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Graves’ orbitopathy (GO), also known as thyroid-associated ophthalmopathy, is the most
common ocular abnormality of Graves’ disease. It is a disfiguring, invalidating, and
potentially blinding orbital disease mediated by an interlocking and complicated
immune network. Self-reactive T cells directly against thyroid-stimulating hormone
receptor-bearing orbital fibroblasts contribute to autoimmune inflammation and tissue
remodeling in GO orbital connective tissues. To date, T helper (Th) 1 (cytotoxic leaning)
and Th2 (antibody leaning) cell subsets and an emerging role of Th17 (fibrotic leaning) cells
have been implicated in GO pathogenesis. The potential feedback loops between orbital
native residential CD34- fibroblasts, CD34+ infiltrating fibrocytes, and effector T cells may
affect the T cell subset bias and the skewed pattern of cytokine production in the orbit,
thereby determining the outcomes of GO autoimmune reactions. Characterization of the T
cell subsets that drive GO and the cytokines they express may significantly advance our
understanding of orbital autoimmunity and the development of promising therapeutic
strategies against pathological T cells.

Keywords: Graves’ orbitopathy, thyroid-associated ophthalmology, T cell immunity, effector T cell, orbital
fibroblast, fibrocyte
INTRODUCTION

Graves’ orbitopathy (GO), also known as thyroid-associated ophthalmopathy, is the ocular
abnormality of Graves’ disease (GD). The prevalence of GO in Europe is about 10/10,000 people,
which is above the threshold for rarity in Europe (1). However, as the most common extrathyroidal
complication, GO affects 25-30% of patients with Graves’ hyperthyroidism and detailed orbital
imaging has revealed orbital soft tissue changes in 70% of GD patients (2, 3). Patients with GO suffer
from impaired visual function, facial disfigurement, and at worst, irreversible visual loss caused by
corneal ulceration or dysthyroid optic neuropathy, which result in a poor quality of life and socio-
economic status (4, 5). GO is a vexing autoimmune condition with both cellular and humoral
immunities that form a sophisticated regulatory network, which leads to early orbital inflammation
and late tissue remodeling (2, 4–6). Because of incomplete understanding of its precise pathogenesis,
which partly results from the absence of suitable preclinical animal models, there is a lack of highly
effective and well-tolerated therapies that target the most likely cause and glucocorticoids (GCs) are
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still the mainstay of treatment for active GO when inflammation
is at peak (4, 5, 7, 8). Clinically, intravenous GC treatment has
acceptable outcomes for most patients in the active phase.
Nevertheless, a substantial number (20-30%) of active
moderate-to-severe GO patients may not respond to GCs and
adverse effects may occur after administration of high-dose or
long-term GC use. Some patients may have disease progression
despite GC treatment or relapse after steroid withdrawal (7, 8).
Hence, a balance between benefits and risks of therapies for GO
should be considered, which means developing more specific
immunosuppressant strategies such as targeting T cells.

In the late 1980s, the role of T cell immunity was investigated
in the orbital connective tissues of GO patients (9). Although
thyroid-stimulating hormone receptor (TSHR) and its
autoantibody play a major role in the pathological cascade of
GO (2, 5), activation of humoral immunity, namely B cell
immune responses, depends on defects in T cell immune
modulation (10). The orbit is likely to have similar initial
autoimmune reactions as those in the thyroid (5). It can be
safely speculated that, among the various immune components
that infiltrate the orbital connective tissues of GO patients,
autoreactive T cells may act to establish and perpetuate the
orbital inflammatory process. Recent studies have revealed that
such disease-associated T cells include both T helper (Th) 1
(cytotoxic leaning) and Th2 (antibody leaning) subpopulations,
and an emerging role of Th17 (fibrotic leaning) cells has also
been implicated (6). The use of traditional non-specific
immunosuppressants, such as cyclosporine that prevents
interleukin (IL)-2 secretion by CD4+ T cells and mycophenolate
that inhibits T cell proliferation by depleting guanosine-tri-
phosphate, appear to be effective as a step-down from GCs to
achieve stable efficacy in the long term (11). In view of the above-
mentioned facts, phenotypic and functional analyses of orbit-
infiltrating T cells may provide better insights into the
pathogenesis of GO.

In this review, we provide a detailed overview of the
dysregulated T cell immunity in GO pathology. We include the
early data as well as the latest research to reflect the developing
course of understanding GO orbital autoimmunity. A selected
listing of recommended studies on T cell pathogenesis in GO is
summarized in Table 1. We highlight the integral role of
pathological T cells that have deleterious effects on fibrocytes
and orbital fibroblasts (OFs), and describe the development of
targeted therapies for GO in an effective and safe manner.
CD4+ AND CD8+ T CELL
IMMUNITIES IN GO

