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Investigation of maternal breed and rearing type on the calf rumen microbiome 
from day 28 through weaning1,2
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INTRODUCTION

The livestock sector faces a disequilibrium in 
the financial balance of inputs and expected out-
puts, leading to a focus to improve feed efficiency. 
Ruminant livestock are able to convert low- quality 
forages into high-quality end products (meat, wool, 
fiber, etc.) largely due to the microbiome present in 
the rumen. Ruminal fermentation accounts for 70% 
of total dietary energy (Flint and Bayer, 2008), thus 
is critical to host performance and efficiency. Indeed, 
previous data indicate that more efficient animals 
have a less rich and diverse microbiome in both spe-
cies and gene content (Shabat et al., 2016). Several 
differences in specific microbial abundances have also 
been associated with divergence in feed efficiency in 
both cattle (Guan et al., 2008; Myer et al., 2015) and 
sheep (Ellison et al., 2015; Ellison et al., 2017).

Although the rumen is not truly functional until 
approximately 4-weeks of age (Church, 1988), micro-
bial fermentation and the end products are critical for 
the development of the rumen and immune system 
(Flatt et al., 1958; Suárez et  al., 2006; Malmuthuge 
et al., 2012). A large body of evidence suggests that 
maternal factors including both pre and postpar-
tum factors can influence offspring gastrointestinal 
tract microbiome in several species (Ley et al., 2005; 
Dominguez-Bello et  al., 2010), including ruminants 
(Cannon et  al., 2010). Data suggest that manipula-
tions that occur early in life may persist into adulthood 
(Abecia et al., 2014; Yáñez-Ruiz et al., 2015), providing 
the potential for alterations of the rumen microbiome 
to influence feed efficiency later in life. Thus, we hypoth-
esized that the rumen microbiome of calves would be 
altered by maternal factors and these changes would 
persist through weaning. Our objective was to deter-
mine if maternal breed and rearing type would affect 
the early calf microbiome through weaning.

MATERIALS AND METHODS

All animal procedures were approved by the 
University of Wyoming Animal Care and Use 
Committee.

Cow Management and Diet

Mature, bred Charolais (Char; n  =  24) and 
Angus (Ang; n  =  24) cows were purchased and 
housed at the Laramie Research and Extension 
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Center well in advance of calving. These breeds are 
recognized for differences in growth rates and yield, 
reflecting an evolutionary divergence in these bio-
logical types (Cundiff, 2005). Cows were bred via 
natural service and their expected calving date was 
calculated to be 250 d after the date the bull was intro-
duced. Cows were fed ad libitum grass hay (6.8% CP, 
40.2% ADF, 56.8% TDN, 1.2 NEm MCal/kg, 0.64 
NEg MCal/kg) and 2 lb d−1 DDGS (29.9% CP, 12.3% 
ADF, 75.0 TDN%, 1.79 NEm MCal/kg, 1.16 NEg 
MCal/kg). Prior to parturition, cows were moved 
into pens, separated by breed, and then randomly 
allocated to one of two treatment groups at parturi-
tion resulting in four treatment groups in total; Char 
control (CharCON, n = 12), Ang control (AngCON, 
n = 12), Char bottle (CharBOT, n = 12), and Ang 
bottle (AngBOT, n = 12). Calving was closely mon-
itored to ensure delivery of a live calf and to deter-
mine time of calving. Both bottle and control groups 
were allowed to calve naturally and calves received 
colostrum from their respective dams. At 24-h post-
parturition, the AngBOT and CharBOT calves were 
removed from their dams and reared on artificial milk 
replacer (High energy Nurse Chow100; Purina Mills/
Land O’Lakes, Inc.) until weaning. Each treatment 
group was housed in separate pens.

