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Diabetes is a complex metabolic disease characterized by hyperglycemia. Its

complications are various, often involving the heart, brain, kidney, and other essential

organs. At present, the number of diabetic patients in the world is growing day by day.

The cardiovascular disease caused by diabetes has dramatically affected the quality of

life of diabetic patients. It is the leading cause of death of diabetic patients. Diabetic

patients often suffer from microvascular angina pectoris without obstructive coronary

artery disease. Still, there are typical ECG ischemia and angina pectoris, that is, chest pain

and dyspnea under exercise. Unlike obstructive coronary diseases, nitrate does not affect

chest pain caused by coronary microvascular angina in most cases. With the increasing

emphasis on diabetic microvascular angina, the need for accurate diagnosis of the

disease is also increasing. We can use SPECT, PET, CMR, MCE, and other methods to

evaluate coronary microvascular function. SPECT is commonly used in clinical practice,

and PET is considered the gold standard for non-invasive detection of myocardial blood

flow. This article mainly introduces the research progress of these imaging methods in

detecting microvascular angina in diabetic patients.
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INTRODUCTION

Diabetes is a complex metabolic disease characterized by hyperglycemia (1). It affects all organs of
the body, and there are many kinds of complications. According to theWorld Health Organization,
there are more than 100 kinds of complications in patients with diabetes, including vascular and
non-vascular complications. Blood vessel complications can be divided into macrovascular and
microvascular complications, and many diabetic patients have vascular complications in the early
diagnosis of diabetes (2). Diabetic microvascular angina is a kind of microvascular disease caused
by diabetes. Kemp (3) first described this syndrome with typical angina pectoris symptoms and
myocardial ischemia, but with normal coronary angiography as “cardiac X syndrome.” Until 1985,
Cannon called this disease coronary microvascular angina (CMVA). Although people have a deep
understanding of the obstructive coronary disease, they lack understanding of non-obstructive
angina caused by coronary microvascular dysfunction (CMVD). von Scholten et al. (4) showed
that the incidence of CMVD in patients with type 2 diabetes was significantly higher than
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that in people without diabetes. Diabetic patients have a higher
risk of developing obstructive coronary artery disease (5),
but coronary CMVD should not be ignored (6). The latter
can lead to coronary microvascular angina pectoris, resulting
in angina symptoms. Still, coronary angiography shows no
apparent stenosis. The severity of this disease in women is
higher than that in men, this may be related to female unique
aldosterone hyperresponsiveness (7). CFR is a recognized index
for evaluating CMVD. In addition, we can also use the index of
microcirculatory resistance (IMR) to evaluate CMVD (8). More
than 490,000 invasive coronary angiography (ICA) operations
were performed in Japan, according to a 2019 JROAD report.
However, the number of percutaneous coronary interventions
was only 271,000 (9). This demonstrates that many invasive
examinations are unnecessary, many patients do not have severe
obstructive coronary disease. Therefore, we need to pay more
attention to non-invasive ways. At present, the standard imaging
diagnosis methods are SPECT, PET, CMR, and MCE. Accurate
diagnosis of diabetic microvascular angina is of great help to the
treatment and prognosis of patients.

DIABETIC MICROVASCULAR
DYSFUNCTION

Coronary microcirculation determines 95% of the myocardial
blood flow resistance, while the epicardial coronary artery
only accounts for 5% (10). So microcirculation plays a
significant role in regulating myocardial blood supply. Coronary
microcirculation is composed of anterior arterioles, arterioles,
and capillaries. It regulates capillaries’ blood flow through specific
mechanisms to meet the dynamic demand of myocardial blood
supply (11), including the endothelium-dependent mechanism
and endothelium-independent mechanism. When the body
is suffering from diabetes, coronary microcirculation will
be affected by a series of factors such as hyperglycemia,
inflammatory reaction, cardiac autonomic nerve dysfunction,
etc. It leads to myocardial ischemia, eventually CMVA.