The first issue is whether cellular immunity is involved in GO
inflammation. In an early study, Heufelder et al. reported the
presence of CD3+ cells that represent total T cells in orbital and
pretibial connective tissues from two GD patients with both
orbitopathy and dermopathy (12). The results provide evidence
of T cells infiltrating the inflamed orbit. Phenotypic analysis of
four peripheral blood mononuclear cell (PBMC) samples from
Frontiers in Endocrinology | www.frontiersin.org
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four severe GO patients revealed the main subtype as CD4+ T
cells (CD4/CD8 ratios 1.9-2.5), which was similar to the
phenotypes of four control PBMC samples, whereas their
corresponding orbital connective tissue-derived T cell lines had
equal amounts of CD4+ and CD8+ T cells (CD4/CD8 ratios 0.9-
1.2) (38). The ratios of CD4/CD8 were unchanged in 153 GO T
cell clones cultivated from the four orbital T cell lines and 166
and 236 T cell clones cultivated from the four PBMC samples of
GO patients and control subjects, respectively (38). The relatively
low ratios of CD4/CD8 in orbital connective tissue-derived T cell
lines and clones indicate that there is a disorder of cellular
immune function in GO orbits. Grubeck-Loebenstein et al.
established and characterized six T cell lines from orbital
connective tissues of two severe GO patients and found they
were predominantly CD8+CD45RO+ T cells (77%-96%) (39).
The above two studies imply that a cytolytic T cell immunity
triggered by CD8+ T cells may contribute to orbital inflammation
in GO in a major histocompatibility complex (MHC) class I
dependent manner. But the results cannot tell whether there
exists a more efficient and unique antigen-presenting process to
activate orbit-specific T cells. Stover et al. screened 64 orbital
connective tissue-derived T cell clones expanded from two GO
patients and reported an obvious predominance of the CD4+ T
cell population (CD4/CD8 ratio 8.2) that contrasted with six
PBMC samples (CD4/CD8 ratio 2.1) (39). In another study, the
same research group analyzed 10 of 17 T cell lines derived from
orbital connective tissues of six severe GO patients and found
mainly CD4+ T cells (six of 10 strains) with a similar CD4+/CD8+

T cell distribution (40). The studies supporting the role of CD4+

T cells suggest an MHC class II pathway primed by a specialized
antigenic determinant within the thyroid and at the involved
orbital connective tissues. Pappa et al. investigated the
extraocular muscles (EOMs) of 10 GO patients who underwent
corrective strabismus surgery and examined six EOM-derived T
cell lines from four patients. Five were CD4+CD45RO+ T cells
(85%-97%) and CD8+ T cells (68%) were dominant in only one
strain. The same status was found in the four corresponding
PBMC samples (three were mostly CD4+ cells (89%-98%)) of
each patient. They further reported detectable T cell receptor
(TCR) gene expression in 10 out of 12 EOMs collected from the
other five patients and in all five EOMs collected from three
control subjects (41). The discrepancy of CD4+ and CD8+ T cell
subsets in the above findings may lie in the small number of
patients, the heterogeneity of patients involved in the different
studies, and the different research methods. Notably, the T cell
lines or clones in the above studies were cultured tissue- or
peripheral blood-derived T cells expanded for several days to
weeks, which may affect the initial status of these T cells to a
certain extend. For example, CD8+ T cells may have more rapid
expansion and CD4+ T cells gradually die during culture. Förster
et al. established 18 T cell lines from orbital connective tissues of
six severe GO patients and reported that 10 were predominantly
the CD4+ phenotype, whereas three were mostly CD8+ cells (42).
Intriguingly, in their study, even two independent T cell lines
derived from the same patient had distinct T cell phenotypes
(CD4 or CD8). This indicates that both CD4+ and CD8+ T cells
April 2021 | Volume 12 | Article 648732
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TABLE 1 | Recommended Studies on T cell Pathogenesis in GO.

Reference Study subjects Main findings

T cell immunity and TCR repertoires
Heufelder et al. (12) Biopsies of thyroid glands, orbital connective tissues,

pretibial skins, and PBMCs from two GD patients
with both orbitopathy and dermopathy and two non-
GO controls

Both orbital connective tissues and pretibial connective tissues were infiltrated by
CD3+ T cells; Marked similarities of intrathyroidal, orbital, and pretibial TCR gene
repertoires were found, which indicate apparent TCR restriction and T cell
oligoclonality.

Pappa et al. (13) Biopsies of EOMs from five early active GO patients,
nine late stable GO patients, and 14 non-GO patients

CD4+ and CD8+ T cells and macrophages were significantly present in EOMs of active
GO compared with both stable GO and controls; Increased HLA-DR expression on
OFs, but not EOM fibres, was observed in both active and stable GO.

Rotondo Dottore et al.
(14)

Biopsies of orbital connective tissues from 20
consecutive GO patients

A positive correlation was found between CD3+ T and CD20+ B cells infiltrating orbital
connective tissues with GO clinical activity.

Wang et al. (15) Biopsies of thyroid glands and PBMCs from six GD
patients; PBMCs from 43 GO patients and 57 stable
GD patients

A model for prediction of GO progression in GD cohort with high sensitivity and
specificity.

Aniszewski et al. (16) 117 CD4+ T cell clones expanded from orbital
connective tissues of 6 GO patients

Th1 immune response predominated in early active GO and Th2 immune response
predominated in late stable GO.

