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The combination of vonoprazan (VPZ) and amoxicillin (VA therapy) has been shown to
achieve acceptable eradication rates forHelicobacter pylori (H. pylori). Herein, our aim was
to explore the short-term effect of VA therapy on the gut microbiota and short-chain fatty
acids (SCFAs) using human fecal samples. A total of 119 H. pylori-positive patients were
randomized into low- or high-dose VA therapy (i.e., amoxicillin 1 g b.i.d. or t.i.d. and VPZ
20 mg b.i.d.) for 7 or 10 days. Thirteen H. pylori-negative patients served as controls.
Fecal samples were collected from H. pylori-positive and H. pylori-negative patients. The
gut microbiota and SCFAs were analyzed using 16S rRNA gene sequencing and gas
chromatography–mass spectrometry, respectively. The gut microbiota in H. pylori-
positive patients exhibited increased richness, diversity, and better evenness than
matched patients. Fifty-three patients studied before and after H. pylori eradication
were divided into low (L-VA) and high (H-VA) amoxicillin dose groups. The diversity and
composition of the gut microbiota among L-VA patients exhibited no differences at the
three time points. However, among H-VA patients, diversity was decreased, and the
microbial composition was altered immediately after H-VA eradication but was restored by
the confirmation time point. The decreased abundance of Anaerostipes, Dialister, and
Lachnospira induced by H-VA was associated with altered SCFA levels. VA dual therapy
for H. pylori eradication has minimal negative effects on gut microbiota and SCFAs.

Keywords: Helicobacter pylori, eradication, vonoprazan, amoxicillin, gut microbiota, short-chain fatty acids
INTRODUCTION

Helicobacter pylori (H. pylori), a common pathogen that colonizes the stomach, is etiologically
associated with diverse gastric and extragastric diseases (gastric cancer, peptic ulcers, chronic
gastritis, iron-deficiency anemia, etc.) (Graham, 2015; Amieva and Peek, 2016; Gravina et al., 2020).
Studies showing that cure of H. pylori infections can reduce the risk of gastric cancer (GC) have
resulted in consensus guidelines suggesting the elimination of H. pylori for the prevention and
control of GC, especially in areas with high incidence of GC (Malfertheiner et al., 2017;
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El-Serag et al., 2018; Liu et al., 2018; Du et al., 2020; Liou et al.,
2020b). Moreover, H. pylori infection has also been reported to
induce a systematic immunoregulatory effect and to alter the
normal acidic gastric environment, leading to alterations of the
gastric and gut microbiota (Chen et al., 2021). Our previous
animal studies demonstrated that the interactions between H.
pylori, diet, and the gut microbiota dysregulated host metabolic
homeostasis (He et al., 2016; Peng et al., 2021). The call to
eliminate H. pylori has drawn increasing attention to the
perturbation of gut microbiota induced by H. pylori eradication.

The extent and severity of perturbations associated with H.
pylori eradication vary among different regimens in part due to
the differences in dose, frequency, and duration of acid
inhibitors or the types and duration of antibiotics used (Liou
et al., 2020a). For example, Liou et al. (2019) conducted a
multicenter, open-label, randomized trial of 1520 patients to
evaluate short-term and long-term changes in the gut
microbiota induced by triple therapy [amoxici l l in,
clarithromycin, and a proton pump inhibitor (PPI)] for 14
days, bismuth-containing quadruple therapy (tetracycline,
metronidazole, bismuth, and PPI) for 10 days and
concomitant therapy (amoxic i l l in , c lar i thromycin ,
metronidazole, and PPI) for 10 days. Alpha diversity was
reduced and beta diversity was altered 2 weeks after the end
of treatment. Both the alpha diversity and beta diversity were
restored more rapidly in those receiving triple therapy vs.
bismuth-containing quadruple therapy or concomitant
therapy. In addition, the gut microbiota composition was
altered at different levels following H. pylori eradication
during the short-term or interim follow-up, and inconsistent
results regarding microbial change were observed during long-
term follow-up (Ye et al., 2020). Overall, the current consensus
is that H. pylori eradication decreases microbial diversity of the
gut microbiota but that the composition of the gut microbiota
tends to return to a healthy status (He et al., 2019). The long-
term effects are unknown but ideally, the preferred therapy
would be one with minimal or no detrimental effects on the
gut microbiota.