Studies have shown that this injury is similar in patients
with type 1 and type 2 diabetes, and chronic hyperglycemia is a
crucial factor leading to CMVD (12). The main feature of CMVD
in diabetic patients is endothelial dysfunction, which leads to
the impairment of endothelial-dependent mechanisms. In some
cases, endothelial-independent mechanisms may also be affected
as well (13). In people with diabetes, microcirculation first
occurs functional changes, then structural changes (14). These
functional changes include endothelial dysfunction, autonomic
nerve dysfunction, etc. Structural changes include thickening of
the arterial wall, capillary basement membrane, formation of
deposits in the small artery wall, and small coronary artery wall
fibrosis. Recently, some scholars suggested that (15) endothelial
dysfunction is related to the down-regulation of MCT4.
Hyperglycemia and inflammatory factors can downregulate the
expression of MCT4. This results in lactic acid transport disorder
and intracellular pH imbalance, eventually leading to endothelial
cell apoptosis and endothelial dysfunction.

The incidence of CMVA is high, but because there is no
imaging performance of obstructive coronary disease, it is easy
to cause misdiagnosis and missed diagnosis, which has seriously
affected people’s lives. The COVADIS conducted multinational,
multiracial, and multicenter prospective observational studies in
14 research centers in 4 continents, 7 countries to explore the
clinical characteristics and prognosis of patients with MVA and
the impact of gender and race on patients CMVA (16). From
June 2015 to December 2018, the study prospectively included
688 MVA patients, with all patients not receiving trial treatment
during the observation phase. The results showed that MVA
patients had a high risk of MACE regardless of gender and race,
with an average MACE rate of 7.7% years. However, Caucasian
whites were significantly higher than Asian populations and
were associated with hypertension and previous coronary heart
disease, with poor quality of life in women compared to men.

To better develop treatment strategies, CMVD can be divided
into four different types. Ca Mici and Filippo (17) divided
coronary microvascular dysfunction into four types: type I:
CMVD without myocardial disease and coronary stenosis; type
II: CMVD caused by myocardial disease; type III: coronary artery
occlusion combined with CMVD; type IV: iatrogenic CMVD. In
patients with diabetes, due to some unique pathophysiological
mechanisms, Type I and type III CMVD are most likely to occur,
and type I CMVD is the earliest in patients with diabetes (13).

DIAGNOSIS OF CMVA

At present, the diagnostic criteria of CMVA are proposed by
COVADIS, including the following four items: (1) The presence
of symptoms indicating myocardial ischemia; (2) There was
objective evidence of myocardial ischemia; (3) No obstructive
coronary disease; (4) Evidence of coronary microvascular
dysfunction. When the four conditions are met, coronary
microvascular angina can be diagnosed; when there are standards
1 and 3, but standards 2 and 4 have only one item, It can only be
diagnosed as suspected coronary microvascular angina (18).

Because the current technology does not allow us to observe
coronary microcirculation directly (19), we can only indirectly
evaluate the microcirculation function through some methods
to obtain evidence of myocardial ischemia. Myocardial ischemia
can be caused by epicardial coronary artery occlusion or
CMVD. When both of them have dysfunction, it can also cause
myocardial ischemia (20).

Coronary flow reserve (CFR) is a recognized index to evaluate
coronary blood flow. Gould KL first proposed CFR in 1974. It
refers to the ratio of mean blood flow in the congestive phase
to mean blood flow at rest after the application of vasodilator.
The normal value of CFR is between 2 and 2.5 (21). The
coronary microvascular disease can cause a decrease in CFR
(≤2). CFR is determined by both large and microvessels of the
coronary artery. Therefore, the reduction is caused by CMVD
when CAD is excluded. Some studies have shown that the
causes of CFR decrease in patients with diabetes are different in
different periods. In patients with early diabetes, the reduction of
CFR is mainly caused by increased baseline blood flow velocity.
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In contrast, the decrease of CFR in patients with advanced
diabetes mellitus is mainly caused by decreased blood flow
velocity during hyperemia (22). It is crucial to determine CFR
in diabetic patients. Even in patients with diabetes without
known CAD, their Cardiac Mortality is comparable to non-
diabetic patients with known CAD if CFR is impaired (23). At
present, CFR can be measured by both invasive and non-invasive
methods. The former is mainly coronary Doppler flow guide
wire, while the latter includes SPECT, CMR, and PET explicitly.
MCE has also been proved to be able to evaluate coronary
microcirculation (24).