Effector T cell, OF, and fibrocyte interaction
Feldon et al. (17) GO and control OFs; autologous T cells from PBMCs Autologous T cells promoted the proliferation of GO OFs dependent on MHC class II

and CD40-CD40L pathways.
Hwang et al. (18) GO and control OFs GO OFs expressed elevated levels of CD40 that could be further up-regulated by IFN-

g; CD40-CD40L combination led to IL-6, IL-8, and MCP-1 production in GO OFs;
CD90+ GO OFs expressed more CD40 than CD90- GO OFs.

van Steensel et al. (19) Biopsies of orbital connective tissues from GO
patients and controls; GO OFs

Mast cells, monocytes, and macrophages expressed increased levels of PDGF-A and
PDGF-B in GO orbital connective tissues; PDGF-AB and PDGF-BB promoted
proliferation and hyaluronan and IL-6 production by GO OFs.

Tsui et al. (20) Biopsies of thyroid glands and orbital connective
tissues; GO and control OFs; thyrocytes

TSHR levels were higher on thyrocytes than GO and control OFs; Differentiation of GO
OFs, but not control OFs, into adipocytes led to increased TSHR expression; IGF-1R
levels were higher on GO OFs than control OFs; TSHR and IGF-1R colocalized to the
perinuclear and cytoplasmic areas of both GO OFs and thyrocytes.

Cao et al. (21) GO and control OFs CD40-CD40L combination led to the synthesis of hyaluronan and PGE2 in GO OFs;
PGE2 production in GO OFs was caused by increased expression of PGSH-2 at both
transcriptional and translational levels regulated by IL-1a expression

Koumas et al. (22) GO OFs; myometrial fibroblasts CD90+ myometrial fibroblasts and GO OFs were capable of myofibroblast
differentiation by TGF-b or platelet concentrate supernatant treatment; CD90-

myometrial fibroblasts and GO OFs were capable of lipofibroblast differentiation by 15-
deoxy-D12,14-PGJ2 or ciglitazone treatment.

Antonelli et al. (23) Sera from consecutive subjects including 60 GD
patients, 60 GO patients, and 60 controls; GO
thyrocytes, OFs, and induced preadipocytes; Control
fibroblasts and induced preadipocytes from dermal
tissues of the same patients

CXCL10 was higher in GD and GO patients than controls; CXCL10 was significantly
higher in active GO patients than inactive GO patients; IFN-g and TNF-a synergistically
induced CXCL10 production in GO thyrocytes, OFs, and preadipocytes, which was
suppressed by PPAR-g agonist.

Antonelli et al. (24) GO thyrocytes, OFs, and induced preadipocytes;
Control fibroblasts and induced preadipocytes from
dermal tissues of the same patients

IFN-g and TNF-a synergistically induced CXCL9 and CXCL11 production in GO
thyrocytes, OFs, and preadipocytes, which was suppressed by PPAR-g agonist.

Han et al. (25) GO and control OFs IFN-g and IL-4 attenuated IL-1b-provoked PGE2 production by suppressing PGHS-2
gene promoter activity but enhanced IL-1b-initiated hyaluronan production by up-
regulating hyaluronan synthase-2 gene expression in GO OFs.

Han et al. (26) GO and control OFs IFN-g and IL-4 attenuated IL-1b-induced TIMP-1 production by suppressing TIMP-1
gene promoter activity in GO OFs.

Huber et al. (27) Whole blood from 216 GD patients and 368 healthy
controls

rs2201841 was strongly associated with GO development, especially AA and CC
genotypes of Il23r.

Douglas et al. (28) Biopsies of orbital connective tissues; PBMCs from
70 GD patients (including 51 GO patients) and 25
healthy controls; GO and control OFs; thyrocytes;
fibrocytes

CD34+CXCR4+Collagen I+TSHR+
fibrocytes were increased in PBMCs of GD patients;

TSH induced fibrocytes to produce IL-6 and TNF-a; Increased fibrocytes were found
in orbital connective tissues of GO patients.

Gillespie et al. (29) PBMCs from 31 GO patients and 19 healthy
controls; GO OFs; GO and control fibrocytes

Fibrocytes expressed higher levels of TSHR than GO OFs; GO fibrocytes expressed
higher levels of TSHR than control fibrocytes; TSH or M22 greatly stimulated the
production of various cytokines and chemokines such as IL-8, RANTES, and MCP-1 in
both GO and control fibrocytes.

Fang et al. (30) Biopsies of orbital connective tissues; PBMCs from
34 GO patients and 36 healthy controls; GO and
control OFs; in vitro-differentiated Th17 cells

GO peripheral Th17 cells produced IFN-g and IL-22 and were related to clinical activity
score; IL-17A enhanced TGF-b–induced fibrosis in CD90+ OFs but inhibited 15-deoxy-
D12,14-PGJ2–induced adipogenesis in CD90- OFs; Th17 cells stimulated
proinflammatory cytokine expression of GO OFs and GO OFs promoted Th17 cell
differentiation by PGE2 production.

(Continued)
Frontiers in Endocrinolo
gy | www.frontiersin.org
 April 2021 | Volume 12 | Article 6487323

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Fang et al. T Cells in Graves’ Orbitopathy
are involved in GO pathogenesis. However, the phenotypic
analysis was also based on T cell lines cultured in vitro.
Therefore, direct in vivo T cell examination is needed to avoid
biases and better reflect the real orbital immunity in
GO inflammation.