Calf Management and Calf  Rumen Fluid Sample 
Collection

At parturition, calves were monitored to ensure 
survivability. Calves were allowed ad libitum access 
to their dam’s colostrum (only for the first 24  h 
in AngBOT, CharBOT groups) as well as hay. At 
approximately 1.5 months of age, calves were fed 
Purina Stocker Grower at the rate of 2 lb h−1 d−1 
through weaning (180 d of age). At days 28 and 180, 
rumen fluid was collected from calves via oral-lav-
age using methods described by Lodge-Ivey et al. 
(2009). Briefly, a flexible vinyl tube, 0.5-cm inner-di-
ameter and 3 ft in length, was lubricated and passed 
through the mouth into the rumen; 20–30 mL rumen 
fluid was removed using suction via an attached 
syringe. The samples were aliquoted, flash frozen, 
and stored at −80 °C for subsequent analysis.

Rumen Microbial DNA Extraction

Rumen fluid samples were used for shotgun 
metagenomic sequencing. First, DNA was isolated 
from 8 calves per treatment group using methods 
described by Yu and Morrison (2004). Briefly, rumen 
fluid was thawed immediately prior to use and 0.25 g 
was added to sterilized zirconia (0.3 g of 0.1 mm) 

and silicon (0.1 g of 0.5 mm) beads along with 1 mL 
of lysis buffer (500  mM NaCl, 400  mM Tris-HCl, 
50 mM EDTA, 4% SDS). Tubes were then homoge-
nized using a Mini-Beadbeater-8 at maximum speed 
for 3 min, incubated at 70 °C for 15 min with fre-
quent mixing and centrifuged at 16,000 × g at 4 °C 
for 5 min. The supernatant (~1 mL) was transferred 
to a new 2-mL flat cap tube and 300 µL fresh lysis 
buffer was added to the pelleted beads. The homog-
enization, incubation, and centrifugation steps 
described above were repeated, and the supernatants 
were pooled. Nucleic acid was precipitated and then 
further purified using the QIAamp DNA Stool Mini 
Kit (Qiagen, Santa Clarita, CA) and the manufac-
turer’s suggested protocol, except that buffer EB was 
used for elution. Aliquots of 2 µg (80 ng/µL) were 
shipped to the University of Missouri DNA Core 
Facility, Columbia, MO, for sequencing.

Library Preparation and Metagenomic Sequencing

Libraries were constructed using manufactur-
er’s (Illumina) protocol with reagents supplied in 
Illumina’s TruSeq DNA PCR-Free sample prepa-
ration kit. Briefly, 1  µg of genomic DNA was 
sheared using standard Covaris methods to gen-
erate an average insert size of 350 bp. The 3′ and 
5′ overhangs were converted to blunt ends by an 
end repair reaction with 3′ to 5′ exonuclease/poly-
merase activity. Using purification beads (AMPure 
XP), the desired size fragment was selected. Then a 
single adenosine nucleotide was attached to the 3′ 
ends of the blunt fragments followed by ligation of 
Illumina indexed paired-end adapters. The library 
was purified twice using sample purification beads. 
This purified library was then quantified by a 
Qubit assay, and the library fragment size was con-
firmed by using the Fragment Analyzer (Advanced 
Analytical Technologies, Inc.). The library was 
then diluted and sequenced according to Illumina’s 
standard sequencing protocol for the HiSeq.

Metagenomic Sequencing Analysis and 
Identification of 16S rDNA Genes

Metagenomic sequences were quality filtered 
before 16S rDNA genes were identified using 
Metaxa2 (Bengtsson-Palme et  al., 2015). Briefly, 
hidden Markov models using HMMER were used 
to identify the conserved regions of the small subu-
nit by aligning to the SILVA database and then sub-
jected to a BLAST search. Taxonomic classification 
occurred by taking each rRNA entry and compar-
ing the top five BLAST matches until a reliability 
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score of 80 was achieved; this resulted in accurate 
taxonomic classification but not necessarily specific 
classification (Bengtsson-Palme et al., 2015). These 
taxonomic profiles were further analyzed to assess 
diversity among and between samples using QIIME 
1 (Caporaso et al., 2010).