TIMI myocardial imaging grading can also evaluate coronary
microcirculation. Its principle is to analyze the time required
for contrast agents to enter myocardial tissue, divided into 0–3
grades (25). TIMI can be used as a semi-quantitative index to
reflect the perfusion state of coronarymicrocirculation. However,
TIMI grading is limited by observer variability. Studies have
shown that (26) whenmeasured by two independent laboratories,
the coincidence rate of TIMI assessment is only 83%. When
the results of the third laboratory exist, the coincidence rate
further decreases. When the TFC of the left anterior descending
artery was modified with 1.7, we can obtain corrected TIMI
classification (CTFC). Compared with TIMI flow classification,
CTFC is more objective and repeatable. It can evaluate
microvascular dysfunction in patients with microvascular angina
pectoris. Ding et al. (27) proposed a new index TMP frame
counting (TMP-FC) based on TIMI, myocardial angiography was
quantified by frame counting. Ge et al. (28) suggested that TMP-
FC ≥95.5 was an independent predictor of MVD (OR = 11.61,
P < 0.001). Moreover, the sensitivity and negative predictive
value of TMP-FC in the diagnosis of CMVD were significantly
improved. TMP-FC was directly proportional to the degree of
CMVD progression, so that it can present disease progression.

RESEARCH PROGRESS OF IMAGING
METHODS FOR DETECTION OF
MICROVASCULAR ANGINA PECTORIS

Single-Photon Emission Computed
Tomography
SPECT usually uses thallium-201 (201Tl) or technetium-99m
(99mTc) labeled tracers (29) to record the radioactivity of the
myocardium under resting and loading conditions. According
to the phenomena of myocardial perfusion decrease and defect
in the two states, we can diagnose CMVD after eliminating the
epicardial coronary artery stenosis. The advantage of SPECT in
diagnosing CMVD is its higher sensitivity. Compared with PET,
SPECT is cheaper (30), so it is more frequently-used in the clinic.

In recent years, solid-state detector technology based on
cadmium-zinc telluride (CZT) has become a hot spot in
SPECT development. Recently, the CZT-SPCET has achieved
a commodified supply. Two cardiac-centered CZT cameras are
available commercially-Discovery NM530c and D-SPECT. CZT-
SPECT has gradually expanded the scope of clinical applications
due to the technical advantages. The traditional anger camera
is limited by low photon sensitivity and low inherent spatial

resolution and needs a high radioisotope dose to ensure image
quality. CZT-SPECT uses a semiconductor solid-state detector,
directly converting gamma rays into electrical signals at room
temperature (31). CZT crystal has higher photon sensitivity and
higher energy resolution, so using a lower dose of radioactive
tracer can also ensure image quality (32). The research of
Duvall et al. (33) shows that the new single-photon emission
tomography CZT camera technology can significantly reduce
the radiation exposure and acquisition time on the premise of
ensuring the imaging quality. CZT-SPECT can also lessen the
injection dose of examiners. Nakazato et al. (34) applied CZT
detector SPECT-MPI to 79 patients with the guarantee of image
quality. When the acquisition time of the experimental group
was 14min, the average injection dose of the experimental group
could be reduced to 92.5 MBq (2.5mCi). This is beneficial for
protecting patients’ health and improving the working efficiency
of hospitals.

