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ABSTRACT Meadow brown butterflies (Maniola jurtina) on the Isles of Scilly represent an ideal model in
which to dissect the links between genotype, phenotype and long-term patterns of selection in the wild - a
largely unfulfilled but fundamental aim of modern biology. To meet this aim, a clear description of genotype
is required. Here we present the draft genome sequence ofM. jurtina to serve as a founding genetic resource
for this species. Seven libraries were constructed using pooled DNA from five wild caught spotted females
and sequenced using Illumina, PacBio RSII and MinION technology. A novel hybrid assembly approach was
employed to generate a final assembly with an N50 of 214 kb (longest scaffold 2.9 Mb). The sequence
assembly described here predicts a gene count of 36,294 and includes variants and gene duplicates from five
genotypes. Core BUSCO (Benchmarking Universal Single-Copy Orthologs) gene sets of Arthropoda and
Insecta recovered 90.5% and 88.7% complete and single-copy genes respectively. Comparisons with
17 other Lepidopteran species placed 86.5% of the assembled genes in orthogroups. Our results provide
the first high-quality draft genome and annotation of the butterfly M. jurtina.
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The meadow brown butterfly (Maniola jurtina, NCBI:txid191418) is
a member of the nymphalid subtribe Satyrini. It is an important model
organism for the study of lepidopteran ecology and evolution and has
been extensively studied by ecological geneticists for many years
(Dowdeswell et al. 1949; Dowdeswell 1961; Ford 1965). Found across
the Palearctic realm it primarily habituates in grasslands, woodland
rides, field-margins and can even be found in overgrown gardens.

The species displays marked sexual dimorphism. Females are
more colorful than males and have large upper-wing eyespots (Figure
1). It also exhibits considerable quantitative variation in the sub-
marginal spot pattern of its wings (Brakefield and van Noordwijk

1985) and therefore represents an ideal model in which to dissect the
links between genotype, phenotype and long-term patterns of selec-
tion in the wild (Baxter et al. 2017) - a largely unfulfilled but
fundamental aim of modern biology. This draft genome and corre-
sponding annotations will offer a core resource for ongoing work in
lepidopterans and other arthropods of ecological importance.

MATERIALS AND METHODS

Sampling and sequencing
Adult meadow brown (Maniola jurtina) butterflies were collected
from multiple fields (Isles of Scilly, Cornwall) in June 2012, anes-
thetized by refrigeration for 2 hr and then killed by subsequent
freezing. High molecular weight genomic DNA was isolated from
whole body (pooled, excluding wings) of five individual females using
the genomic-tip 100/G kit (Qiagen, Hilden, Germany) supplemented
with RNase A (Qiagen, Hilden, Germany) and Proteinase K (New
England Biolabs, Hitchin, UK) treatment, as per the manufacturer’s
instructions. DNA quantity and quality were subsequently assessed
using a NanoDrop-2000 (Thermo Scientific, Loughborough, UK) and
a Qubit 2.0 fluorometer (Life Technologies). Molecular integrity was
confirmed using pulse-field gel electrophoresis.

Illumina data (100bp paired-end) was generated using standard
Illumina protocols for a 250-500 bp PE library andmultiple mate-pair
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libraries ranging between 180 to 7k bp (Table S1). 20 kb PacBio
libraries were generated and size-selected following the manufac-
turers recommended protocols and sequenced on 18 SMRT cells of
the RSII instrument. Finally, long reads (longest read 300Kb) were
obtained using the Oxford Nanopore Technologies MinION platform
(R7.4) (Table S2). Illumina, PacBio and MinION library preparation
and sequencing were performed by the Exeter Sequencing Service,
University of Exeter.

Genome assembly
The genome characteristics of M. jurtina were estimated using a
k-mer based approach implemented in GenomeScope (Vurture et al.
2017). Short-read Illumina reads were quality filtered and subjected to
19-mer frequency distribution analysis using Jellyfish -v2.2.0
(Marçais and Kingsford 2011).