Vonoprazan (VPZ) is a new acid inhibitor that has been
available in Japan since 2015. It is widely used for H. pylori
eradication in Japan due to its strong, fast, and long-lasting
ability to inhibit gastric acid (Martinucci et al., 2017; Sugimoto
and Yamaoka, 2018). The combination of VPZ (20 mg b.i.d.) and
amoxicillin (750 mg b.i.d. or 500 mg t.i.d.), called VA dual
therapy, has shown similar efficacy to VPZ-based triple therapy
in adults and junior high school students (Furuta et al., 2020;
Gotoda et al., 2020; Suzuki et al., 2020). After VPZ triple therapy,
the alpha diversity and beta diversity of the gut microbiota were
altered at 1 week and 8 weeks compared to baseline. However, no
differences were observed when using VA dual therapy, possibly
due to the absence of clarithromycin (Horii et al., 2021). One
year after treatment, the alpha diversity was increased in both
groups in comparison to before eradication (Suzuki et al., 2021).
In Japan, the duration of VA dual therapy is 7 days due to
limitations by the national medical insurance policy. Currently,
the efficacy and safety of VA dual therapy for H. pylori
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
eradication in other regions remain unclear, although early
reports are promising (Suzuki et al., 2020). The role of VA
dual therapy, especially for different durations and doses of
amoxicil l in and VPZ, on the gut microbiota needs
further exploration.

Short-chain fatty acids (SCFAs) are produced in the intestinal
tract, primarily depending on the anaerobic fermentation of fiber
by intestinal microorganisms (He et al., 2020). Importantly,
SCFAs were reported to be involved in regulating energy
metabolism and supply, maintaining intestinal barrier integrity,
preventing microbial translocation, and decreasing inflammation
(Yang et al., 2020). Reductions in SCFAs induced by gut
dysbiosis are commonly observed in human metabolic diseases
(Morrison and Preston, 2016). H. pylori infection has been
shown to alter gut SCFA levels in mice. Sodium butyrate, a
primary component of SCFAs, inhibits the growth of H. pylori
and decreases H. pylori-induced inflammation, indicating that
sodium butyrate might be an efficient metabolite affecting the
progression of H. pylori-related diseases (Huang et al., 2021).
Currently, no clinical trials have been conducted exploring the
relationship between SCFAs and H. pylori infection
or eradication.

In our study, 16S rRNA sequencing and targeted
metabolomic profiling (SCFAs) of stool samples were
conducted in H. pylori-positive and following H. pylori
eradication and healthy controls. Herein, we aimed to explore
the interactions between H. pylori infection, the gut microbiota,
and SCFAs. Furthermore, alterations in the gut microbiota and
SCFAs induced by different doses and durations of VA dual
therapies were explored. We also evaluated factors that might
influence the gut microbiota and SCFAs. In addition, integrated
analysis of gut dysbiosis and SCFAs alterations was performed.
MATERIALS AND METHODS

Study Design and Population
A total of 119H. pylori-positive patients with dyspepsia or health
examination were enrolled from the outpatient clinic of The First
Affiliated Hospital of Nanchang University and were randomized
into four groups: (1) L-VA-10: low dose amoxicillin (1000 mg
b.i.d.) and VPZ (20 mg b.i.d.) for 10 days; (2) H-VA-10: high
dose amoxicillin (1000 mg t.i.d.) and VPZ (20 mg b.i.d.) for 10
days; (3) L-VA-7: low dose amoxicillin (1000 mg b.i.d.) and VPZ
(20 mg b.i.d.) for 7 days; (4) H-VA-7: high dose amoxicillin
(1000 mg t.i.d.) and VPZ (20 mg b.i.d.) for 7 days. Fecal samples
from 53 H. pylori-positive patients with successful eradication
were collected, including 17 cases following therapy with L-VA-
10, 12 cases following H-LA-10, 13 cases following L-VA-7, and
11 cases following H-LA-7.

The inclusion criteria were (1) age from 18 to 70 years; (2) H.
pylori infection diagnosed by histology (gastric antrum biopsy
was collected and detected for H. pylori infection using
immunohistochemistry) or 13C-urea breath test; and (3) no
history of H. pylori eradication. The exclusion criteria included
(1) allergy to amoxicillin; (2) Zollinger-Ellison syndrome, GC,
June 2022 | Volume 12 | Article 881968
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upper gastrointestinal bleeding, or active peptic ulcer;
(3) coexistence of significant concomitant illnesses, including
heart disease, renal failure, hepatic disease, previous abdominal
surgery, lactation, or pregnancy; (4) use of PPI and antibiotics
within the previous one month; and (5) unwillingness to
participate in this study.

