure 4c,d).
Besides in vitro experiments, efficient killing of Luc expressing MOLM-13 cells was also
observed in experimental mice caused by redirected RevCAR-E5B9-28/3z (Figure 5a,b) or
RevCAR-E7B6-28/3z (Figure 5c,d) T-cells in the presence of the matching RevTM targeting
either CD33 or CD123. As clearly visible in the bioluminescence images (Figure 5a,c)
and confirmed by quantitative analysis (Figure 5b,d), the in vivo anti-tumor effect was
significantly higher in comparison to the control mice that were injected with tumor cells
together with RevCAR T-cells but without the matching RevTMs. Additionally, there was
an effect of the RevCAR T-cells alone against the tumor cells, which can be most probably
explained by allogeneic reactions of human T-cells.

3.5. Killing of Patient-Derived AML Blasts by Redirected RevCAR T-Cells

In order to investigate whether the RevCAR platform can be used to eradicate patient-
derived AML blasts, a flow cytometry-based assay was performed. Similarly to the AML
cell lines MOLM-13 and OCI-AML3, patient-derived AML blasts expressed both CD33
and CD123 at different density levels (Figure 6a,c). To assess killing, these cells were
stained with eFluor™670 and co-cultured with RevCAR-E5B9-28/3z or RevCAR-E7B6-
28/3z T-cells derived from allogeneic healthy donors in the presence or absence of the
appropriate RevTMs at different concentrations. Remarkably, patient-derived AML blasts
were significantly killed by redirected RevCAR-E5B9-28/3z or RevCAR-E7B6-28/3z T-cells
in the presence of cross-linking RevTMs (Figure 6b,d). The EC50 values were in the pico-
molar range demonstrating the high cytotoxic efficiency of the RevCAR platform. Despite
the allogeneic setting used in these experiments, alloreactions of RevCAR T-cells alone
against the AML blasts in the absence of any RevTMs were not detected (Supplementary
Figure S1). It is worth mentioning that the antigen density varies on AML blasts ranging
from around 2000 to 8000 molecules per cell and from around 4000 to 18,000 per cell for
CD33 and CD123, respectively (Figure 6a,c). Although the antigen density differs, the



Cancers 2021, 13, 4785 9 of 18

maximal lysis and killing efficiency of AML blasts by the RevCAR system was similar
(Figure 6b,d). As already observed with AML cell lines (Figure 4), patient-derived AML
blasts could be targeted via either CD33 or CD123 confirming the flexibility of the RevCAR
system and its suitability for combinatorial targeting.

Figure 3. Cytokine release from redirected RevCAR T-cells. Release of indicated cytokines
from redirected (a,c) RevCAR-E5B9-28/3z or (b,d) RevCAR-E7B6-28/3z T-cells co-cultured with
(a,b) MOLM-13 or (c,d) OCI-AML3 cells at a ratio of 5:1 in the presence of RevCAR epitope matching
RevTMs or irrelevant non-matching RevTMs used as negative controls was investigated. Cell cul-
ture supernatants were harvested and analyzed. Data acquired for three individual T-cell donors
represented as mean ± SD (One-way ANOVA with Tukey’s multiple comparisons test. Significance
versus irrelevant RevTMs.). x, not detectable. p values below 0.0332 were considered significant:
p < 0.0332 (*), p < 0.0021 (**), p < 0.0002 (***).
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Figure 4. Lysis of AML cell lines by redirected RevCAR T-cells. 51Cr-labeled (a,c) MOLM-13 or (b,d) OCI-AML3 cells
were incubated with RevCAR-E5B9-28/3z or RevCAR-E7B6-28/3z T-cells at different effector to target cell (e:t) ratios in
the presence or absence of indicated RevTMs. (a,b) Data are shown for three individual T-cell donors represented as mean
± SEM (Two-way ANOVA with Bonferroni’s multiple comparisons test. Significance was determined as comparison to
the setting w/o RevTM.). (c,d) Effector and target cells were co-cultured at a ratio of 5:1 in the presence of the indicated
RevTMs with increasing concentrations to calculate the half-maximal effective concentration (EC50) values. Data are shown
for three individual T-cell donors represented as mean ± SEM. p values below 0.0332 were considered significant: p < 0.0332
(*), p < 0.0021 (**), p < 0.0002 (***).
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Figure 5. In vivo killing of MOLM-13 cells by the RevCAR system. Immunodeficient NMRI-Foxn1nu/nu mice were
injected with Luciferase (Luc) expressing MOLM-13-Luc cells alone, with MOLM-13-Luc cells together with either
(a,b) RevCAR-E5B9-28/3z or (c,d) RevCAR-E7B6-28/3z T-cells without RevTMs or with MOLM-13-Luc cells and RevCAR
T-cells in the presence of indicated RevTMs. (a,c) Bioluminescence imaging of anesthetized mice was performed at several
time points. (b,d) The calculated quantitative values of all animals and time points are presented as mean values ± SEM of
five animals (one-way ANOVA with Tukey’s multiple comparisons test. Significance versus MOLM-13-Luc + RevCAR-
E5B9-28/3z or RevCAR-E7B6-28/3z.). The curves show the relative changes in bioluminescence intensity over the time
normalized for each mouse to the starting luminescence at day 0. p values below 0.0332 were considered significant:
p < 0.0332 (*), p < 0.0021 (**), p < 0.0002 (***).