Subsequently, an in situ study by immunohistochemistry
demonstrated that both CD4+ and CD8+ T cells had infiltrated
the EOMs in early active GO, which were much less evident in
late inactive GO and control subjects (13). A recent study
examined 26 GO patients and seven control subjects by
immunohistochemistry, which showed that TCR expression
was strong and diffuse in severe patients, although the orbital
TCR detectable rate was similar in both active severe and inactive
mild GO. Active severe GO patients had a higher CD3 detectable
rate compared with inactive mild GO patients. Additionally, no
expression of TCR or CD3 was found in control orbits (43).
These data support the idea that GO orbital connective tissues
are variably infiltrated by lymphocytes during active disease
when medications are more effective than in the inactive disease.

We used flow cytometric analysis and found no differences in
the frequency of circulating CD4+ and CD8+ T cells or the ratios
of CD4/CD8 between GO patients and control subjects (44). In
agreement with the above immunohistochemistry studies,
infiltrated CD4+ and CD8+ T cells extended throughout the
orbital connective tissues of GO patients, especially in the active
phase, compared with control subjects (44, 45). Rotondo Dottore
et al. confirmed that the total number of orbit-infiltrating T cells
was correlated positively with the GO clinical activity score in
Frontiers in Endocrinology | www.frontiersin.org 4
simple and multiple linear regression models (14). Studies in GO
murine models also supported T cell-mediated inflammation in
the orbit in vivo. CD3+ total T cells were found to infiltrate into
the orbital muscles and periorbital tissues of human (h) TSHR-A
subunit plasmid-immunized BALB/c mice (35, 46). The same
phenomenon was found in mouse TSHR-A subunit plasmid-
immunized BALB/c mice (47). Intriguingly, increased CD4+ T
cell subsets were reported in periorbital fat of SKG mice after
intraperitoneal administration of zymosan A compared with
wild type mice (48). A recent study used an adenovirus that
expressed the hTSHR-A subunit to induce GO in BALB/c mice
and also observed CD4+ T cell infiltration in periorbital fat
tissues (36). Collectively, these data shed light on the presence
and type of T cells in GO, which suggest a complex inflammatory
microenvironment in the orbit.
SELF-REACTIVE T CELLS DIRECTED
AGAINST OFS

The second issue is whether T cells in GO recognize
autoantigens, i.e., a primary GO immune response leads to the
development of antigen-specific T cell responsiveness and clonal
proliferation in the orbit. This will determine whether T cell
immunity is specifically directed against orbital antigens.
Heufelder et al. reported that in the two GD patients with both
orbitopathy and dermopathy the vast majority of TCRs in the
orbital and pretibial connective tissues were ab chains and not gd
TABLE 1 | Continued

Reference Study subjects Main findings

Fang et al. (31) 21 GO orbital connective tissues and 38 control
orbital connective tissues; CD34+ GO OFs; in vitro-
differentiated Th17 cells

GO orbital microenvironment was composed of T cells, B cells, natural killer cells,
dendritic cells, macrophages, plasma cells, and CD34+ OFs; Orbit-infiltrating Th17 cells
displayed a Th1-like phenotype and expressed high levels of IL-1R and IL-23R; CD34+

OFs enhanced IL-1R and IL-23R expression on Th17 cells by PGE2-EP2/EP4-cAMP
signaling.

Fang et al. (32) PBMCs from 16 active and 14 stable GO patients
and 20 healthy controls; GO and control fibrocytes; in
vitro-differentiated Th17 cells

IL-17A stimulated cytokine production in both GO and control fibrocytes; Autologous
Th17 cells promoted inflammatory and antigen-presenting functions of GO fibrocytes;
GO fibrocytes enhanced Th17 cell phenotype and recruited Th17 cells by MIP-3 and
CCR6 combination.

Fang et al. (33) Biopsies of orbital connective tissues; Sera and
PBMCs from consecutive subjects including 37 GO
patients, 38 GD patients, and 32 healthy controls

Increased CXCR3+ IFN-g–producing Th17.1 cells were positively correlated with GO
activity and associated with the development of very severe GO; In GC-resistant, very
severe GO patients, CXCR3+ IFN-g–producing Th17.1 cells remained at high levels in
blood and orbital connective tissues, which were positively correlated with elevated
triglycerides.

Fernando et al. (34) GO OFs; GO and control fibrocytes TSH and M22 induced IL-23, but not IL-12, expression in fibrocytes, while they
induced IL-12 production in GO OFs; The shift from IL-23 expression in fibrocytes to
that of IL-12 in CD34+ GO OFs was regulated by Slit2.

GO animal model
Moshkelgosha et al.
(35)

hTSHR-A subunit plasmid-immunized BALB/c mice TSHR was the pathogenic antigen in GO; Interstitial inflammation of extraocular
muscles with CD3+ T cells, F4/80+ macrophages, and mast cells, accompanied by
glycosaminoglycan deposition was observed in murine orbits.