Thirteen H. pylori-negative patients (confirmed by 13C-urea
breath test) with no history of surgery or other diseases were
recruited and defined as healthy controls. Fecal samples were
collected at three time points: before eradication therapy, after
eradication, and at confirmation of cure of the H. pylori infection
(confirmation). H. pylori eradication was evaluated using the
13C-urea breath test 4 weeks after treatment. H. pylori status was
defined as negative or positive when the delta over baseline was
below 4 or above 4 according to the instructions of the
manufacturer (HCBT-01, Shenzhen Zhonghe Headway Bio-Sci
& Tech Co., Ltd., China). Propensity score matching (PSM) for
sex, age, and body mass index between H. pylori-positive and H.
pylori-negative patients (ratio: 2:1) was conducted. Written
informed consent was obtained from all patients before
enrollment. This study was approved by the Ethics
Committee of The First Affiliated Hospital of Nanchang
University (2020-024) and registered in the Chinese Clinical
Trial Registry (ChiCTR2000041477).

DNA Extraction and 16S rRNA
Gene Amplification
Total DNA was extracted using the OMEGA Soil DNA Kit
(M5635-02) (Omega Bio-Tek, Norcross, GA, USA) according to
the manufacturer’s instructions. The quantity and quality of
extracted DNA were measured using a NanoDrop NC2000
spectrophotometer (Thermo Fisher Scientific, Waltham, MA,
USA) and agarose gel electrophoresis, respectively. Genomic
DNA samples were stored at -20°C prior to further analysis.
Polymerase chain reaction amplification of the bacterial 16S
rRNA gene V3-V4 region was conducted using the following
primers: 338F (5’-ACTCCTACGGGAGGCAGCA-3’) and 806R
(5’-GGACTACHVGGGTWTCTAAT-3’). 16S rRNA data were
processed as previously described (He et al., 2019). Taxonomy
was assigned to amplicon sequence variants (ASVs) using the
classify-sklearn naive Bayes taxonomy classifier in the feature-
classifier plugin against the Greengenes Database (Desantis
et al., 2006).

Purification and Gas
Chromatography–Mass Spectrometry
Analysis of Short-Chain Fatty Acids
Samples were thawed on ice, and then 30 mg of each was placed
into a 2 mL glass centrifuge tube. Then, 900 ml 0.5% phosphoric
acid was added, and samples were shaken for 2 min. Then, the
samples were centrifuged at 14,000 × g for 10 min, the
supernatant was extracted with 800 ml, and the same amount
of ethyl acetate was added for extraction. A total of 600 ml
supernatant of the extract was mixed with 500 mM of internal
standard (4-methylpentanoic acid) before injection. A mixed
standard solution of 7 component methyl esterified fatty acids
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
(Sigma–Aldrich) was used as a reference standard to identify the
fatty acids. The quantity of each methyl fatty ester was calculated
from the calibration curves of the standards. Eight mixed
standard concentration gradients of 0.1 mg/mL, 0.5 mg/mL, 1
mg/mL, 5 mg/mL, 10 mg/mL, 20 mg/mL, 50 mg/mL, and 100 mg/
mL were used, where concentration is the total concentration of
each component.

The samples were separated on an Agilent DB-WAX capillary
column (30 m×0.25 mm ID×0.25 µm) gas chromatography
system. The temperature programming was as follows: the
initial temperature was 90°C and remained for 3 min. The
temperature increased at 10°C/min up to 120°C and then
increased at 25°C/min up to 250°C and remained there for 20
min. A QC sample was used for testing and evaluating the
stability and repeatability of the system. An Agilent 7890A/
5975C gas chromatography-mass spectrometer was used for
analysis. The temperatures of the injection port and
transmission line were 250°C and 230°C, respectively. The
electron bombardment ionization (EI) source, SIM scanning
mode, and electron energy were 70 eV. MSD ChemStation
software was used to extract the chromatographic peak area
and retention time. The content of SCFAs in the sample was
calculated by plotting the curve. The quality control samples
were processed together with the biological samples. Detected
metabolites in pooled samples with a coefficient of variation
(CV) less than 30% were denoted as reproducible measurements.