3.6. Combinatorial and Gate Tumor Targeting Using the RevCAR System

According to our results, we have successfully proven that AML cell lines (Figure 4)
and patient-derived AML blasts (Figure 6) expressing either CD33, CD123 or both can be
targeted via CD33 or CD123 simply by replacing the respective RevTM. This high flexibility
increases the overall anti-tumor effect and enables the targeting of tumor escape variants
downregulating or lacking the targeted antigen. In order to reduce on-target/off-tumor
reactions and to increase the specificity of the RevCAR T-cell response towards AML
blasts, we aimed to establish RevCAR T-cells for a programmable combinatorial target-
ing of AML blasts co-expressing CD33 and CD123. Therefore, T-cells were genetically
modified with a lentiviral vector encoding the SIG and COS RevCARs bicistronically, result-
ing in Dual-RevCAR T-cells that consequently co-express both receptors (Figure 7a) [15].
In agreement with our previously published data, these Dual-RevCAR T-cells considerably
expressed more COS RevCARs than SIG RevCARs on the cell surface of an engineered
T-cell (Figure 7b). Dual-RevCAR T-cells were redirected against MOLM-13 cells by RevTM
CD123-7B6 triggering the SIG RevCAR-E7B6-3z upon binding to the lower expressed
antigen CD123 and by the RevTM CD33-5B9 triggering the COS RevCAR-E5B9-28 upon
binding to the higher expressed antigen CD33 (Figure 7c,d). As shown in Figure 7c, under
these conditions Dual-RevCAR T-cells achieved a maximum killing of MOLM-13 cells
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when CD33 and CD123 were recognized simultaneously by both the signaling and costimu-
latory RevTMs concurrently triggering both signals in the Dual-RevCAR T-cells. Although
the CD3z signal alone slightly activated the cytotoxic potential of Dual-RevCAR T-cells,
this was considerably lower in comparison to the cell lysis observed in the presence of
both the activating and costimulatory signals. As shown in Supplementary Figure S2, the
cytotoxic effect of Dual-RevCAR T-cells was increased when the SIG RevCAR-E7B6-3z
was triggered by the RevTM CD33-7B6, which targets the higher expressed antigen CD33.
Besides cytotoxicity, analysis of cytokine production confirmed that true and complete
Dual-RevCAR T-cell activation required both the CD3z and CD28 signal. Cytokines were
exclusively and significantly secreted when both signals were triggered in Dual-RevCAR
T-cells, in contrast to the control settings without RevTM, or when the activating or the
costimulatory RevTMs alone were added (Figure 7d). Moreover, we prove that dual gated
targeting using Dual-RevCAR T-cells is not only true for cancer cell lines but also conceiv-
able using patient-derived AML blasts (Figure 8). Stimulation of the SIG RevCAR-E7B6-3z
or COS RevCAR-E5B9-28 receptors by the respective RevTMs alone did not promote a
cytotoxic response towards the patient-derived AML blasts (Figure 8c). Only simultaneous
activation of both signals on Dual-RevCAR T-cells resulted in efficient eradication of these
AML blasts. These results provide evidence that AND logic gate using Dual-RevCAR
T-cells can be accomplished targeting both AML cancer cell lines as well as patient-derived
AML blasts, demonstrating its potential for clinical translation.