Due to the technical limitations, the standard semi-
quantitative evaluation of myocardial perfusion cannot assess
subtle changes in myocardial blood flow (MBF) regulation.
The MPR obtained by CZT-SPECT can help to overcome
the limitations of semi-quantitative MPI. CZT detector allows
dynamic acquisition and quantification of MBF, Konstantin et
al. (35) compared the ability of invasive coronary angiography
and dynamic CZT-SPECT to assess myocardial blood flow. They
found that CFR obtained by dynamic CZT-SPECT is consistent
with CFR obtained by the invasive method. Acampa et al. (36)
compared the ability of CZT-SPECT and PET imaging to evaluate
myocardial absolute blood flow and blood flow reserve. It is
found that there is a significant correlation between the latter
and positron emission tomography. Therefore, CZT-SPECT can
provide a more accurate myocardial blood flow. Because it can
adopt a semi-automatic method, CZT-SPECT reduces the errors
caused by operators and improves the accuracy and repeatability
of diagnosis (37).

Interestingly, the advent of the CZT camera made the
Simultaneous dual isotope 201Tl/99mTc myocardial perfusion
imaging possible. 201Tl is more linearly related to myocardial
blood flow leading to an accurate identification of mild-
ischemia. 99mTc labeled tracers have nearly ideal physical imaging
properties for gamma cameras, so it has a better imaging quality
(38). However, it was found in Bernard Songy’s studies that defect
size in 20% of patients would be underestimated. This is mainly
due to the lack of good scattering correction methods (39). But
this at least proves that the goal is not out of reach. Moreover,
with the appearance of the CZT camera, it is possible to reuse
an old tracer, 99mTc-Teboroxime, which has a high extraction
rate in a wide range of coronary blood flow rates and is seldom
used because of its short half-life. However, it may show unique
advantages in clinics with the progress of technology (40).

The image reconstruction of dynamic SPECT is complicated.
Because the camera rotates slowly, the dynamic data must be
reconstructed from the projection, and the attenuation should
be corrected appropriately. Therefore, Debasis Mitra developed
a Spline Initialized Factor Analysis of Dynamic Structures
(SIFADS) algorithm (41), which performed well in animal and
human experiments and significantly reduced image noise and
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improved image quality. In addition, deep learning technology
is developing rapidly and shows excellent potential in image
acquisition and processing, which may be widely used in the
future (42).

Positron Emission Computed Tomography
PET is considered the gold standard for the non-invasive
detection of myocardial blood flow (43). PET myocardial
perfusion imaging (MPI) is a powerful tool for diagnosing
coronary artery disease (44), which is widely used to detect
cardiovascular function. Compared with SPECT-MPI, PET-MPI
has higher sensitivity and specificity, can quantify myocardial
blood flow more accurately (45), and provides higher quality
images (46). Nevertheless, at the same time, it also has a higher
inspection cost. The basic principle of PET-MPI is to dynamically
analyze the signal of radionuclide tracer injected into a human
body. If microcirculation disturbance occurs, it will show the
perfusion defect at the corresponding position. At present, the
commonly used tracers are mainly 15O-H2O,

13N-NH3, and
82Rb-RbCl. CFR can be obtained by detecting tracer signals at rest
and under stress, respectively. If CFR decreases after eliminating
obstructive coronary disease, CMVD is indicated.

Wanli et al. (47) evaluated the value of 13N-NH3 PET-MPI
in the diagnosis of microvascular diseases. They found that the
MBF of diabetic patients was lower than that of non-diabetic
patients [(2.63 ± 0.98) and (3.62 ± 1.28) ml·min-1·g-1; t =

−2.758, P = 0.008], and diabetes may be a risk factor for the
decrease of MBF (OR = 0.254, 95% CI: 0.073–0.887), so diabetes
is closely related to the occurrence of coronary microvascular
disease. Studies have shown that PET-derived MBF and CFR
are powerful tools for predicting future major adverse cardiac
events. For example, a CFR decrease (<1.6) on 13N-ammonia
PET and 82rubidium PET is an independent factor to predict
MACE and early revascularization (48). We know that CFR in
diabetic patients is closely related to cardiac death. PET is the gold
standard for quantitative myocardial blood flow, so the use of
PET is of great clinical significance for the accurate quantification
of myocardial blood flow in diabetic patients.