Bioinformatics and Statistical Analysis
Bioinformatics of the gut microbiome was performed using
QIIME2 (Bolyen et al., 2019) with slight modification (https://
docs.qiime2.org/2019.4/tutorials/) and R packages (v3.2.0).
Briefly, nonsingleton ASVs were aligned and used to construct
a phylogeny with fasttree2. Alpha diversity metrics (including
Chao1, Shannon, and Pielou’s evenness) were calculated using
the ASV table in QIIME2 and are visualized as box plots. ASV-
level ranked abundance curves were generated to compare the
richness and evenness of ASVs among samples. Beta diversity
analysis was conducted to explore the structural variation of
microbial communities across samples using Bray–Curtis
metrics and was visualized via principal coordinate analysis
(PCoA). The significance of microbiota structure differences
among groups was assessed by PERMANOVA using QIIME2.
Linear discriminant analysis effect size (LEfSe) (Segata et al.,
2011) was conducted to detect differentially abundant taxa across
groups. The linear discriminant analysis threshold was defined as
2, and the Wilcoxon test was used to test the significance of
differences in taxa across groups. Microbial functions were
predicted using PICRUSt2 in the KEGG (https://www.kegg.jp/)
database based on the 16S rRNA sequencing data. Briefly, the
ASVs were aligned to reference sequences and placed into
reference trees, and the gene family copy numbers of ASVs
were then inferred. Gene family abundance per sample was
determined, and pathway abundances were inferred. KEGG
analysis was conducted using STAMP (Parks et al., 2014). Co-
occurrence network analysis was performed using SparCC
analysis (abundance>0.1%, r>0.5, Q>0.05). Spearman’s rank-
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correlation coefficient of the gut microbiota and SCFAs was
calculated using Mothur; -1 < rho <0 was considered negatively
associated, and 0 < rho <1 was considered positively associated.

Continuous data are presented as the mean ± standard
deviation (SD) and were analyzed using one‐way ANOVA.
Data with a nonnormal distribution are presented as medians
with first and third quartiles and were analyzed using
nonparametric statistical tests. SPSS (version 25.0) was used for
statistical analysis. P<0.05 was considered statistically significant.

Data Access
All raw sequences were deposited in the NCBI Sequence Read
Archive under accession number PRJNA797530.
RESULTS

Characteristics of the Study Population
From January 9, 2021, to October 1, 2021, 132 patients were
enrolled in this study, including 119 H. pylori-positive and 13 H.
pylori-negative patients. Fecal samples from 66 H. pylori-positive
patients were not collected due to refusal, eradication failure, or
loss to follow-up. The final study population consisted of 53 H.
pylori-positive patients whoseH. pylori infection was successfully
eradicated with VA dual therapy, and 13 H. pylori-negative
patients were further included to analyze alteration in the gut
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
microbiota and SCFAs. Twenty-six of the 53 H. pylori-positive
patients were screened using the PSM (ratio 2:1) method to
balance the baseline characteristics between the H. pylori-
positive and H. pylori-negative groups (Figure 1A). The
gender, sex, and body mass index between the two groups
exhibited no differences (Table S1). The L-VA-10 and L-VA-7
groups were combined as the L-VA group (daily dose of
amoxicillin ≤ 2 g and total dosedose ≤ 20 g), and the H-VA-10
and H-VA-7 groups were combined as the H-VA group (daily
dose of amoxicillin>2 g and total dose>20 g). Detailed sample
information of the L-VA and H-VA groups at three time points
(before eradication therapy, after eradication, and confirmation
for H. pylori) is shown in Table S2.

H. pylori Infection, The Gut Microbiota,
and SCFAs
Diversity and Compositional Analysis
We first compared the alpha and beta diversity between the 26H.
pylori-positive patients and the 13 H. pylori-negative patients.
The Chao1 index indicated that the gut microbiota in the H.
pylori-positive group exhibited increased richness compared to
that in the H. pylori-negative group (P<0.05, Figure 1B). Higher
diversity was also observed in H. pylori-positive patients than in
H. pylori-negative patients, as revealed by the Shannon index
(P<0.05, Figure 1C). The Pielou index revealed that H. pylori-
positive patients displayed better evenness than negative
A B C

D E

FIGURE 1 | The flowchart of this study and diversity of the gut microbiota between H. pylori-positive patients and normal controls. (A) Overview of the study design.
Bacterial alpha diversity estimated by Chao1 (B), Shannon (C), and Pielou indices (D) between H. pylori-positive patients and normal controls. (E) Bacterial beta
diversity estimated by PCoA between H. pylori-positive patients and normal controls. L-VA: dual therapy consisting of a low dose of amoxicillin (1000 mg b.i.d.) and
VPZ (20 mg b.i.d.); H-VA: dual therapy consisting of a high dose of amoxicillin (1000 mg t.i.d.) and VPZ (20 mg b.i.d.); SCFAs, short-chain fatty acids; Hp, H. pylori-
positive; Control, H. pylori-negative; PCoA, principal coordinate analysis. *P < 0.05, **P < 0.01.
June 2022 | Volume 12 | Article 881968
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patients, although the difference was not significant (P=0.084,
Figure 1D). PCoA was performed to evaluate alterations in
community composition, and distinct clustering was found
between H. pylori-positive and H. pylori-negative groups as
measured by Bray–Curtis metrics (P<0.05, Figure 1E).
Differential bacterial compositions were observed between the
two groups. At the phylum level, the relative abundance of
Firmicutes and Actinobacteria was increased, while the relative
abundance of Bacteroidetes, Proteobacteria and Fusobacteria was
reduced in the H. pylori-negative group compared to the H.
pylori-positive group (Figure 2A). Significant differences in taxa
were observed between the two groups using LEfSe (Figure 2B).

