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Abstract: Peripartum cardiomyopathy (PPCM) is a condition in which heart failure and systolic
dysfunction occur late in pregnancy or within months following delivery. Over the last decade,
genetic advances in heritable cardiomyopathy have provided new insights into the role of genetics
in PPCM. In this review, we summarise current knowledge of the genetics of PPCM and potential
avenues for further research, including the role of molecular chaperone mutations in PPCM. Evidence
supporting a genetic basis for PPCM has emanated from observations of familial disease, overlap
with familial dilated cardiomyopathy, and sequencing studies of PPCM cohorts. Approximately
20% of PPCM patients screened for cardiomyopathy genes have an identified pathogenic mutation,
with TTN truncations most commonly implicated. As a stress-associated condition, PPCM may
be modulated by molecular chaperones such as heat shock proteins (Hsps). Recent studies have
led to the identification of Hsp mutations in a PPCM model, suggesting that variation in these
stress-response genes may contribute to PPCM pathogenesis. Although some Hsp genes have been
implicated in dilated cardiomyopathy, their roles in PPCM remain to be determined. Additional
areas of future investigation may include the delineation of genotype-phenotype correlations and the
screening of newly-identified cardiomyopathy genes for their roles in PPCM. Nevertheless, these
findings suggest that the construction of a family history may be advised in the management of
PPCM and that genetic testing should be considered. A better understanding of the genetics of PPCM
holds the potential to improve treatment, prognosis, and family management.

Keywords: peripartum cardiomyopathy; genetic cardiomyopathy; heat shock proteins; chaperones

1. Introduction

Peripartum cardiomyopathy (PPCM) is a rare form of cardiac muscle disease asso-
ciated with pregnancy. PPCM is a potentially lethal condition which is defined as heart
failure (HF) and left ventricular systolic dysfunction occurring late in pregnancy or within
months following delivery and in the absence of other causes of HF [1]. Although left
ventricular recovery is possible up to 12 months following diagnosis, adverse outcomes
such as irreversible HF, arrhythmia and sudden cardiac death are frequent [2,3].

The reported incidence of PPCM varies greatly between population groups, from ap-
proximately 1:1000 pregnancies in South Africa [4] to 1:10,000 pregnancies in Denmark [5].
Higher incidence of PPCM in Nigeria, South Africa and African Americans reported histor-
ically suggests that individuals of African descent may be at greater risk of PPCM [4,6].
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However, a multicentre registry spanning 43 countries indicated that PPCM is a global
disease that is likely to be under-reported in many instances and can occur in women
of any ethnic background [7]. Other documented PPCM risk factors include multiparity,
increased maternal age, and family history of cardiovascular disease [1]. The disparity
in PPCM prevalence across various populations suggests that apart from environmental
factors, a strong genetic basis for the condition may exist.

Precisely how PPCM develops is unclear, although there are several proposed mecha-
nisms (Figure 1). It has been observed that pregnancy induces dramatic haemodynamic
changes, such as reduced afterload and an increase in cardiac output and blood volume [8].
These changes trigger homeostatic and structural remodelling of cardiovascular tissues
which results in exacerbated cardiac stress. As such, the hormonal changes associated
with parturition may trigger endothelial dysfunction and PPCM in susceptible women [9].
Over the last decade, much progress has been made towards understanding the genetics of
familial forms of cardiomyopathy such as dilated cardiomyopathy (DCM). Given the role
of family history and genetic factors in PPCM, these advances have afforded opportunities
to better understand the genetics of PPCM. This review summarises current knowledge of
the genetic contribution to PPCM and highlights potential avenues for future research.
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Figure 1. Known and possible mechanisms of peripartum cardiomyopathy (PPCM) pathophysiology. kDa, kilodalton; sFLT1,
soluble fms-like tyrosine kinase-1.

2. The Role of Familial Cardiomyopathy Genes in PPCM

One of the first indications of the role of genetic susceptibility in PPCM pathogenesis
was familial clustering of PPCM with other forms of cardiomyopathy. Three instances of
familial PPCM were reported in 1963 by Pierce et al. [10]; many similar familial occurrences
of PPCM and DCM have been subsequently documented [11–17]. Although PPCM is a
distinct clinical entity, these observations of overlap with familial DCM indicate that, in at
least a subset of patients, PPCM may form part of the clinical and genetic spectrum of DCM.
DCM itself is a vastly heterogeneous disease, genetically overlapping with hypertrophic
cardiomyopathy (HCM), arrhythmogenic cardiomyopathy (ACM), and channelopathies:
mutations in many of these genes have also been described in PPCM patients (Table 1;
Figure 2).