It should be noted that the half-life of tracers used at present
is very short, which requires hospitals to have cyclotrons to
make tracers, which further increases the detection cost and has
higher requirements for hospitals (49). PET tracer should have
the characteristics of high specificity to molecular targets, high
metabolic stability, high affinity to target tissues, low cost, and
good safety (50). The new generation tracer 18F-flurpiridaz has
a long half-life (110min), low cost, and good imaging quality.
Although it is still in the clinical trial stage, it has shown excellent
performance (51). Compared with other PET radionuclides, 18F
has the shortest positron range in tissues (52). It improves spatial
resolution and may be widely used in microvascular imaging in
the future. 18F-labeled 18F-FDG is a radiolabeled glucose analog.
As with glucose, 18F-FDG passes into the cells through a glucose
transport mechanism. However, 18F-FDG cannot participate in
glycolysis and cannot be metabolized and excreted from cells.
Ischemic sites can be imaging by using differences in 18F-
FDG absorption in normal and ischemic myocardium (53).
Because the glucose metabolism of cardiac muscle cells varies

greatly in different physiological situations, strict control of
the metabolic environment is required to accurately diagnose
myocardial ischemia (54). In any case, the application of 18F-FDG
contributes to the diagnosis of microvascular angina.

The unique feature of detecting microcirculation using PET is
that PET obtains information on the molecular level (55). It can
reflect the degree of damage to myocardial cells. For instance,
[18F]FEDAC is commonly used in non-invasive visualization
of neuroinflammation, inflammation of the lung, acute liver
injury, and liver fibrosis (56), but recent studies have found that
[18F] FEDAC also has good results in assessing the myocardial
ischemic injury. Myocardial ischemia leads to myocardial cell
mitochondrial dysfunction, then downregulation of translocator
protein TSPO expression. Luo et al. (57) synthesized an
18F-labeled PET probe, N-benzyl-N-methyl2-[7,8-dihydro-7-
(2-[18F]fluoroethyl)-8-oxo-2-phenyl-9Hpurin-9-yl]acetamide
([18F]FEDAC), with a high binding affinity for TSPO. They
injected FEDAC into two groups of mice and analyzed the
differences in TSPO expression using PET. Ischemic tissue
uptake decreased, with normal-to-ischemic uptake ratios of
10.47 ± 3.03 (1.5min) and 3.92 ± 1.12 (27.5min) (P = 0.025).
The reduction in [18F] FEDAC uptake in the PET image is
consistent with the observed histopathological features. This
suggests that this technique has good specificity and sensitivity
in assessing the ischemic distribution, but more research should
be needed to verify this technique.

However, the shortcomings of PET myocardial perfusion
imaging in detecting coronary microvascular angina pectoris are
that its spatial resolution is relatively low (58). The tracer used
will inevitably cause radiation to patients. Compared with two-
dimensional PET, the new high-sensitivity 3D positron emission
tomography scanner adopts a three-dimensional acquisition
method with a small radiation dose, which shows promising
results in the experiment. It may diagnose CMVA more
accurately (59).