Functional Analysis
We also explored the predictive functional profiling using 16S
rRNA sequencing data. Twenty-three signaling pathways were
significantly different between the H. pylori-positive and H.
pylori-negative groups (P<0.05, Figure 2C), primarily focusing
on metabolic signaling pathways (D-alanine metabolism,
histidine metabolism, taurine and hypotaurine metabolism,
etc.) and biosynthesis signaling pathways (penicillin and
cephalosporin biosynthesis, primary and secondary bile acid
biosynthesis, fatty acid biosynthesis, etc.). Network topology
analysis showed that the closeness centrality, number of edges,
average nearest neighbor degree, and degree centralization were
higher in the H. pylori-negative group than in the H. pylori-
positive group (Figures 2D, E; Table S3).

SCFA Analysis
SCFAs included acetic acid, propionic acid, butyric acid, isobutyric
acid, isovaleric acid, valeric acid, and hexanoic acid, which were
measured in the H. pylori-positive and H. pylori-negative groups.
As shown in Figure 3A, the H. pylori-positive group tended to
have a slightly higher abundance of SCFAs than the H. pylori-
negative group, and differences in the subjects within each group
were also observed. Among SCFAs, acetic acid, propionic acid,
and butyric acid were the most abundant (>90%). Levels of total
SCFAs, acetic acid and propionic acid were higher in theH. pylori-
positive group than in the H. pylori-negative group, although the
differences were not statistically significant (Figures 3B–D; Table
S4). Levels of butyric acid, isobutyric acid, isovaleric acid, valeric
acid, and hexanoic acid were not different between the two groups
(P>0.05, Figures 3E–I; Table S4).

H. pylori Eradication, VA Dual Therapy,
Gut Microbiota, and SCFAs
Diversity and Compositional Analysis
As shown in Figures 4A–C, richness, diversity, and evenness
were not altered by L-VA therapy, as revealed by the Chao1,
Shannon, and Pielou indices. The richness was slightly reduced
after eradication and increased at confirmation when receiving
H-VA therapy, although the differences were not statistically
significant (Figure 4D). The Shannon and Pielou indices showed
that the diversity and evenness were decreased after receiving H-
VA therapy and increased at confirmation (Shannon index:
before eradication vs. after eradication P=0.11, after eradication
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
vs. confirmation P=0.085; Pielou index: before eradication vs.
after eradication P<0.05, after eradication vs. confirmation
P<0.05; Figures 4E, F). No distinct clustering was observed at
the three time points of L-VA therapy (P>0.05, Figure 4G).
However, different community compositions were observed
among the time points before eradication and after eradication
when subjects received H-VA therapy (P<0.05, Figure 4H), but
no distinct clustering was found when comparing the time points
before eradication and confirmation (P>0.05, Figure 4H).

At the phylum level, the abundances of Firmicutes and
Bacteroidetes, accounting for >90% abundance of gut microbiota,
were similar at the three time points of L-VA therapy. A slightly
increased abundance of Proteobacteria and Actinobacteria and a
slightly decreased abundance of Fusobacteria were observed after L-
VA eradication in comparison to the time points before eradication
and confirmation (Figure 5A). Notably, among the H-VA group, a
distinct decrease in the abundance of Firmicutes, Bacteroidetes and
Actinobacteria and an increase in the abundance of Proteobacteria
were observed after eradication compared to before eradication or
confirmation (Figure 5B). LEfSe for L-VA therapy revealed
differences in taxa after eradication compared to before
eradication or confirmation (Figures 5C, D). Interestingly,
Rosebubria and Anaerostipes (SCFA producers) were decreased
after eradication and increased at confirmation. As shown in
Figures 5E, F, distinct differences in taxa were observed after H-
VA eradication compared to before eradication and confirmation. A
similar trend of Rosebubria, Eubacterium, Blautia, Anaerostipes,
Dialister, and Lachnospira abundance among the three time points
was also observed in the H-VA group.