Zhang et al. (36) hTSHR-A subunit-expressing adenovirus-immunized
BALB/c mice

Fibrosis and adipogenesis accompanied by CD4+ T cell infiltration were seen in murine
periorbital fat tissues; Increased frequencies of Th1 cells and decreased frequencies of
Th2 cells and regulatory T cells were shown in the splenocytes of GO mice.

Masetti et al. (37) hTSHR-A subunit plasmid-immunized BALB/c mice Bacteroides and Bifidobacterium counts were more abundant in mice in Center 1,
while Lactobacillus counts were more abundant in mice in Center 2; Significantly higher
yeast counts were found in Center 1 TSHR-immunized mice; A significant positive
correlation was found between the presence of Firmicutes and orbital adipogenesis in
Center 2 TSHR-immunized mice.
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chians (12). Although expression of a broad spectrum of both
TCR Va and Vb genes was observed in the PBMCs of patients,
marked restriction of TCR Va and Vb gene expression was
found in thyroid glands and orbital and pretibial connective
tissues compared with PBMCs. Furthermore, thyroid, orbital,
and pretibial tissues from two control subjects did not express
restricted TCR transcripts (12). These data imply the potential
GO-specific oligoclonal expression of the TCR gene repertoire.
To further characterize the limited variability of antigen
receptors on extrathyroidal T cells in GO, Heufelder et al.
examined the TCR V gene repertoire in situ in orbital
connective tissues and EOMs from eight early severe GO
patients and observed apparent TCR Va and Vb gene
restriction compared with matched PBMCs. Loss of TCR gene
restriction was observed in four late GO patients and no TCR
gene restriction was found in samples from three non-GO
control subjects (49, 50). These findings suggest that
oligoclonality of T cell immunity may be lost during GO,
which indicates that antigen specificity of orbit-infiltrating
T cells occurs in the early active phase of GO. This is
important because an early adaptive immune response implies
organ-specific autoimmunity in orbital connective tissues
independent of the thyroid. Development of diversity or
polyclonality of the TCR gene repertoire indicates that orbital
inflammation is at the burnout stage. Heufelder summarized
data from three severe active GO patients with GD and
dermopathy and reported not only marked TCR restriction,
but also several conserved junctional motifs shared by T cells
in the orbit, thyroid, and pretibial tissue despite obvious
heterogeneity of the TCR genes in each patient (12, 51). This
highlights the presence of certain oligoclonal T cell populations
stimulated by the analogous antigenic determinants shared by
the thyroid and the involved extrathyroidal compartments. A
recent interesting study proposed a novel TCR clonal expansion
and chaos score to predict GO development in GD by
characterizing complementarity determining region 3 of the
TCR Vb gene repertoire in PBMCs, which indicates specific
GO TCR signatures distinctive from GD (15). These selected
TCR-bearing T cells are self-reactive and recruited to the orbit at
GO attack, which lead to orbital inflammation.

The next issue is unraveling the specific cell type or protein
that triggers GO self-reactive T cell expansion. Genetic
immunization with mouse TSHR-A subunit breaks self-
tolerance and induces GO-like pathology in BALB/c mice (47).
Splenic T cells from BALB/c mice that have received hTSHR-A
subunit prepared as a maltose-binding protein fusion induce
orbital pathology in naïve recipient BALB/c mice marked by the
presence of CD3+ total T cells (52). Furthermore, splenic T cells
from hTSHR-A subunit plasmid-primed GO BALB/c mice show
proliferative responses to purified TSHR antigen (53). These data
from animal models provide a clue to potential TSHR-specific T
cell responses that may also occur in the GO patient orbit.
Arnold et al. reported occasional proliferation responses to EOM
antigens in 10 circulating T cell lines from 10 severe GO patients.
Additionally, these T cells hardly produced interferon (IFN)-g
under EOM antigen stimulation (54). Similarly, in the in vitro
Frontiers in Endocrinology | www.frontiersin.org 5
model presented by Grubeck-Loebenstein et al., six T cell lines
from orbital connective tissues did not proliferate in response to
EOM antigen stimulation, but all had apparent proliferation after
autologous OF treatment (39). In the in vitromodel of Otto et al.,
the established 17 orbital T cell lines responded significantly to
autologous orbital connective tissue proteins (6-10 and 19-26
kDa). A similar phenomenon was seen in most GO PBMCs that
were more sensitive to autologous proteins from OFs than
myoblasts. Moreover, orbital T cell lines hardly responded to
allogeneic orbital proteins (40). Conversely, the authors
demonstrated that 18 established T cell lines were barely able
to respond to TSHR (2/18), thyroidal peroxidase (2/18) or
thyroglobulin (none) (42). The results suggest the primary
antigen role of TSHR and antigen-specific T cell clones in GO
patients. However, the relatively low proliferation rate is
confusing. It is important to note that although irradiated
autologous PBMCs were added as feeders to help T cell to
clone in these two studies, the antigen-induced T cell-specific
proliferative response is acted in an antigen-presenting cell
(APC)-dependent manner. The same research group used
PBMCs from 16 GO patients and 12 controls and confirmed
that incubation of GO PBMCs with OFs from the same patients
led to marked T cell proliferation compared with control OFs.
Similarly, compared with control OFs, GO OFs also had
increased proliferation responses to stimulation by autologous
PBMCs (55). This implies that OFs express GO autoantigens,
and we hypothesize that GO OFs may function as facultative
APCs to stimulate the proliferation of antigen-specific T cells,
which has been confirmed by the fact that autologous T cells also
stimulate the proliferation of GO OFs, but not eyelid-derived
fibroblasts, via MHC class II and CD40-CD40 ligand (CD40L)
signaling (17). We and other groups have shown that GO orbital
connective tissues express higher gene and protein levels of MHC
II and CD40 than control subjects (18, 30, 43, 56). Moreover,
MHC II+ cells and CD40+ cells are local fibroblast-shaped cells
and invading mononuclear cells such as macrophages in orbital
connective tissues (18, 56). Even in stable GO, orbital connective
tissues are activated to persistently express MHC II (56).
Similarly, murine OFs derived from hTSHR-A subunit
plasmid-primed BALB/c mice showed strong expression of
CD40, TSHR, and insulin-like grow factor 1 receptor (IGF-1R)
(57). Taken together, these findings have revealed sensitized and
orbital connective tissue-specific T cells in circulation and the
orbit of GO patients and provided evidence for self-reactive T
cell populations directed against OFs.
PRIMARY IMMUNE REACTION
IN THE ORBIT