Genome assembly was performed by adopting a novel hybrid
approach (Figure 2). Paired-end Illumina reads were trimmed and

filtered for quality values using TrimGalore -v0.4.2 (Krueger 2016) and
assembled using Spades -v3.9.1 (Bankevich et al. 2012). Long reads
obtained from MinION were mixed with PacBio reads and assembled
using Canu -v1.3.0 (Koren et al. 2017). The short-read assembly was
further assembled along with long-reads using DBG2OLC -v20160205
(Ye et al. 2016). Canu and DBG2OLC assemblies were later merged
using QuickMerge -v0.3.0 (Chakraborty et al. 2016) and redundancy
reduction, scaffolding and gap closing were carried using Redundans
-v0.14c (Pryszcz and Gabaldon 2016). The draft assembly was polished
using arrow (part of the genomicconsensus package in PacBio tools)
-v2.3.2 (Pacific Biosciences of California), which exclusively mapped
long PacBio reads against the draft assembly using the BLASR pipeline
(Chaisson and Tesler 2012). The draft assembly was also polished with
the Illumina short-reads using Pilon -v1.23.0 (Walker et al. 2014).

Evaluation of the completeness of the genome assembly
The completeness of the draft genome was assessed by mapping raw
short and long reads against the assembly. BUSCO (Benchmarking
universal single-copy orthologs) -v3.0.2 (Simão et al. 2015) and
CEGMA (Core Eukaryotic genes mapping approach) -v2.5.0 (Parra
et al. 2007) were used to check genomic completeness of the assembly.
In the case of BUSCO, Arthropoda and Insecta gene sets were
compared against the assembly. We also assessed the completeness of
this assembly by aligning complete genomes ofM. jurtina genome against
H. melpomene and B. anynana (a close relative) using Mummer -v3.1.0
(Kurtz et al. 2004).

Genome annotation
Before predicting gene models, the genome ofM. jurtina was masked
for repetitive elements using RepeatMasker -v4.0.7 (Smit 2013–2015).
RepeatModeler -v1.0.11 (Smit 2008–2015) was used to model the
repeat motifs and transposable elements. Repeats originating from
coding regions were removed by performing a BLAST search against
the B. anynana proteins. Sequence with hits at E-value . 1e-10 were
filtered out. The RepBase -v24.05 library was then merged with the
repeats predicted by RepeatModeler and used to mask theM. jurtina
genome. Protein coding genes were predicted using GeneMark-ES

Figure 1 Female Maniola jurtina (picture credit: Richard ffrench-
Constant).

Figure 2 Schematic overview of
the workflow used for sequencing,
genome size estimation, assembly
and annotation of the M. jurtina
genome. 1. An artist’s impression
of a female M. jurtina (samples
collected from multiple fields
and processed for DNA extrac-
tion); 2. Multiple sequencing ap-
proaches adopted along with
genome characterization using
genome scope; 3. Genome as-
sembly using a hybrid approach;
4. Genome completeness assess-
ment; 5. De novo genes predic-
tion and repeat detection; 6.
Functional annotation; 7. Compar-
ative analysis. Note that transcrip-
tome data (orange segment) were
obtained from publicly available
sources at NCBI and only used
for genome annotation.
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-v4.3.8 (Lomsadze et al. 2005) and AUGUSTUS -v3.3.0 (Stanke and
Morgenstern 2005) implemented in the BRAKER -v 2.1.2 (Hoff et al.
2016) pipeline using species-specific RNA-seq alignments as evi-
dence. Publicly available M. jurtina RNA-seq datasets (SRR3724201,
SRR3724266, SRR3724269, SRR3724271, SRR3724198, SRR3724196,
SRR3724195, SRR3721773, SRR3721752, SRR3721684, SRR3721695)
were downloaded from NCBI and mapped individually against the
repeat masked genome using STAR -v2.7.1 (Dobin et al. 2013). The
bam files from individual samples were then combined using custom
scripts and then fed into BRAKER. Functional annotation of the
de-novo predicted gene models was carried out using homology
searches against the NCBI nr database and Interpro database using
BLAST2GO -v5.2.5 (Gotz et al. 2008).