Cardiac Magnetic Resonance Imaging
Compared with radioactive tracer imaging, MRI has higher
spatial resolution and temporal resolution (60), has the
characteristics of no ionizing radiation, multi-parameter
imaging, and good imaging of soft tissue, and is a powerful
tool for clinical diagnosis of coronary artery diseases (61). After
injection of contrast media, the signal intensity in areas with good
coronary microcirculation increased uniformly, while in areas
with myocardial ischemia, the signal intensity increased slowly.
The MBF at rest and filling state can be obtained by analyzing
the signal intensity by computer. Then CFR can be calculated.
The research results of Raksha Indorkar (62) show that CFR
derived from CMR is an independent predictor of major adverse
cardiovascular events (MACE). CMR can observe coronary
microcirculation in a non-quantitative or quantitative way.
Quantitative CMR can accurately detect coronary microvascular
dysfunction. This point has been confirmed by Zorach et al. (63).
In addition, CMR is sensitive to early coronary microvascular
lesions. Levelt et al. (64) performed adenosine stress and resting
T1 mapping on 31 T2DM patients and 16 healthy controls.
All patients were excluded from the obstructive coronary heart
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disease. They found that the myocardial perfusion reserve
index (MPRI) of T2DM patients was lower than that of the
control group (1.60 ± 0.44 vs. 2.01 ± 0.42, P = 0.008). During
adenosine stress, patients with T2DM showed decreased non-
contrast T1 response to relative stress vs. control group. So
CMR can detect subclinical coronary microvascular dysfunction
without gadolinium contrast agent injection. Studies suggest
that CMR has a high application value in practice because
the quantification of adenosine stress T1 CMR can accurately
distinguish obstructive epicardial CAD from microvascular
dysfunction without using contrast media (65).

Recently, in the diagnosis of microvascular diseases,
Chatzantonis et al. (66, 67) introduced a new cardiovascular
magnetic resonance (CMVD) parameter named “myocardial
transit-time” (MyoTT), which is defined as the blood circulation
time from the orfice of the coronary artery to the collection of
the coronary sinus. MyoTT reflects the transmission time of
gadolinium in myocardial microvascular. Therefore, it can be
used for the diagnosis of CMVD. Compared with CFR, MyoTT
has the advantages of not prolonging the examination time of
patients, being easy to operate. It considers the heterogeneity
of microvascular’s functional lesions and can quickly evaluate
the overall pathological changes of myocardial infarction
microvasculature. However, due to the lack of research on
MyoTT, it is necessary to evaluate its diagnostic performance in
the future further.

Though little research has been done using perfusion CMR,
recent studies have shown that MPRI derived from CMR,
expressed as the hyperemic-to-resting myocardial perfusion
ratio, can evaluate the prognosis of patients. In a retrospective
study of 218 patients by Zhou et al. (68), 91% of the
patients had an MPRI value of <2.0. During the 5.5-year
follow-up, 34 MACEs occurred, an MPRI cut-off value of
<1.47 was identified as the optimal prognostic threshold for
predicting MACE.

Patients with cardiac electronic implant devices undergoing
CMR may develop arrhythmia or even cardiac arrest. This is
a major safety issue for CMR testing. Canadian Heart Rhythm
Society and Canadian Association of Radiologists has detailed
the precautions and taboos of CMR checks in the statement
(69). With these electronic implantable devices being upgraded,
their compatibility with CMR is also improved. As long as the
manufacturer’s agreement is strictly followed and supervision is
done during the inspection, the inspection can be implemented.
Another safety issue is that some patients are allergic to agents,
but this can be solved by taking a skin test before injection or
through drug replacement.

In addition, compared with 1.5T semi-quantitative CMR, 3T
high-resolution CMR can identify CMVD with high precision.
It shows better diagnosis performance in experiments (70)
and improves the image signal-to-noise ratio (71). With the
development of technology, high-resolution CMR will hopefully
be widely used in the clinical diagnosis of CMVD in the
future. At present, the disadvantage of magnetic resonance
is the inability to provide examinations for patients with
metal implants, high prices and long imaging time. So CMR
equipment’s development direction in the future is to solve the

compatibility between metal implants and CMR, reduce the
detection cost and time, and find simpler and feasible parameters
to diagnose CMVD.

Myocardial Contrast Echocardiography
The appearance of an acoustic contrast agent makes it possible
to evaluate cardiac microcirculation by ultrasound. These
contrast agents are composed of microbubbles similar to red
blood cells. They can freely pass through the pulmonary
circulation after entering the human body and enter the
coronary microvasculature. In the myocardium with good
coronary microvasculature, microbubbles can flow normally.
Then imaging can be obtained through the scattering effect of
microbubbles. However, images of abnormal myocardium are
different from normal.