Functional Analysis
The KEGG pathway analysis revealed that 25 and 19 signaling
pathways were enriched when comparing the time point
after eradication to before eradication and confirmation among
the L-VA group (P<0.05, Supplementary Figures S1A, B).
Compared to L-VA therapy, more significant signaling
pathways were enriched among H-VA therapy (after
eradication vs. before eradication: 59 signaling pathways; after
eradication vs. confirmation: 32 signaling pathways) (P<0.05,
Supplementary Figures 1D, E). Only 3 and 1 signaling pathways
were enriched from before eradication to confirmation between
the L-VA and H-LA groups (P<0.05, Supplementary Figures
1C, F). Network topology analysis of L-VA therapy showed that
the indices of average nearest neighbor degree, closeness
centrality, transitivity, and edge number were decreased after
eradication and restored at the time point of confirmation
(Supplementary Figures 2A, C, Table S5). Among the H-VA
group, the indices of average nearest neighbor degree and
closeness centrality were decreased after eradication and
increased at the time point, confirmation. Moreover, the edge
number index was highest at the time point (Supplementary
Figures 2D–F; Table S6).

SCFA Analysis
As shown in Figures 6A–C, the heatmap of SCFAs among
different samples showed that SCFAs after eradication by
June 2022 | Volume 12 | Article 881968
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L-VA therapy were different from those before eradication and
confirmation. We also observed SCFA differences across samples
within each group. Levels of total SCFAs and acetic acid were
decreased after eradication and increased at confirmation
(Figures 6D, E; Table S7). Levels of propionic acid, butyric
acid, isobutyric acid, isovaleric acid, valeric acid, and hexanoic
acid exhibited no significant differences at any of the three time
points in L-VA therapy (Supplementary Figures 3A–F,
Table S7).

As shown in Figures 7A–C, the heatmap of SCFAs among
different samples of H-VA therapy showed that SCFAs after
eradication were different from those before eradication and
confirmation. SCFA differences across samples within each
group were also observed. Levels of total SCFAs, acetic acid
and propionic acid were decreased after eradication and restored
at confirmation (Figures 7D–F; Table S8). Levels of valeric acid
were decreased after eradication (Figure 7G; Table S8). No
significant differences were observed for levels of butyric acid,
isobutyric acid, isovaleric acid, or hexanoic acid at any of the
three time points in H-VA therapy (Supplementary Figures
4A–D; Table S8). The integrated analysis of gut microbiota and
SCFA alterations indicated that Anaerostipes, Dialister, and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
Lachnospira were positively associated with SCFAs, and their
expression was decreased after eradication and increased,
confirmation (Figures 5E, F, 7H).
DISCUSSION

To our knowledge, this is the first randomized clinical trial to
evaluate the short-term effect of different VA therapies on the gut
microbiota and SCFAs. Moreover, we addressed the relationship
between H. pylori infection and alterations in the gut microbiota
and SCFAs. Previous studies (Heimesaat et al., 2014; Ge et al.,
2018) established an H. pylori-infected Mongolian gerbil model
for 14 months and a C57BL/6 mouse model for 4 months to
explore the influence ofH. pylori infection on the gut microbiota.
Both short-term and long-term H. pylori infection altered the
composition of the gut microbiota. The majority of clinical trials
in adults (Frost et al., 2019; Wang et al., 2019; Iino et al., 2020)
and our previous study (He et al., 2019) have identified the
distinct clustering of gut microbiota between H. pylori-positive
subjects and normal controls using the next-generation
sequencing method, and a higher diversity of gut microbiota
A

B C D E

F G H I

FIGURE 3 | Analysis of SCFAs in H. pylori-positive patients and normal controls. (A) Heatmap of SCFA differences across different samples in H. pylori-positive and
normal control groups. The quantification of total SCFAs (B), acetic acid (C), propionic acid (D), butyric acid (E), isobutyric acid (F), isovaleric acid (G), valeric acid
(H), and hexanoic acid (I) in the H. pylori-positive patients and normal control groups. Hp: H. pylori-positive; Control: H. pylori-negative.
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was observed in the H. pylori-positive group. In our study, PSM
was used to match H. pylori-positive subjects to normal controls.
The alpha diversity was higher in the H. pylori-positive group
than in the H. pylori-negative group. Distinct clustering and
different bacterial compositions were observed between the two
groups. In addition, H. pylori infection might affect the
interactions of gut microbiota.