Comparison to other Lepidopteran species
To characterize orthology and investigate gene family evolution
across Lepidoptera, the final annotation set of M. jurtina was
compared to 17 other genomes including a dipteran (Drosophila
melanogaster), and a trichopteran (Limnephilus lunatus) as out-
groups. The proteomes of Amyelois transitella v1.0, B. anynana
v1.2, Bombyx mori v1.0, Calycopis cecrops v1.1, Chilo suppressalis
v1.0, Danaus plexippus v3.0, Heliconius melpomene v2.0, Junonia
coenia v1.0, Limnephilus lunatus v1.0, Melitaea cinxia, Operophtera
brumata v1.0, Papilio polytes v1.0, Phoebis sennae v1.1, Plodia
interpunctella v1.0, Plutella xylostella v1.0 were downloaded from
Lepbase. OrthoFinder -v1.1.8 (Emms and Kelly 2018 preprint) was
used to define orthologous groups (gene families) of genes between
these peptide sets.

Phylogenetic tree construction and divergence
time estimation
Phylogenetic analysis was performed using 39 single-copy orthologous
genes, conserved among 17 species, using OrthoFinder. Additionally,
OrthoFinder generated a species tree where D. melanogaster was used
as the outgroup. The species tree was rooted using the STRIDE -v1.0.0
(Emms and Kelly 2017) algorithm implemented in OrthoFinder.
MCMCTREE, as implemented in PAML -v4.9e (Yang 2007), was then

used to estimate the divergence times of M. jurtina with approximate
likelihood calculation. For this, the substitution rate was estimated
using codeml by applying root divergence age between the Diptera,
Lepidoptera and Trichoptera as 350 MY (Kjer et al. 2015). This is a
simple fossil calibration of 350 MY for the root. The estimated sub-
stitution rate was the per site substitution rate for the amino acid
dataset and used to set priors for the mean substitution rate in Bayesian
analysis. As a second step, the gradient (g) and Hessian (H) of branch
lengths for all 17 species were also estimated. Finally, the tree file with
fossil calibrations, the gradient vector and hessian matrices file and the
concatenated genes alignment information were used in the approx-
imate likelihood calculation. The parameter settings of MCMCTREE
were as follows: clock = 2, model = 3, BDparas = 110, kappa_gamma =
6 2, alpha_gamma = 11, rgene_gamma = 9.09, and sigma2_gamma =
1 4.5. Finally, Gene family evolution across arthropods was investigated
using CAFE -v3.0 (De Bie et al. 2006). Scripts used for the analysis of
genomic data are available at: https://github.com/kumarsaurabh20/
Maniola_jurtina_genome_sequencing

Analysis of spot pattern related genes
To test whether any genes involved in wing or spot -pattern
formation across Lepidoptera were identifiable in the current
Maniola assembly, we first performed a wide literature search on
PubMed (https://www.ncbi.nlm.nih.gov/pubmed/) using the key-
words Lepidoptera, butterfly, wing, spot, pattern, gene and then
manually filtered through the results to generate a list of candidate
genes (Table 1 and Table 3).

This includes a selection of regulators possibly responsible for
pattern variation (APC, Naked cuticle), transcription factors linked
with eyespot patterning (Distal-less, Dll, and Engrailed, En), along
with other transcription regulators such as Apterous and DP.
Additionally, we considered poik (HM00025), also known as cortex,
Optix, Doublesex, Hox, Vermilion and black (pigment synthesis)
along with the Ecdysone receptor (EcR) involved in wing pattern
plasticity.