Figure 6. Killing of patient-derived AML blasts by redirected RevCAR T-cells. Expression of (a) CD33 and (c) CD123
on AML blasts from three patients was assessed by flow cytometry after staining with anti-CD33 and anti-CD123 com-
mercial mAbs. Number of tumor-associated antigens (a) CD33 or (c) CD123 on the surface of patient-derived AML blasts
was determined using QiFi kit. (b,d) RevCAR-E5B9-28/3z or RevCAR-E7B6-28/3z T-cells were co-cultured with the
eFluor™670-stained patient-derived AML blasts at a ratio of 1:1 in the presence of indicated RevTMs with increasing
concentrations in a flow cytometry-based assay, in which the number of living AML blasts was determined. Based on the
resulting dose–response curves, half-maximal effective concentration (EC50) values were calculated. Data represents three
individual T-cell donors and three individual patient-derived AML blasts as mean ± SD.
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Figure 7. Combinatorial AND gate targeting of MOLM-13 cells using the Dual-RevCAR system. (a) Schematic overview
of the Dual-RevCAR system. Dual-RevCAR T-cells express both the activating signaling SIG RevCAR-E7B6-3z and the
costimulatory COS RevCAR-E5B9-28. For complete redirection and activation of Dual-RevCAR-E7B6-3z-E5B9-28 T-cells
against AML cells, both RevCARs have to be simultaneously engaged via RevTM CD123-7B6 and RevTM CD33-5B9
recognizing CD123 or CD33, respectively. (b) Amount of COS RevCAR-E5B9-28 and SIG RevCAR-E7B6-3z receptors on
Dual-RevCAR-E7B6-3z-E5B9-28 T-cells. Three individual T-cell donors are represented as mean ± SD. (c,d) Proof-of-concept
of AND logic gate using the RevCAR system. Dual-RevCAR-E7B6-3z-E5B9-28 T-cells were co-cultured with MOLM-13-Luc
cells at indicated e:t ratios in the presence of either the signaling RevTM CD123-7B6, the costimulatory RevTM CD33-
5B9 or the combination of both RevTMs. (c) In a Luc-based cytotoxicity assay, specific lysis of MOLM-13-Luc cells was
calculated for three individual T-cell donors as mean ± SD (Two-way ANOVA with Tukey’s multiple comparisons test.
Significance versus w/o RevTM, RevTM CD123-7B6 or RevTM CD33-5B9 alone.). (d) Release of the indicated cytokines
from redirected Dual-RevCAR-E7B6-3z-E5B9-28 T-cells into the cell culture supernatants of co-cultures was analyzed for
three individual T-cell donors as mean ± SD (One-way ANOVA with Tukey’s multiple comparisons test. Significance
versus w/o RevTM, RevTM CD123-7B6 or RevTM CD33-5B9 alone). p values below 0.0332 were considered significant:
p < 0.0332 (*), p < 0.0021 (**), p < 0.0002 (***).
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Figure 8. Combinatorial AND gate targeting of patient-derived AML blasts using the Dual-RevCAR system. (a) Expres-
sion of CD33, CD123 and CD33+/CD123+ on patient-derived AML blasts was assessed by flow cytometry after staining
with anti-CD33 and anti-CD123 commercial mAbs. (b) Number of tumor-associated antigens CD33 or CD123 on the surface
of patient-derived AML blasts was determined using QiFi kit. (c) AND gate targeting was assessed on patient-derived AML
blasts. Dual-RevCAR-E7B6-3z-E5B9-28 T-cells were co-cultured with the eFluor™670-stained patient-derived AML blasts at
a ratio of 1:1 in the presence of indicated RevTMs in a flow cytometry-based assay. The SIG RevCAR-E7B6-3z and the COS
RevCAR-E5B9-28 receptors on Dual-RevCAR-E7B6-3z-E5B9-28 T-cells were triggered via the RevTM CD33-7B6 and RevTM
CD123-5B9, respectively. Data for one sample of patient-derived AML blasts as mean ± SD is shown.