Table 1. Summary of genes associated with PPCM to date.

Gene Molecular Function Mutation Types in PPCM Other Associated Disorders

BAG3 Co-chaperone, Z disk Truncating DCM, MFM

DMD Sarcolemma, structure Truncating DCM, MD
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Table 1. Cont.

Gene Molecular Function Mutation Types in PPCM Other Associated Disorders

DSP Desmosome,
cell–cell adhesion Truncating ACM, DCM, keratodermas

FKTN May process dystrophin Truncating/missense DCM, MD

GNB3 G protein subunit Association with outcome Hypertension, night blindness

KCNH2 K+ channel,
cardiac conduction Truncating Long QT syndrome

LAMP2 Lysosome, autophagy Truncating/missense Danon disease, DCM, HCM

LMNA Nuclear lamina, structure Truncating DCM, MD

MYBPC3 Sarcomere,
cardiac contraction Missense DCM, HCM, LVNC

MYH6 Sarcomere,
cardiac contraction Truncating/missense CHD, DCM, HCM

MYH7 Sarcomere,
cardiac contraction Missense DCM, HCM, LVNC, MD

PSEN2 May regulate APP processing Missense Alzheimer’s disease, DCM

PTHLH Hormone Association with risk Brachydactyly

RET Protooncogene Missense Multiple endocrine neoplasia

SCN5A NA+ channel,
cardiac conduction Missense AF, DCM, Long QT syndrome, VF

SYNM Cytoskeleton Truncating -

TNNC1 Sarcomere,
cardiac contraction Missense DCM, HCM

TNNT2 Sarcomere,
cardiac contraction Missense DCM, HCM, LVNC, RCM

TPM1 Sarcomere,
cardiac contraction Truncating DCM, HCM, LVNC

TTN Sarcomere,
cardiac contraction Truncating DCM, HCM, MD, MFM

VCL Cytoskeleton Truncating DCM, HCM

ACM, arrhythmogenic cardiomyopathy; AF, atrial fibrillation; APP, amyloid precursor protein; CHD, congenital heart disease; DCM,
dilated cardiomyopathy, HCM, hypertrophic cardiomyopathy; HSP, heat shock protein; LVNC, left ventricular noncompaction; MD,
muscular dystrophy; MFM, myofibrillar myopathy; RCM, restrictive cardiomyopathy; VF, ventricular fibrillation.

In what appears to be the first documented genetic cause of PPCM, a 2001 case report
described a female carrier of a Duchenne Muscular Dystrophy-causing DMD mutation
who developed PPCM during the 36th week of pregnancy [18]. As an X-linked gene, most
female carriers of DMD mutations are asymptomatic although some may develop mild
disease or cardiomyopathy, and it was unclear if the PPCM, in this case, was related to
her carrier status. However, similar case reports of PPCM amongst DMD and LAMP2
X-linked mutation carriers have been described [19–21]. LAMP2 mutations cause Danon
disease, a form of cardiomyopathy and skeletal myopathy, through impairment of macroau-
tophagy [22], while DMD mutations cause muscular dystrophy and/or DCM through
the loss of the stabilising protein dystrophin, leaving myocytes vulnerable to oxidative
stress and calcium overload [23]. In both cases, it is thought that skewed X-chromosome
inactivation, in which only some cells express the DMD or LAMP2 mutation, underlies the
comparatively milder cardiac phenotype observed in females [24]. It is possible, too, that
this mosaic status in females may be exacerbated by stress conditions such as pregnancy,
although no evidence of this has been reported as yet.
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Figure 2. Localisation and function of PPCM-associated genes in the cardiomyocyte. The majority
of PPCM genes, including Titin (TTN), comprise the cardiac sarcomere, but mutations affecting
numerous other aspects of cardiomyocyte function have been implicated in PPCM pathogenesis.

DMD and LAMP2 mutations are very rare causes of DCM; notably, most known
DCM-causing mutations affect the sarcomere, causing cardiomyopathy through impaired
force generation or reduced contractility in the heart. Early investigations reported several
mutations in the sarcomeric genes MYBPC3, MYH6, MYH7, TNNC1 and TNNT2 in Dutch
and American PPCM cohorts [13,17,25]. As such, similar studies across several other
populations may provide critical information into the role of these mutations in PPCM.