NCBI esearch and efetch tools were used to filter (NOT partial
NOT hypothetical NOT uncharacterized), and query individual spot
pattern proteins across Lepidoptera using both, full and abbreviated
protein names where available (Table 3; total 1347 homologs) and
then these proteins were queried against the Maniola genome using
Exonerate -v2.2.0 (Slater and Birney 2005) protein2genome model
with the following customised options –refine region–score 900–
percent 70 -S FALSE –softmasktarget TRUE –bestn 1–ryo \”.%ti
(%tab - %tae) coding (%tcb - %tce) cds_length (%tcl)\n%tcs\n”.

Data availability
The raw sequencing data and genome assembly have been deposited
at the NCBI SRA database under the BioProject PRJNA498046 and
genome accession number VMKL00000000. Blast results, annota-
tion and proteome associated with this manuscript are available at
https://zenodo.org/record/3352197. Scripts used for the analysis of

n■ Table 1 jurtina genome properties

Properties Genome

# scaffolds (. 1000 bp) 10,860
Total length (.= 1000 bp) 618,415,580
Largest scaffold 2,944,739
Total length 618,415,580
GC (%) 36.90
N50 214,423
N75 78,459
L50 658
L75 1,875
# N’s per 100 kbp 8,864.86

n■ Table 2 Different assembly versions, data, software used and summary statistics

Version Data Assembler N50 #Sequences Total length

1 Short-read PE Spades 48,073 53,043 319,930,151
2 Long-reads (PacBio + MinION) Canu 32,954 10,463 296,564,618
3 Version 1 + Long-read (PacBio + Minion) DBG2OLC 60,269 46,361 317,966,984
4 Version 2 + 3 QuickMerge 92,579 30,457 762,970,634
5 Version 4 + PE + MP + PacBio + MinION Redundans 213,669 10,863 616,464,047
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genomic data are available at: https://github.com/kumarsaurabh20/
Maniola_jurtina_genome_sequencing. Supplemental material available
at figshare: https://doi.org/10.25387/g3.11594187.

RESULTS AND DISCUSSION

Genome assembly
Sequencing of short-read libraries, both paired-end and mate-pairs,
produced 317.1 million read pairs with an average insert size of
524.8 bp. Analysis of the unimodal 19-mer histogram with a coverage

peak at 17x suggested an expected genome size of 576 MB (see Materials
andMethods). Note here, that although the genome size estimated via this
method is strongly dependent on the sequencing read-depth, based on the
genome size of the most closely related species Bicyclus anynana
(475 Mb), this estimate does not seem inordinate. The estimated het-
erozygosity rate was in the range of 1.89–1.93% (Table S3) and the
genome was comprised of approximately 76% repetitive elements that are
likely to contain units of highly repetitive W chromosome as the samples
used in this studywere all female (Table S3).Wenext performed a de novo
genome assembly using a hybrid approach (see Materials and Methods).

Figure 3 Evolutionary and comparative genomic analysis. (A) Ortholog analysis ofM. jurtinawith 16 other arthropod species. SC indicates common
orthologs with the same number of copies in different species, MC indicates common orthologs with different copy numbers in different species, UP
indicates species specific paralogs, UC indicates all genes which were not assigned to a gene family, MS indicates moths specific genes and BS
indicates butterfly specific genes. (B) Species phylogenetic tree and gene family evolution. Numbers on the node indicate counts of the gene
families that are expanding (green), contracting (red) and rapidly evolving (blue).
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Spades assembly usingmultiple k-mer values produced 53,043 scaffolds
having a total length of 319.9 Mb and N50 of 48.073 Kb. Long-read
library sequencing produced 18.08 Gb (total 2398917 reads greater
than 1000 bp) of data giving 21.7x overall sequencing coverage (Table
S2). Canu assembled 10,463 contigs with N50 of 32.9 Kb. To further
improve genome contiguity, we used DBG2OLC which is based on a
hybrid approach of using both long- and short-reads. This assembly
resulted in 46,361 short-read polished contigs with N50 of 60.26 kb
which is an improvement of 12Kb over Spades assembly. In view of the
recent developments in the hybrid assemblers, we further explore
combining DBG2OLC assembly with long-read only Canu assembly
using Quickmerge, an approach known to achieve high genomic
contiguity with modest long- and short-read sequencing coverage.
Merging of two assemblies with Quickmerge produced 30,457 contigs
with a further improved N50 of 92.57 Kb. The assembly size, however,
in Quickmerge step (762.9 Mb) surpassed the expected genome size of
576 Mb. To remove the alternate haplotypes from the assembly and
reduce the inflated genome size, we added a redundancy removal step
by using Redundans. This step improved the N50 by removing
haplotypes and reducing the total assembly size. The final genome
assembly comprised 618 Mb with 36.9 GC% and N50 of 214Kb (Table
2). Detailed assembly properties are given in Table 1 and Table S4.