4. Discussion

The broad clinical application of CAR T-cell technologies for treatment of AML pa-
tients is still hindered by challenges particularly related to tumor escape variants, antigen
heterogeneity and suitable steering of CAR T-cell activity for safety management. Aim-
ing to tackle such hurdles, adaptor CAR platforms using gated targeting strategies have
been developed [26]. One such example is the switchable and controllable RevCAR plat-
form, which has been proven to be suitable for combinatorial targeting of PSCA- and
PSMA-positive cancers while retaining flexibility and controllability of engineered CAR
T-cells [15]. Herein, we provide proof-of-concept that combinatorial gated targeting could
be successfully translated to an AML setting targeting the CD33 and CD123 antigens.

In contrast to conventional second-generation CARs, RevCAR T-cells are engineered
to extracellularly express small peptide epitopes derived from the human La/SS-B nuclear
protein [23] and are recognized by RevTMs, which are essentially bsAbs with a bispecific
T-cell engager (BiTE)-like format specifically binding to the epitopes on RevCAR T-cells
and to the tumor-associated antigens. On the one hand, these small adaptor molecules
can be simply designed to target any antigen and are easily exchangeable for redirection
of RevCAR T-cells to the desired tumor antigens. Moreover, given the similarity of the
RevTMs to bsAbs and their small size, a favorable tumor accumulation and tissue penetra-
tion are expected along with an in vivo short half-life [23,26,27] allowing a rapid steering of
the RevCAR T-cell activity. On the other hand, the reduced size of the RevCARs allows the
simultaneous expression of different RevCAR molecules on the surface of one T-cell and
subsequently facilitates the separation of costimulatory and activation signals to two CAR
constructs envisioning the development of highly flexible gated targeting strategies. In this
line of thought, two RevTMs were designed targeting the most common AML antigens
CD33 and CD123. In the present work, these have been proven to effectively redirect
RevCAR T-cells expressing either E5B9 or E7B6 to eradicate CD33 and CD123-expressing
AML cell lines both in vitro and in vivo. According to our data, CD33 targeting seems to be
less effective than CD123 targeting using the RevCAR approach. Thus far, we cannot accu-
rately explain why differences between the CD33 and CD123 targeting occurred. However,
here we emphasize that both RevTMs targeting either CD33 or CD123 mediate a highly
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efficient tumor cell lysis in the pM range. In agreement with previous studies using bsAbs,
conventional CAR T-cells and adaptor CAR T-cells in combination with differently struc-
tured TMs [13–15,18–20], RevCAR T-cells accordingly released pro-inflammatory cytokines
upon RevTM mediated cross-linkage with antigen-expressing cancer cells. Variations in the
cytokine profile can be most likely explained by T-cell donor heterogeneity. Aiming clinical
translation, additional work was performed using patient-derived material. Similarly,
RevCAR T-cells successfully targeted and eliminated AML blasts from patient samples
expressing CD33 and CD123 in the presence of the corresponding RevTMs. Given the
commonly known heterogeneity of AML blasts, the antigen density varies on the AML
blasts. Apparently, a therapeutic window exists for CD33 and CD123 targeting using
the RevCAR approach, where no correlation was observed between antigen density level
and killing efficacy. Herein, we show that RevCAR T-cell activity can be switched-on/off
and steered by dosing of RevTMs. Switchability and controllability are improvements of
adaptor universal CAR platform technologies to avoid acute and long-term side effects
of conventional CAR T-cell therapy. Since CD33 and CD123 are not exclusively expressed
on AML blasts but also on progenitor and mature hematopoietic cells of the myeloid
lineage [11], conventional CD33- and CD123-specific CAR T-cells mediate impressive anti-
tumor responses but also bear the risk for long-lasting cytopenias [12,28]. As shown in
the breakthrough study using the CD123-specific UniCAR approach (which is similar to
RevCARs) in relapsed/refractory AML demonstrating promising anti-tumor responses,
myelosuppression can be immediately recovered after withdrawal of adaptor TMs pro-
viding proof-of-concept for a rapid off-switch of effector adaptor CAR T-cells for the first
time in humans enabling an advanced safety management [12]. Given the flexibility of the
RevCAR system to target different tumor entities by easily replacing RevTMs with different
specificities, a combinatorial gated approach could be established and successfully used to
target CD33 or CD123 on the surface of patient-derived AML blasts. This approach is of
particular importance to overcome existing or treatment related tumor escape variants and
to deal with cancer heterogeneity.