As knowledge of DCM genetics has evolved over time, so too has knowledge of the
genetic contribution to PPCM. Subsequent to these initial investigations, the giant sarcom-
eric protein-coding gene TTN emerged as a key gene in cardiomyopathy, accounting for up
to 25% of familial DCM cases [26]. As the second-longest gene in humans, genetic variation
in TTN is common [27], and it may be challenging to differentiate benign polymorphisms
from true cardiomyopathy-causing mutations. However, frameshift insertions/deletions
and nonsense mutations (truncating mutations) in TTN have been reported at an increased
prevalence in DCM patients [26,27]. The mechanisms underlying TTN cardiomyopathy
are thought to involve impairment of force generation or transmission in the myocardium
or disrupted signalling [28]. BAG3 has also recently emerged as a major cardiomyopathy
gene [29]. BAG3 encodes a multifunction co-chaperone protein involved in myocardial
protein homeostasis, stabilisation of the myocardial Z disk, and modulation of cardiac
contraction [30]. Mutations in BAG3 can cause cardiomyopathy through impairments in
any of the protein’s diverse functions [31].

The emergence of high throughput next-generation sequencing (NGS) platforms
enabled the rapid sequencing of patient genes and has highlighted the genetic overlap
between different forms of heritable cardiomyopathy. Following these genetic advances,
NGS studies of PPCM cohorts have revealed truncating mutations in TTN as the predomi-
nant genetic contributor to PPCM in American, Australian and European patients [32–34].
Although such TTN mutations are present in healthy individuals, they were found to be
significantly more prevalent amongst PPCM patients [33]. In addition, the TTN mutations
were mostly localised to the protein domains already associated with DCM (A-band),
thereby implicating their possible role in PPCM [33]. In these NGS studies, mutations
were reported in other cardiac disease genes, including disruptions of BAG3 [32–34]. Cu-
mulatively, these cohort studies of PPCM have identified pathogenic mutations in 23% of
cases (Figure 3). Studies of isolated PPCM cases have further implicated TTN in severe
PPCM [35], as well as other disease genes such as KCNH2, RET and TXNRD2 [16,36,37],
although the contribution of these genes to PPCM is unclear: the mutations in these cases
may merely reflect the co-occurrence of genetic disorders with PPCM. Mutations in FKTN,
RBM20, LMNA and DSP were also linked to PPCM through large cardiomyopathy family
studies [38–41].
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The diverse genetic aetiology of PPCM (Table 1) mirrors the genetic profile of DCM
and strengthens the notion that PPCM may share genetic determinants with familial
cardiomyopathy. In PPCM, as in DCM, a high proportion of TTN truncating variants is
observed, and at present appears to be the greatest single genetic contributor to disease
pathogenesis [32,33]. The mutation detection rate of genetic testing in DCM ranges from
15% to 40%, with familial history and larger gene panels contributing to higher mutation
yields [42]. Although within this range, the relatively low yield (~20%) in PPCM may be
attributed to the substantially fewer patients who have been screened so far, combined
with fewer genes being sequenced in earlier studies.

When considering the worldwide distribution of PPCM-associated mutations (Figure 4),
it is noteworthy that the majority have been identified in American and European pop-
ulations, but even then, many of the genes are limited to single observations and case
reports. Analysis of participants of African descent by Ware et al. [33] revealed mutation
yields that were akin to those in individuals of European ancestry, indicating a similar
genetic basis of PPCM in different population groups. This also suggests that mutation
screening of African PPCM cohorts may be warranted. In DCM, the clinical utility of
genetic testing can extend to family management and individual treatment and prognosis,
through the characterisation of genotype-phenotype correlations. For example, LMNA
mutations are associated with severe DCM with high penetrance and increased risk of
sudden death, while TTN mutations have been associated with milder disease with re-
duced penetrance [43]. Mutations in these genes have been reported in PPCM, but their
implications on phenotype and outcome are still to be determined. Further research is also
needed to determine whether the co-occurrence of cardiomyopathy mutations in PPCM
patients reflects causality or if, rather, it is the physiological strain of pregnancy that reveals
cardiomyopathy in previously asymptomatic mutation carriers.
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gations of PPCM patient(s) have been conducted are indicated in blue. The number of pathogenic
mutations identified in each gene is indicated in parentheses. Three pathogenic MYH7 mutations
and seven SCN5A mutations are not included as the countries of origin could not be determined.