Evaluation of the completeness of the genome assembly
To evaluate the completeness of the genome assembly, we first mapped
raw short and long reads against it. The percentage of aligned reads
ranged from 94 to 95% using paired-end and mate-paired short reads.
Then we assessed the gene completeness using BUSCO and CEGMA.
About 90.5% and 88.7% total BUSCO genes were identified in the
Arthropoda and Insecta sets respectively. Additionally, 91% CEGMA
genes, both complete and partials, were successfully found in the
assembly (Table S5 and S6). The number of matches found between
M. jurtina and B. anynana, after whole genome alignment, were
significantly more as compared to H. melpomene. The genome size
of H. melpomene (�250 MB) is smaller than B. anynana (�475 MB).
Therefore manyM. jurtina genomic sequences ended up with no hits.

Genome annotation
Annotation of the M. jurtina genome was carried out using the
BRAKER pipeline. 11 publicly available datasets (See Material and
Methods) were downloaded from NCBI totalling 116.4 million

single-end transcriptomic reads. To predict genes, the reads were
aligned against the M. jurtina assembly. BRAKER pipeline resulted
in 38,101 genes after removing low quality genes with fewer than
50 amino-acid and/or exhibiting premature termination. In the final
gene set, mean gene length, mean CDS length, mean intron length
and exon number per gene were 4,144 bp, 976 bp, 921 bp and
5 respectively (Table S7). Approximately 34,263 out of 38,101 genes
(90%) of the predicted genes could be assigned functional annota-
tion based on BLAST searches against the non-redundant protein
database of NCBI and InterPro.

Comparison to other Lepidopteran species
For comparative genomics analysis, we analyzed the orthologous gene
relationships among several species (see Materials and Methods and
Table S8). The combined gene count of these species was 349,442 of
which 86.5% were assigned to 15,064 orthogroups. 50% of all genes
were in orthogroups with 23 or more genes and were contained in the
largest 4439 orthogroups. There were 2915 orthogroups with all species
present and 39 of these consisted entirely of single-copy genes. A total
of 216 gene families were specific to M. jurtina compared to 627 and
1716 in butterfly and moths respectively (Figure 3A).

Phylogenetic tree construction and divergence
time estimation
The phylogenetic analysis showed that M. jurtina is more closely
related to B. anynana than to H. melpomene or M. cinxia. The
divergence time between M. jurtina and B. anynana was estimated
to be around 34MYA and that betweenM. jurtina andH. melpomene
is estimated as 57 MYA (Figure 3B and see Table S9 for divergence
time calibrations).Whole genome alignments, usingMummer -v3.1.0
(Kurtz et al. 2004) betweenM. jurtina – B. anynana andM. jurtina -
H. melpomene were also performed to confirm this relatedness
(Figure 4). In the dated phylogeny, the most species rich family
Nymphalidae has remained stable and diverged from Papilionidae
around 90MY ago. This age is also supported by previously published
butterfly phylogenies (Wahlberg et al. 2013; Espeland et al. 2018).