The third issue is how T cells and OFs communicate with each
other, which causes a series of pathophysiological changes in the
GO process. Evidence for both T and B cells infiltrating GO
orbital connective tissues was shown as early as 2012 (58). Many
other in situ immunohistochemistry studies have demonstrated
the presence of CD4+ T cells (44, 45, 56, 59), CD20+ B cells
April 2021 | Volume 12 | Article 648732
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(14, 60, 61), CD14+ monocytes (19, 56), CD68+ macrophages
(19, 59, 62), and CD117+ mast cells (19, 63) as the main
invading immune components in the GO orbit. Using single
cell sequencing analysis, we showed that various genes are
expressed in GO orbital connective tissues, which can be
classified into six independent cell types: APCs, lymphocytes
including T and B cells, OFs, adipocytes, endothelial cells, and
myocytes (31). This indicates an extremely complicated local
orbital microenvironment, in which infiltrating immune cells
and non-immune stromal cells interact with each other. The
presence of APCs in the orbit further supports the idea that
a primary GO autoimmune reaction occurs within the
extrathyroidal compartment, although it resembles the process
in the thyroid. OFs that express TSHR and IGF-1R (20, 31)
detect danger signals to guide the property and intensity of the
GO-adaptive immune response (64, 65). TSHR has been
recognized as an autoantigen, but might not be the only one
that activates GO self-reactive T cells. More work is needed to
explain why GO occurs in patients with Hashimoto’s thyroiditis
with no evident TSHR autoimmune reactivity (2, 8). Although
IGF-1R might be another autoantigen, GO pathology does not
involve directly stimulating IGF-1R antibodies (5, 8). Serum
antibodies against the IGF-1R are greater in GD patients,
regardless of the presence of GO, suggesting a less pathogenic
role of IGF-1R antibodies in GO (66, 67). In fact, a functional
and physical crosstalk between TSHR and IGF-1R seems to be
more important (5, 8). Defects in immune modulation lead to the
breakdown of self-tolerance to thyroid or orbital connective
tissues. Then, antigen-presenting cells (OFs themselves,
fibrocytes, B cells, macrophages, or dendritic cells in the
vicinity) recognize the exposed TSHR epitopes on the OF
surface and then process and present the TSHR peptides to T
cells, which leads to T cell clonal expansion and migration into
orbital connective tissues (5, 6, 64). It should be noted that self-
reactive B cells are likely to participate in GO antigen-presenting
process. In recent onset GD patients, autoreactive B cells in
PBMCs expressed CD86 and no longer appeared anergic, which
indicates the activation and differentiation of B cells into plasma
cells, leading to autoantibody production (68). Hence, it is
reasonable to postulate that the same immune response occurs
in orbital connective tissues in GO, where high levels of TSHR
autoantibodies are detected in the sera of patients and may
precede the onset of eye disease. A vital role of rituximab in the
treatment of GO may lie in the blockade of antigen-presenting
function of these activated self-reactive B cells (69). In addition,
the over-reactive immune process has many other complicated
mechanisms including thymic and peripheral T cell deletions
and T cell anergy (5, 6, 70). Activated T cells provide the second
signal for self-reactive B cell activation via the interaction of
CD40L on the T cell surface with CD40 on the B cell surface.
Moreover, the combination of B7 on the B cell surface and CD28
on the T cell surface provides the second signal for further
activation of self-reactive T cells (5, 64, 71). Autoantibodies
against TSHR are produced by plasma cells differentiated from
activated B cells and autoantibody class switching (IgM to IgG
and IgE) is aided by IL-4 secreted by activated T cells (mainly
Frontiers in Endocrinology | www.frontiersin.org 6
Th2 cells) (5, 64, 71). Autoantibodies, including stimulating,
neutralizing, and blocking IgG (72), target the TSHR on OFs,
which may promote cytokine and chemoattractant production,
deposition of extracellular matrix (ECM) such as hyaluronan,
and pathological OF differentiation into adipocytes and
myofibroblasts (73). Potential cross-talk of TSHR with IGF-1R
on OFs helps to augment the expression of inflammatory
molecules and hyaluronan synthesis (74, 75). The above
pathological processes are largely due to the cell contact
between OFs and T cells and cytokines produced by various T
cell types (Figure 1).