3. Other Genetic Determinants of PPCM

As a complex disorder, the role of genetics in PPCM may not be limited to rare,
high-impact mutations as observed in familial cardiomyopathy. PPCM may also be in-
fluenced by more common variants with smaller effects on individual susceptibility or
outcome: such variants are best identified through genetic association studies. In a 2011
genome-wide association study of 41 PPCM cases and 49 healthy controls, Horne et al. [44]
investigated common genetic variation for associations with PPCM. Despite the small sam-
ple size, PTHLH rs258415 reached statistical significance, and its association with PPCM
was replicated in a second cohort of 30 cases and 124 controls. PTHLH has documented
cardiovascular roles including modulation of ventricular contraction and regulation of
blood flow in the placenta and uterus. The authors hypothesised that the gene may be
upregulated in pregnancy to prevent uterine contraction, and variation in PTHLH could
compromise heart function and predispose individuals to PPCM [44].

In an outcomes-based genetic analysis, Sheppard et al. [45] revealed that the GNB3
c.825C>T polymorphism, specifically the homozygous TT allele, was significantly associ-
ated with poorer outcomes, with lower ejection fractions up to a year postpartum compared
to individuals without the variant. The TT allele was also determined to be more prevalent
in patients of African ethnicity. The gene may play a role in hypertension and cardiac
remodelling, although its role in PPCM remains to be confirmed.

4. An Emerging Field: Heat Shock Protein and Molecular Chaperone Genes in PPCM

The aforementioned studies indicate a clear role of genetics in PPCM pathophysiol-
ogy. Nevertheless, the 23% mutation yield from the screening of cardiomyopathy genes
(Figure 3) suggests that many genetic determinants of PPCM are yet to be discovered.
Indeed, many of the reported PPCM/DCM families had no identified mutation [13,32].
There is, therefore, a need to consider other genes for their contribution to PPCM. Given
the role of cardiac stress in the development of the disease, molecular chaperones and heat
shock proteins (Hsps) may prove of interest due to their stress-protective functions.

Lending support to this notion is the prior identification of BAG3 mutations in PPCM
patients [32,34]. As a molecular chaperone, BAG3 is actively involved in a variety of
cellular mechanisms during stress which includes protein folding, autophagy, and the
ubiquitin-proteasome system [46]. BAG3 exerts some of these functions by acting as a
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co-chaperone for Hsp70 and the small Hsps (sHsps) HspB5, HspB6 and HspB8 [47]. The
formation of the BAG3-Hsp70-sHsp complex is essential in facilitating denatured proteins
to refold thus preventing protein aggregation in cell stress conditions. Because BAG3 is a
key cardiomyopathy gene, with several reported DCM-causing mutations occurring across
the gene, many more causative variants in the gene are likely still to be discovered amongst
PPCM patients.

Hsps are a class of molecular chaperones that perform a myriad of housekeeping
and stress-protective roles in cells to maintain proteostasis (Figure 5) [48]. Hsps broadly
function to facilitate the correct folding and assembly of polypeptides, thus preventing the
formation of aggregation-prone misfolded proteins that are toxic to cardiomyocytes [49].
Since the contractile and metabolic demands of the heart require robust protein quality
control, Hsps may play crucial cardioprotective roles. Included in the Hsp family are small
heat shock proteins (sHsps), which are ubiquitously expressed regulators of cellular protein
folding [30]. The high expression of sHsps in the heart has been reported, where they are
implicated in the maintenance of normal cardiac function and regulation of the cardiac
stress response [50,51].
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Genetic investigations have recently implicated Hsps in PPCM pathogenesis. Se-
quencing the HSPB6 gene in DCM patients led to the identification of the rare variant
p.Ser10Phe [52]. In vitro, this mutation reduced thermal resilience of the chaperone, poten-
tially compromising its cardioprotective activity [53]. In a murine model, the p.Ser10Phe
mutation-induced progressive cardiac dysfunction and HF in males, while female mice
had preserved cardiac function and survival [52,54]. However, the HSPB6 p.Ser10Phe
mutation appeared to induce lethal PPCM, with a 100% fatality rate within 4 pregnancies
and significant cardiac dilatation and dysfunction after 3 pregnancies [54]. This is the
first description of a mutant mouse model of PPCM in which the mutation was originally
discovered in humans, although STAT3 and Akt transgene mice have been used previously
to study the pathophysiology of PPCM [9,55]. The clinical and demographic characteristics
of the p.Ser10Phe mutation carriers in the original cohort were not described, and the
potential role of Hsp genes in PPCM may warrant further investigation. Although this is
the first study demonstrating Hsp mutations in PPCM, genetic variation in HSPB5, HSPB7
and HSPD1 has been reported in other cardiomyopathies.