MCE uses microbubbles as contrast agents, so selecting
suitable microfoam materials impacts diagnostic efficacy
significantly. Xu et al. (72) designed platelet membrane-coated
particles with a porous polylactic-co-glycolic acid (PLGA) core
coated with a platelet membrane shell, platelet membrane can
bind to myocardial ischemia-reperfusion areas. Injury areas
of the mouse cardiac muscle were evaluated using ultrasound.
They found a significantly increased signal strength in the risk
area, a technique that may contribute to the diagnosis of early
myocardial injury. Current ultrasonic microbubbles are used in
various materials, but people mostly make improvements around
the stability and toxicity of microbubbles, so it is necessary to
find microbubble materials targeted to myocardial ischemia.

For a long time, the accuracy of CMVD detection by MCE has
been controversial (73). In fact, its reliability and accuracy have
been confirmed, and its diagnostic performance is comparable to
that of positron emission tomography, but it lacks the approval
of relevant regulatory authorities (74). Yang et al. (75) performed
quantitative MCE of adenosine triphosphate (ATP) stress on
227 patients with chest pain and no obvious coronary artery
stenosis (<50%) to evaluate CFR. They found that diabetic
patients have a higher possibility of cardiovascular adverse events
and considered that quantitative MCE of ATP stress could be
used to evaluate coronary artery microcirculation. CFR obtained
by ultrasound has assignable significance for the prediction of
adverse events. Cortigiani et al. (76) administered Dipyridamole
Stress Echocardiography in 1,130 patients (including 341 diabetic
and 789 non-diabetic patients) and assessed their left anterior
descending CFR. They found the annual event rate in the diabetic
and non-diabetic patients was 9.3 and 5.1%, respectively. Patients
with abnormal CFR significantly increased event rates over
patients with normal CFR (p < 0.0001). This fully affirms the
prognostic value of ultrasound in patients with diabetes.

Ultrasound may have a unique therapeutic function due
to its biological effects. Moccetti et al. (77) found that the
cavitation effect produced by ultrasound microbubbles can
make myocardial microcirculation release ATP and increase
microcirculation blood flow. In primates, blood flow increases
up to double. Given the portability of the ultrasound device, it
is possible to use it to control the area of myocardial infarction.
In addition, we can use microbubbles to transport some drugs
and promote their absorption. Acidic fibroblast growth factor
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TABLE 1 | Comparison and progress of various equipment for the diagnosis of

myocardial ischemia (87).

Device Accuracy Practicability Developments

SPECT Common Good CZT camera improves imaging

quality and reduce radiation

The new algorithm SIFADS can

improve image quality

PET Good Common A new generation of tracer
18F-flurpiridaz is promising to be

widely used in clinics

[18F]FEDAC reflects the damage

degree of cells

CMR Good Good New parameter MyoTT increases

the value of CMR

3T High Resolution CMR may be

widely used in clinic

MCE Bad Common Microbubbles can combine

targeted drugs to improve

microvascular function

CCTA Common Common DTI and EATthickness increase the

value of CCTA in the diagnosis of

coronary microvascular disease

(FGF1) can resist oxidative damage, induce endothelial smooth
muscle cell proliferation and promote angiogenesis. Lei Zheng
et al. (78) delivered FGF1 to the myocardium of diabetic rats
by using FGF1-loaded nanoliposomes combined with ultrasonic
targeted microbubble destruction. Cavitation and mechanical
effect produced by microbubble destruction can promote drug
absorption, and improve myocardial microcirculation. This
achieves good results in preventing diabetic cardiomyopathy. The
limitation ofMCE in evaluating coronarymicrovascular function
is that its accuracy is interfered with by many factors, such as
the technical level of operators and patient’s situation (79). In
a word, MCE is a potential technology with advantages of low
cost, simple operation, and no ionizing radiation, these makes
it play a unique role in the preliminary screening of coronary
microvascular angina pectoris.