In this line of thought, another step forward within the translational setting would
be to design and benefit from an AND logic gate in order to increase tumor specificity
and reduce on-target/off-tumor toxicities. This type of logic gate, however, requires
a fine-tuning of different features involved in such kind of strategies. These include,
e.g., the affinity of the adaptor molecules to both the tumor antigens and adaptor CAR
T-cells, adaptor CAR and tumor antigen density, and an optimal balance between the
strength of the costimulatory and activation signals [29–33]. As already mentioned in our
previous publication, a huge series of RevCARs containing different HiDs, TMDs and
SDs were constructed and tested with respect to expression, dimerization, functionality,
and suitability for AND gate targeting [15]. Despite the challenges, our group recently
demonstrated that AND logic gate could be successfully applied using Dual-RevCAR
T-cells to target two antigens associated with prostate cancer [15]. Likewise, in the present
work, we have demonstrated that the Dual-RevCAR system can be applied to tackle
common myeloid malignancies, such as AML, based on an AND gate targeting of the most
common antigens CD33 and CD123. For that and as previously mentioned, key parameters
needed to be fulfilled. These particularly included the balance between receptor density
and strength of the costimulatory and activation signals on the Dual-RevCAR T-cells, and
use of the most suitable combination of the respective RevTMs. This optimal setting was
indeed accomplished with the considerably higher expression of the COS RevCAR-E5B9-28
receptors on the surface of Dual-RevCAR T-cells in comparison to the SIG RevCAR-E7B6-
3z and the combination of the herein used RevTMs. Furthermore, the density level of
the targeted antigens is critical for true AND gate targeting. As shown for AML cell
lines, Dual-RevCAR T-cells follow the AND gate logic when the SIG RevCAR-E7B6-3z
is triggered by the RevTM targeting the lower expressed antigen and the COS RevCAR-
E5B9-28 is triggered by the RevTM targeting the higher expressed antigen. Vice versa,
when the SIG RevCAR-E7B6-3z is engaged via the RevTM targeting the higher expressed
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antigen, the effect of the signaling RevCAR alone is increased in a way that true AND
gate targeting cannot be achieved anymore. These conditions led to the establishment of
a holistic AND gated targeting, which culminated in the activation of the Dual-RevCAR
T-cells specifically promoting the release of pro-inflammatory cytokines and killing of AML
cell lines expressing both antigens of interest. Some cytotoxicity of Dual-RevCAR T-cells
was triggered by the SIG RevCAR-E7B6-3z alone cross-linked with target antigen via the
respective RevTM. This effect was however not unexpected, since the intracellular portion
of the signaling RevCARs are structural and functional comparable to conventional CARs
of the first generation which are known to be able to mediate effective tumor cell killing.
Nevertheless, this activation signal alone was not sufficient to induce the production of pro-
inflammatory cytokines and significantly higher killing was obtained using the appropriate
combination of both RevTMs to trigger both signals showing true AND gated targeting.
Importantly, such logic gate was furthermore achieved using patient-derived material
demonstrating its forthcoming therapeutic relevance.

In recent years, work from several groups has been done aiming the design of modular
gated strategies using CAR T-cells targeting different tumor entities. These modular
systems reported up to now include the use of, e.g., zipCARs, biotin avidin systems,
yeast-derived intermediary molecules among others [26,30,31,34,35]. However, problems
associated with, e.g., immunogenicity, lack of controllability or versatility still hinder certain
modular approaches as only some of them have been proven to be suitable for logic gated
targeting and eventually move forward to clinical trials [26,30,31]. Given the proven unique
features and versatility of the RevCAR system and aiming treatment of AML patients,
to the best of our knowledge this is the first pre-clinical report and proof-of-concept of
successful targeting of AML cells using logic gated strategies.

5. Conclusions

In conclusion, we hereby demonstrated the preclinical versatility, controllability and
efficacy of the RevCAR platform for the targeting of AML. Furthermore, this is the first
report and proof-of-concept of successful targeting of AML cells using logic gated strategies,
supporting its potential and suitability for future clinical translation.
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