The proteostatic functions of Hsps and molecular chaperones can be hypothesised to
play a crucial role in the physiological adaptation of the heart to pregnancy. Mutations in
these genes may alter protein quality control systems in the heart, thereby predisposing in-
dividuals to PPCM. However, at present no other Hsp gene mutations have been described
in PPCM patients to our knowledge. As such, other molecular chaperone genes such as
HSPB5 (CRYAB), HSPB7 and HSPD1 may be worth exploring for their potential as novel
genetic determinants of PPCM.

HSPB7, sometimes referred to as the “cardiovascular Hsp” due to its high cardiac
expression, is an sHsp that has attracted interest as a possible susceptibility locus for car-
diomyopathy and HF [56,57]. Several genetic association studies have described protective
effects of variation in HSPB7 against DCM [29,57,58] and systolic HF [57,59,60]. These stud-
ies have been limited to individuals of European descent, and the lack of association with
DCM in African Americans and Chinese populations [56,61,62] indicates that the effects of
HSPB7 variation may be population-specific, or are influenced by underlying population
genetic differences. The causal relationship between HSPB7 variation and cardiomyopathy
is unclear, as many of the variants occurred in non-coding regions of the gene, did not
appear to be in linkage disequilibrium with overtly protein-altering variants, and targeted
sequencing of the gene in DCM patients did not yield any pathogenic variation [29,57].
However, the multiple observations of HSPB7 polymorphisms in HF and cardiomyopathy
suggests a common genetic basis for these related phenotypes. Several of these studies also
reported BAG3 variation to associate with disease risk [29,58,60], with the most recent study
also demonstrating direct interaction of BAG3 protein with HspB7 [58]. These findings
support the notion that HSPB7 genetic variation may contribute to cardiomyopathy, even
though the precise mechanisms are not yet known.

The CRYAB gene encodes αβ-crystallin or HspB5, a member of the sHsp family. In
cardiomyocytes, HspB5 primarily acts to prevent the accumulation of potentially toxic
protein aggregates [63], although the binding of HspB5 to TTN, actin and desmin is essen-
tial to ensure proper sarcomeric assembly and function. Mutations in CRYAB can trigger
cardiac disease through the accumulation of protein aggregates [64]. Such a scenario has
been reported in patients with cardiomyopathy, usually presenting in conjunction with
skeletal myopathy and/or ocular disorders such as cataracts [64–66]. CRYAB mutations
have been reported to cause isolated DCM and HCM in individuals with positive family
histories for cardiomyopathy [67,68]. One of these mutations, CRYAB p.Arg157His, was
demonstrated to impair interaction with cardiac-specific isoforms of TTN [67], suggest-
ing that mutations affecting this uncharacterised domain of CRYAB may play a role in
cardiomyopathy through impaired CRYAB-TTN interaction in cardiomyocytes. Given
the major role of TTN truncations in PPCM, the effect of genetic variation in CRYAB may
warrant further investigation.
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The HSPD1 gene encodes for a constitutively expressed Hsp60 chaperonin protein.
A recent study has linked HSPD1 mutations with cardiomyopathy when the mutation
p.Thr320Ala was described in a Japanese family with DCM and arrhythmia [69]. Although
the mechanisms whereby HSPD1 may contribute to cardiomyopathy are unclear, the
authors demonstrated that a similar mutation in zebrafish resulted in a DCM phenotype
with mitochondrial damage and increased levels of reactive oxygen species, as well as
a reduced tolerance to exercise stress [69]. Cardiac-specific deletion of the gene in mice
resulted in the development of lethal DCM and HF in males, although the effects in females
were not described [70]. Other HSPD1 mutations may need to be reported in additional
cardiomyopathy families before its role in disease pathogenesis is clarified.