An important intercellular communication in GO is CD40-
CD40L signaling (Figure 2). CD40 is a mitogenic receptor that
belongs to the tumor necrosis factor (TNF)-a receptor
superfamily (76). CD40 is constitutively expressed by human
fibroblasts derived from different tissue sources including OFs
(18, 76), which facilitates fibroblast proliferation (76). GO OFs
express elevated CD40 at gene and protein levels compared with
control OFs (18, 77). When delineated by the cell surface marker
CD90, CD90+ GO OFs had considerably greater CD40
expression than that on CD90- subsets as well as both control
OF subsets (18). The combination of CD40 on OFs with CD40L
on T cells leads to the three following pathological effects: (1) The
release of inflammatory cytokines that induce acute and chronic
orbital inflammation. Activation of GO OFs by CD40
engagement elevates IL-6 and IL-8 protein levels comparable
with those produced by CD40-activated control OFs (77).
Additionally, GO OFs primed with IFN-g appear to be more
responsive to CD40 activation than control OFs with regard to
macrophage chemoattractant protein-1 (MCP-1) expression
(18). Intriguingly, overproduction of IL-6 and IL-8 has been
observed in CD90+ GO OFs compared with CD90- GO OFs after
priming with IFN-g (18). Conversely, CD40-CD40L signaling
stimulates relatively low IL-6 and IL-8 production in both
control OF subsets even when pre-incubated with IFN-g (18).
Hence, the higher expression of CD40 on CD90+ GOOFs may be
critical to generate IL-6 and IL-8 in response to CD40L.
Moreover, time-dependent secretion of prostaglandin (PG) E2
from GO OFs induced by CD40 engagement has been attributed
to the up-regulation of IL-1a production, which enhances the
expression of prostaglandin endoperoxide H synthase-2 (PGSH-
2 or COX-2) at both transcriptional and translational levels (21).
(2) Up-regulation of adhesion molecules promotes immune cell
recruitment to orbital connective tissues. GO orbital connective
tissues expressed higher levels of intercellular adhesion molecule-1
(ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1)
compared with control subjects (30). The gene and protein
expressions of ICAM-1 (78), VCAM-1, and E-selectin (79)
were increased by CD40 activation in both GO and control
OFs in dose- and time-dependent manners, with a more obvious
effect on the former. Moreover, sphingolipids were induced in
GO OFs, but not control OFs, which attracted T cells to migrate
(80). (3) Synthesis of hyaluronan leads to the edema of orbital
connective tissues and late-stage tissue remodeling. These
phenomena are independent of PGE2 synthesis in GO OFs
(21). Signal transductions for the pathways involved in the
April 2021 | Volume 12 | Article 648732

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Fang et al. T Cells in Graves’ Orbitopathy
CD40-CD40L combination mentioned above mainly include
nuclear translocation of nuclear factor-kB, mitogen-activated
protein kinases, and phosphatidylinositol-3-kinase. Further
studies are needed to examine in more depth the cognate
interactions between GO OFs and infiltrating T cells via CD40-
CD40L communication.

Furthermore, T cell-OF interaction triggers the differentiation
of OFs into adipocytes (8). Feldon et al. reported that GO orbital
connective tissues and GO OFs highly expressed peroxisome
proliferator-activated receptor (PPAR)-g mRNA and proteins
(81). In an autologous periphery T cell-OF coculture system,
activated T cells drove the differentiation of GO OFs into orbital
adipocytes. These activated T cells not only expressed up-
regulated levels of PGSH-2 but also synthesized PGD2 and
related PGJ2 that are PPAR-g ligands (81). This PPAR-g-
dependent adipogenic process of GO OFs provides evidence
for how inflammation-provoking T cells regulate adipogenesis of
orbital connective tissues and an interesting clue to the many
faces of T cell immunity in GO.
Frontiers in Endocrinology | www.frontiersin.org 7
PARADIGM OF TH1/TH2 IMMUNE
RESPONSES

Previous studies have shown that both Th1 and Th2 cell subsets
are involved in GO autoimmunity. In a study by De carli et al., 153
orbital T cell clones expanded from four severe GO patients
exhibited remarkably high proportions of both CD4+ and CD8+