Huang et al. (2021) first explored the relationship between
H. pylori infection and SCFAs using an H. pylori-infected
C57BL/6 mouse model. The results showed that H. pylori
infection decreased the levels of acetic acid, propionic acid,
butyric acid, isobutyric acid, isovaleric acid, valeric acid, and
hexanoic acid. The number of mice included in each group was
limited (n=6). In our clinical trial, we included 26 H. pylori-
positive and 13 H. pylori-negative subjects for SCFA analysis,
and slightly higher abundances of total SCFAs, acetic acid, and
propionic acid were observed in H. pylori-positive patients than
in H. pylori-negative patients. However, considering the sample
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
size and the differences within groups, this difference was not
statistically significant. Moreover, we found no association of
gut microbiota alterations with SCFA levels. The relationship
between H. pylori infection and SCFAs needs to be
further explored.

Antibiotics comprise the primary regimens for eradicating
H. pylori but are a double-edged sword, as they are involved in
disrupting the homeostasis of the gut microbiota (Ianiro et al.,
2016). Multiple studies (Hsu et al., 2018; Hsu et al., 2019; Martin-
Nunez et al., 2019) and our previous study (He et al., 2019)
reported that significant perturbations were induced in the gut
microbiota immediately following H. pylori eradication and that
the gut microbiota alterations were not completely restored
short-term. Triple or quadruple therapy, concomitant therapy,
and hybrid therapy have been used in most studies and
contain many broad-spectrum antimicrobials, including
bismuth, tetracycline, clarithromycin, and metronidazole. Not
surprisingly, the extent and severity of perturbation induced by
A B C

D E F

G H

FIGURE 4 | The diversity of the gut microbiota between the L-VA and H-VA therapy groups. Bacterial alpha diversity estimated by Chao1 (A), Shannon (B), and
Pielou indices (C) at the three time points of L-VA therapy. The Chao1 (D), Shannon (E), and Pielou indices (F) at the three time points of H-VA therapy. Bacterial
beta diversity estimated by PCoA at three time points of L-VA (G) and H-VA (H) therapy. L-VA: dual therapy consisting of a low dose of amoxicillin (1000 mg b.i.d.)
and VPZ (20 mg b.i.d.); H-VA: dual therapy consisting of a high dose of amoxicillin (1000 mg t.i.d.) and VPZ (20 mg b.i.d.); L-1: the time point before eradication in
the L-VA group; L-2: the time point after eradication in the L-VA group; L-3: the time point of confirmation in the L-VA group; H-1: the time point before eradication in
the H-VA group; H-2: the time point after eradication in the H-VA group; H-3: the time point of confirmation in the H-VA group; * P<0.05.
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H. pylori eradication vary among different regimens. Compared
to quadruple therapy, the gut microbiota was restored more
rapidly following triple therapy during long-term follow-up
(Liou et al., 2019), which was primarily attributed to the fact
that triple therapy used one less drug. VA dual therapy contains
only one antibiotic, amoxicillin, which has a limited spectrum
but can achieve a similar efficacy for eradicating H. pylori in high
clarithromycin resistance regions, especially with VPZ (Suzuki
et al., 2020), and has less impact on the gut microbiota (Horii
et al., 2021). The diversity of the gut microbiota was not
influenced by VA dual therapy (VPZ 20 mg b.i.d. and
amoxicillin 750 mg b.i.d.) administered for 7 days. VA dual
therapy is only now being introduced in other regions, and it has
not yet been optimized to reliably achieve high cure rates. It
remains unclear what the impact of increasing the dose and/or
duration of amoxicillin will have on the gut microbiota. As such,
our study first explored the impact of different VA therapies on
the gut microbiota and analyzed the role of amoxicillin dose in
the alteration of gut microbiota.

We divided VA dual therapies with different durations and
doses of amoxicillin. L-VA therapy exerted no impacts on the
richness, diversity, or evenness of gut microbiota immediately
after eradication. Moreover, no distinct clustering was observed
before eradication, after eradication, or at confirmation.
However, the diversity was reduced, and perturbations of gut
microbiota were induced immediately after H-VA dual therapy.
This alteration tended to be restored by confirmation. Ye et al.
(Ye et al., 2020) recently conducted a meta-analysis of the gut
microbiota composition in response to H. pylori eradication. At
the phylum level, a decreased abundance of Actinobacteria and
an increased abundance of Proteobacteria were observed during
short-term follow-up. In addition, Firmicutes and Bacteroidetes
tended to decrease immediately after eradication (Chen et al.,
2021). The same trend of gut microbiota alterations at the
phylum level were observed in H-VA therapy. Functional
analysis demonstrated that more signaling pathways were
enriched in H-VA therapy than in L-VA therapy, which could
be explained by the distinct alterations of the gut microbiota
induced by H-VA therapy. The bacterial interactions were
influenced after eradication with L-VA and H-VA therapy and
recovered confirmation, which was confirmed by network
topology analysis. The diversity, composition, and function of
the gut microbiota were more strongly influenced by H-VA
therapy, which quickly recovered during a short period.