Analysis of gene family evolution
CAFE models the evolution of gene family size across a species
phylogeny under a ML birth–death model of gene gain and loss and
simultaneously reconstructs ML ancestral gene family sizes for all

Figure 4 Genome comparisonsComparison of theManiola jurtina genomewith Heliconiousmelpomene and Bicyclus anynana. The dot plots were
generated usingMummer. The plots show relatedness ofM. jurtinawith (A)H.melpomene and (B)B. anynana. Both of these genomeswere taken as
references (x-axis) and queried usingM. jurtina (y-axis) genome. In both plots, blue, green and orange colored dots represent the unique forward,
unique reverse and repetitive alignments respectively. Plot B shows more consistent and contiguous alignments than plot A. The dot plots were
generated using https://dnanexus.github.io/dot/.
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internal nodes, allowing the detection of expanded gene families
within lineages. We ran CAFE on our matrix of gene family sizes
generated by OrthoFinder and modeled their evolution along the
dated species tree. Genes involved in binding, metabolism and
transport of natural or synthetic allelochemicals are particularly
found to be rapidly evolving in M. jurtina (Figure 3B).

Analysis of spot pattern related genes
Dowdeswell, Fisher and Ford first studied the island-specific wing-spot
patterns inM. jurtina on the isles of Scilly (Dowdeswell et al. 1949), and
this work was continued for more than 20 years (reviewed in (Ford
1965)). Their major findings, which became a cornerstone of ecological
genetics, have been re-visited and largely re-confirmed with contem-
porary data (Baxter et al. 2017). Patterns of wing-spot polymorphism
have remained unchanged on some islands over 60 years and there is
some evidence of genetic differentiation across the Scillies (Baxter et al.
2017). Nonetheless, much remains to be done to better understand the
underlying genetics of spot pattern variation in this species.

Butterfly wing patterns have long been suggested to be polygenic
(Beldade and Brakefield 2002) and recent evidence from B. anynana
(very closely related to M. jurtina) has confirmed this to be the case
and strongly suggested that 10-11 different genomic regions may be

involved in eye-spot number variation (Rivera-Colón et al. 2018 pre-
print) and see (Monteiro and Prudic 2010).

Protein to genomematches were found for 20 out of the 30 candidate
genes (Table 3).We further cross checked this by creating a blast database
of the 1347 homolog spot pattern related proteins from Lepidoptera and
then searching the homologs within theM. jurtina proteome formatches.
This resulted in over 1500 matches (see Table S10).

Specific experiments now need to be undertaken to further test
candidate genes and their possible roles in wing-spot polymorphism,
and to revisit other findings from Ford and co-workers (reviewed in
(Ford 1965)) in the iconic Scillies study system.

Concluding remarks
Here we present a high-quality draft assembly and annotation of the
butterfly M. jurtina. The assembly, along with the cross-species
comparisons and elements of key spot-pattern genes will offer a core
genomic resource for ongoing work in lepidopterans and other
arthropods of ecological importance.
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2 APC (Saenko et al. 2010) 18 4
3 Apterous / apterousA (apA) (Beldade et al. 2005; Prakash and Monteiro 2018) 25 4
4 Black (Walker and Monteiro 2013) 5 0
5 C2 domain-containing protein 5 (C2CD5) (Rivera-Colón et al. 2018 preprint) 32 7
6 Calcium-activated potassium channel slowpoke (slo) (Özsu and Monteiro 2017;
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19 Notch (N) (Reed and Serfas 2004) 117 72
20 numb (Rivera-Colón et al. 2018 preprint) 40 0
21 Optix (Reed et al. 2011; Callier 2018) 5 3
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24 spaetzle (spz) (Özsu and Monteiro 2017; Rivera-Colón et al. 2018 preprint) 65 2
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