RESULTS

There were 148, 780, 370, 754, and 676 taxa with 
significantly (P < 0.05) different abundances across 
treatment group, days, breed, days within treatment 
group, and days within breed, respectively. Alpha-
diversity was not (P = 0.21) different between rearing 
type; however, d 28 had increased (P = 0.001) richness 
compared with samples at weaning. The Char cows 
had increased (P  =  0.05) richness compared with 
Ang. The days within treatment group indicated that 
the CON animals (both Char and Ang) at d 28 had 
increased (P < 0.012) richness compared with CON 
at weaning, BOT d 28, and BOT at weaning. The 
BOT d 28 had increased (P = 0.006) richness com-
pared with both BOT and CON at weaning. Alpha-
diversity of days within breed indicated increased 
(P  =  0.006) richness in Char d 28 compared with 
Ang at weaning and increased (P = 0.006) richness 
in Ang d 28 compared with Ang at weaning. Beta-
diversity was not affected (P > 0.1) by rearing type, 
d 28 samples were more (P = 0.001) similar to each 
other than at weaning, and Char were more similar 
to Char than to Ang. The BOT d 28 were more sim-
ilar (P < 0.001) within their treatment group than all 
other comparisons except CON d 28. Beta-diversity 
was significantly (P = 0.001) different between BOT 
at weaning and BOT d 28 and CON d 28, yet tended 
(P  =  0.06) to be different from CON at weaning. 
The CON at weaning were more similar (P < 0.05) 
to other CON weaning samples than to BOT d 28, 
BOT at weaning, and CON d 28. Finally, CON d 28 
were more similar (P = 0.001) to each other than to 
BOT d 28, and both CON and BOT at weaning. The 
days within breed beta-diversity indicated that Char 
d 28 samples were more similar (P < 0.05) to each 
other than to Ang and Char at weaning and Ang d 
28. The Ang at weaning samples were more similar 
(P = 0.001) to each other than to Char and Ang on 
d 28 but were similar (P = 0.82) to Char at weaning. 
Finally, Ang d 28 samples were different (P = 0.001) 
in terms of beta-diversity from Char d 28 and both 
Char and Ang at weaning.

DISCUSSION

The rumen microbial profiles compared across 
rearing type did not differ in richness; however, 

differences in richness were evident with breed, 
days, days within treatment, and days within breed. 
Compositional differences were not evident for 
rearing type but were evident for all other com-
parisons. Several taxa had differential abundances 
across all comparisons, indicating that these micro-
bial taxa may be key contributors.

Maternal breed has been indicated to alter the 
rumen microbiome and has a strong host-genetic 
relationship with the microbiome of the rumen 
(Roehe et al., 2016). Specific sire breed influences on 
the offspring rumen microbiome have been reported 
(Hernandez-Sanabria et al., 2013); and in dairy cows, 
variation in the rumen microbiome between Holstein 
and Jersey breeds exists (Paz et al., 2016). Our data 
reflect differences in Char and Ang rumen microbial 
profiles, suggesting selection potential as well as diver-
gence in microbiome potentially caused by divergence 
in feed efficiency as seen between Ang (low efficiency) 
and Char (High efficiency; Cundiff, 2005).

Many studies investigate weaning strategies and 
the impact on the rumen microbiome, predominantly 
to evaluate optimal feeding strategy for improved 
growth and development (Rey et al., 2012; Jami et al., 
2013; Dias et al., 2017). In beef cattle operations, this 
type of rearing is generally not an option; however, 
an understanding of the impact that maternal milk 
has on the calf microbiome is critical. The effect of 
the stage of development on the microbiome is con-
sistent (Benson et al., 2010; Bath et al., 2013; Jami 
et al., 2013) indicating a stabilization of the rumen 
microbiome around weaning. The d 28 samples are 
critical as they reflect the period of transition from 
a pre-ruminant to a functional ruminant (Church, 
1988). Our data agree with the literature in that the 
d 28 samples have increased richness compared with 
samples at weaning, suggesting a stabilization of the 
microbiome in more mature animals.

In conclusion, our data suggest that mater-
nal breed and stage of development can affect the 
rumen microbiome of calves. Although distinct dif-
ferences in rearing type were not evident in terms 
of richness, several taxa abundances, beta-diversity, 
and interactions with d indicate that rearing type 
does play a role. The rumen microbiome is critical 
to host performance and the elucidation of factors 
contributing to variation in the microbial profiles 
may lead to intervention strategies towards improv-
ing host performance.
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