Currently, no clinical trials have addressed the impact of H.
pylori eradication on SCFAs. We first demonstrated that H. pylori
eradication leads to a decreased level of SCFAs, which was related to
gut dysbiosis. The impact was more distinct with H-VA therapy.
Most SCFA alterations recovered by 4 weeks after eradication.
Anaerostipes was shown to have the capability to produce
butyrate and propionate, which are associated with host health
(Bui et al., 2021). Dialister and Lachnospira are also reported to be
producers of SCFAs (Koh et al., 2016; Fitzgerald et al., 2021). Our
integrated analysis of the gut microbiota and SCFA alterations
revealed that the decreased abundance of Anaerostipes, Dialister,
and Lachnospira induced by H-VA therapy might be involved in
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
the alteration of SCFA levels. Our results provide evidence regarding
the relationship between H. pylori eradication, the gut microbiota,
and SCFA alterations.

There are some limitations to this study. First, a total of 53 H.
pylori-positive subjects and 13 normal controls from one center
in China were included, which cannot completely reflect the
impact of VA dual therapy on gut microbiota and SCFAs in
other regions or population groups. Multicenter clinical trials
with a larger number of subjects from additional regions are
warranted. Second, mucosa-associated or gastric biopsies were
not obtained because endoscopy was not conducted in a majority
of subjects. As such, we could not analyze the influence of VA
dual therapy on the local diversity of gastric or gut microbiota.
Third, because VPZ has a strong ability to inhibit gastric acid
secretion, further dose-related studies regarding its effects on the
gut microbiota are warranted. The dose of VPZ used in this study
was 20 mg twice daily. As such, the influence of different VPZ
doses on the gut microbiota could not be analyzed. Fourth, the
long-term impact of VA dual therapies on the gut microbiota
was not analyzed. We found that gut dysbiosis was restored 4
weeks after H. pylori eradication.

In conclusion, our study demonstrated thatH. pylori infection
induces alterations in the gut microbiota. L-VA therapy exerted
no or little influence on the diversity and composition of the gut
microbiota. H-VA therapy had a greater impact on the gut
microbiota than L-VA therapy. Gut dysbiosis occurred
immediately after eradication but was quickly restored by 4
weeks post-therapy. Decreased levels of SCFAs were observed
in the L-VA and H-VA groups and increased 4 weeks after
eradication. Linkages between H. pylori eradication, gut
dysbiosis, and SCFA alterations were identified. These results
indicate that VA dual therapy induces minimal effects on the gut
microbiota and SCFAs, supporting its short-term use and safety.
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Supplementary Figure 1 | KEGG pathway analysis of L-VA and H-LA therapy.
Significant signaling pathways enriched by comparing L-1 and L-2 (A), L-2 and L-3
(B), L-1 and L-3 (C), H-1 and H-2 (D), H-2 and H-3 (E), H-1 and H-3 (F) according
to KEGG pathway analysis. L-1: before eradication in the L-VA group; L-2: after
eradication in the L-VA group; L-3: confirmation in the L-VA group; H-1: before
eradication in the H-VA group; H-2: after eradication in the H-VA group; H-3:
confirmation in the H-VA group.

Supplementary Figure 2 | Ecological co-occurrence network analysis of L-VA
and H-LA therapies. The network analysis before eradication (A for L-VA therapy
and D for H-VA therapy), after eradication (B for L-VA therapy and E for H-VA
therapy) and confirmation (C for L-VA therapy and F for H-VA therapy). L-VA: Dual
therapy consisting of a low dose of amoxicillin (1000 mg b.i.d.) and VPZ (20 mg
b.i.d.); H-VA: dual therapy consisting of a high dose of amoxicillin (1000 mg t.i.d.)
and VPZ (20 mg b.i.d.).

Supplementary Figure 3 | SCFAs analysis of L-VA therapy. The quantification of
propionic acid (A), butyric acid (B), isobutyric acid (C), isovaleric acid (D), valeric
acid (E), and hexanoic acid (F) at the three time points of L-VA therapy. L-1: before
eradication in the L-VA group; L-2: after eradication in the L-VA group; L-3:
confirmation in the L-VA group.

Supplementary Figure 4 | SCFAs analysis of H-VA therapy. The quantification of
butyric acid (A), isobutyric acid (B), isovaleric acid (C), and hexanoic acid (D) at the
three time points of H-VA therapy. H-1: before eradication in the H-VA group; H-2:
after eradication in the H-VA group; H-3: confirmation in the H-VA group.
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