Coronary Computed Tomography
Angiography
Coronary computed tomography angiography (CCTA) is a
reliable method for clinical coronary stenosis (80). However, the
diagnosis effect of coronary microvascular abnormality is not
good (81). What is essential is that CT can implement the “one-
stop-shop” imaging of INOCA (82). The vascular functional
information provided by Dynamic CT-MPI is combined with
the vascular anatomical information provided by CCTA, which
is beneficial for detecting the function of microvessels and the
identification of sizeable vascular obstruction. Yu et al. (83) also
found that the MBF measured by CT-MPI was associated with
the heart rate, when the heart rate increment is >20, the MBF
will increase dramatically. Therefore, the effect of the heart rate
also needs to be considered when referring to the MBF.

Intracavity attenuation gradient (TAG) is a newCT parameter,
which is defined as the linear regression coefficient between

TABLE 2 | Characteristics of various imaging methods for microvascular angina.

Device Advantages Disadvantages

SPECT Low costs

Good practicability

Low sensitivity and specificity

Radiation exposure

PET Accurate quantification of MBF

Molecular-level research

High costs

Radiation exposure

Higher requirements for hospital

CMR No radiation exposure

Sensitive to subtle changes

Assessment without

contrast agents

High costs

Limited by metal implants

Time consuming

MCE Low costs,

Suitable for screening

Biological effect

Bad reliability

CCTA Assessment of epicardial vessels

and microvascular

Insensitive to microvascular

disease

Radiation exposure

the attenuation of intracavity contrast agent and axial distance
(84). Recently, based on the attenuation gradient (TAG), Kojima
et al. (85) put forward a new diagnostic index, the Dynamic
TAG Index (DTI), which overcomes the disadvantage that
TAG is easily affected by other non-ischemic factors. When
there is coronary ischemia, DTI will obviously increase. So
DTI increases the value of CCTA in diagnosing functional
coronary diseases. The result shows that DTI combined
with CCTA has good consistency with PET-MPI and shows
comparable performance. However, there are few samples in
this study, and it needs to be verified in a giant sample
experiment. In addition, Alam et al. (86) found that the
increased epicardial adipose tissue (EAT) measured by CT was
significantly correlated with MFR. It was proposed that the cut-
off value of EATthickness >5.6mm was the best value for detecting
abnormal coronary microvascular function. This may provide
a new reference direction for the examination of coronary
microvascular function.

Comparison of microvascular angina pectoris detected by
various imaging methods (Tables 1, 2)

CONCLUSION

The cardiovascular complications are prevalent in diabetic
patients., And a large proportion of patients have vascular
diseases in the early stage of diabetes. Rapid and accurate
diagnosis of CMVA can help patients’ treatment strategies.
Imaging equipment such as SPECT, PET, CMR, and MCE
have played an essential role in the non-invasive evaluation of
CMVA. Non-invasive methods are more acceptable to patients
than invasive methods and can reduce unnecessary waste of
resources. Simultaneously, the use of cheap screening techniques
also contributes to early intervention in asymptomatic patients.
With the development of science and technology, the reliability
of these methods will be continuously improved. The emergence
of new technologies and new parameters will enable them to
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provide a better basis for the diagnosis of CMVA. Despite
the relevant advantages of non-invasive techniques, we should
recognize some limitations. Vasodilators used in non-invasive
techniques only evaluate their own ability to dilate blood vessels.
Also, obstructive CAD must be excluded before the diagnosis
of CMVD. Given the high incidence of obstructive angina
pectoris in diabetic patients, it is more realistic to choose
appropriate imaging methods to distinguish obstructive angina
pectoris from CMVD. It can also reduce the economic burden on
patients. With the continuous development of medical imaging,
we must look for high-sensitivity detection measures for early
detection and intervention to reduce cardiovascular events in
diabetic patients.
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