5. Clinical Implications
5.1. Genetic Testing May Be Indicated in PPCM Patients with Family History

The identification of pathogenic cardiomyopathy-causing mutations in women with
PPCM indicates that PPCM overlaps with heritable cardiomyopathy not just phenotypically,
but genetically as well. In patients with genetic forms of cardiomyopathy such as DCM,
ACM and HCM, current guidelines recommend the construction of a detailed family
history (usually at least 3 generations), periodic clinical screening of first-degree relatives
by echocardiography and electrocardiography, as well as genetic testing in the case of
familial disease [71–75]. This approach allows at-risk family members to be identified
and, when disease-causing mutations are found, cardiac follow-up can be guided by the
presence of the mutation in family members. A similar strategy may be beneficial in
PPCM, in which family history should be obtained from index cases and, when familial
cardiovascular disease is present, genetic testing may be warranted.

Genetic techniques such as NGS allow massively parallel sequencing of vast tracts of
DNA and can be used to accurately screen numerous cardiomyopathy genes in a single
experiment. Such targeted sequencing panels are becoming routinely incorporated into the
diagnosis of heritable cardiomyopathy in some countries [76]. However, it should be noted
that there is uncertainty about whether inconclusive genetic results should be reported to
patients [77]. Nevertheless, the increasing availability of NGS implies that it now may be
considered more cost-effective to conduct genetic testing on asymptomatic family members
than to phenotypically screen them [78,79]. In the context of familial PPCM, if a patient is
found to carry a disease-causing mutation, this could allow clinical follow-up to be limited
to relatives who also carry the mutation.

At this stage, it is still unclear whether individuals with mutations in any of the
cardiomyopathy-causing genes require additional management during pregnancy and
delivery. Limited reports have indicated that patients with DCM, HCM and ACM tend
to tolerate pregnancy well, although risks of adverse cardiac events such as arrhythmias,
HF, syncope and death are associated with advanced left ventricular dysfunction and prior
cardiac events [80,81]. Although emergency caesarean section amongst DCM, HCM and
ACM patients is rare [81], a global PPCM registry recently reported caesarean sections for
up to 59% of its patients, for whom mutation carrier status was unknown [82].

5.2. Areas of Future Investigation

While the contribution of cardiomyopathy genes to PPCM has been demonstrated,
relatively few mutations and genes have been reported so far. There is therefore still much
scope for future research into the genetics of PPCM. It is likely that further screening
will identify more mutations, potentially in genes that have not been described in PPCM
to date, since upwards of 60 genes have been associated with DCM and other forms of
cardiomyopathy [83]. Correlating genetic information with phenotypic presentation and
disease outcome could have profound implications on patient management and should be
explored further. This is particularly true in African populations, where the risk of PPCM is
higher [4,84], the prognosis is poorer [85], and the knowledge of cardiomyopathy genetics
is scarce [86]. PPCM has a broader aetiology than other forms of heritable cardiomyopathy,
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and further research is needed into the role of additional genes such as those involved in
(auto)immunity, angiogenesis, metabolism, and oxidative stress.

Molecular chaperones and Hsp genes hold great promise as candidate genes for PPCM.
In this review, several Hsp genes have been proposed as crucial genetic determinants of
PPCM pathology. Recently, the mutation HSPB6 p.Ser10Phe was demonstrated to cause
PPCM in mice, indicating a role of the chaperone in protein quality control systems and
stress response [54]. BAG3 gene mutations are some of the most documented chaperone-
associated mutations in cardiomyopathy. Indeed, this has led to the identification of 2
PPCM-related gene mutations in BAG3 [32,34]. However, mutations occurring in other
Hsp family genes are yet to be fully documented. Since pregnancy can induce extra stress
on the heart, it is therefore plausible that Hsps may play an integral cardioprotective role in
pregnant women. As such, in-depth analysis into Hsp and molecular chaperone genes may
lead to the identification of novel PPCM genetic determinants that will aid in subsequent
case management and drug design.

6. Conclusions

Recent advances have emphasised an important role of genetics in the pathophysiol-
ogy of PPCM. Several studies, reviewed in this paper, suggest that up to 20% of women
with PPCM have an identifiable disease-causing mutation. While a substantial overlap with
heritable forms of cardiomyopathy is observed, there is much scope for future research.
Given the range of physiological stresses that the body is subjected to during pregnancy,
the role of Hsps in PPCM provides great potential which warrants further investigation.
A better understanding of the genetics of PPCM holds the potential to improve patient
management, with possible implications on treatment, prognosis, and family management.
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