T cell phenotypes with a Th1-like cytokine profile including IFN-g
(82% in CD4; 88% in CD8), IL-2 (79% in CD4; 81% in CD8), and
TNF-a (90% in CD4; 88% in CD8), but not IL-4 (4% in CD4; 0%
in CD8) or IL-5 (1% in CD4; 0% in CD8), compared with T cell
clones expanded from PBMCs of both GO patients and control
subjects (38). Förster et al. examined cytokine gene expression in
18 orbital T cell lines from six severe GO patients and detected
expression of Th1 cytokine genes Ifng (10/18), Tnfa (12/18), and
Il2 (17/18) as well as Th2 cytokine genes Il4 (12/18) and Il5 (17/
18). Other expressed cytokine genes were Il6 (13/18), Il10 (4/18),
and Tnfb (15/18) (42). Using orbital T cell clones expanded from
three severe GO patients, Yang et al. observed expression of Ifng
FIGURE 1 | Pathogenesis of Graves’ orbitopathy. Breakdown of self-tolerance to thyroid-stimulating hormone receptor (TSHR) leads to the recognition of
TSHR epitopes by antigen-presenting cells and B cells. They process the TSHR peptides to activate naïve T helper (Th) cells. Activated and expanded naïve
Th cells differentiate into different subsets including interferon (IFN)-g-producing Th1 cell, interleukin (IL)-4-producing Th2 cells, and IL-17A-producing Th17
cells. These cytokines together with autoantibodies produced by plasms cells derived from self-reactive B cells stimulate orbital fibroblasts (OFs), thereby
initiating inflammatory responses in the orbit. IFN-g is cytotoxic, IL-4 helps B cell expansion and autoantibody class switching, and IL-17A is proinflammatory
and profibrotic. Meanwhile, peripheral CD34+ fibrocytes infiltrate orbital connective tissues and transition into CD34+ OFs. Upon IFN-g and IL-17A stimulation,
these CD34+ cells not only robustly produce chemokines such as C-X-C motif ligand 9/10/11 attracting C-X-C chemokine receptor 3+ Th1 cell and
macrophage inflammatory protein-3 attracting C-C chemokine receptor 6+ Th17 cells but also secrete a large amount of cytokines such as IL-1b and
prostaglandin E2 that exacerbate orbital inflammation. CD34+ OFs ultimately synthesize hyaluronic acid and differentiate into adipocytes or myofibroblasts that
cause orbital tissue remodeling. The orbital native residential CD34- OFs express immunomodulatory molecules such as Slit2 to restrain the activities of the
infiltrating CD34+ OFs.
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and Il2 in eight out of 14 CD4+ T cell clones and four out of six
CD8+ T cell clones. The authors also assessed cytokine secretion in
38 CD4+ and 10 CD8+ strains, including the T cell clones for gene
expression examination, and reported detectable levels of IFN-g in
most T cell clones (36/38 in CD4; 9/10 in CD8), of which some
secreted IL-2 (8/36 in CD4; 5/10 in CD8). No Th2 cytokine gene
profile and only three IL-4-secreting and five IL-10-secreting T cell
clones were found (82). These results indicate that the great
majority of orbit-infiltrating T cells express a Th1-like cytokine
profile at both transcriptional and translational levels. In a study
by Pappa et al., nine EOM-derived T cell lines from four GO
patients were all positive for Th1 cytokine IFN-g and IL-2. Other
tested cytokines included TNF-b (5/9) and transforming growth
factor (TGF)-b (9/9). They also found that Th2 cytokine IL-4 was
positive in three out of five examined T cell lines (among the nine
T cell lines) and IL-10 was positive in four out of five. However,
the detectable rates of cytokines genes Il1a, Il2, Il4, Il6, Il8, Il10, Il5,
and Tnfa varied among another 12 different EOMs of a further five
patients. Expression of Ifng, Il13, Il1b, and Il12p40 was not
detected in these EOMs. Il6 and Il8 were the only cytokine
genes expressed in two out of five EOMs from three control
subjects (41). It should be considered that gene and protein
Frontiers in Endocrinology | www.frontiersin.org 8
expressions are not complete coincident. Furthermore, apart
from the technical problems related to the lymphocyte number
and sample size, the various pre-surgery treatments that each
patient had received and whether T cell clones were consecutively
included or selected from independent patient cohorts will
introduce biases and affect the results.

An important study by Aniszewski et al. examined cytokine
production of 57 CD4+ T cell clones expanded from six GO
patients and explicitly showed that T cell clones from recent onset
GO (less than 2 years)mainly produced IFN-g (47%) comparedwith
IL-4 (23%),whereas those fromremoteonsetGO(more than2years)
dominantly produced IL-4 (75%) compared with IFN-g (0%) (16).
These findings suggest that the Th1 immune response may
predominate in early active GO and the Th2 immune response is
likely toplay a role in late inactiveGO.Unfortunately, allT cell strains
examined were cultured and expanded in vitro for many days and
only four T cell clones were matched for late GO, which drew
criticism of the study design in which conclusions were made on
the basis of data that may result in inaccurate estimates of T cell
populations that invaded in situwithin the orbit. Additionally, short
durationGOisnot exactly the sameas activeGOand longerduration
GOdoes notmean that orbital inflammation is apparently absorbed.
FIGURE 2 | The CD40-CD40 ligand signaling in orbital fibroblasts. When CD40 ligand on self-reactive T cells combines with CD40 on orbital fibroblasts, the nuclear
translocation of nuclear factor-kB, mitogen activated protein kinases, and phosphatidylinositol-3-kinase signaling pathways will be activated, leading to the synthesis
of cytokines interleukin-6 and interleukin-8, costimulatory molecules intercellular adhesion molecule-1 and vascular cell adhesion molecule-1, and extracellular matrix.
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By directly investigating the cytokine gene expression of
EOMs in vivo from 14 GO patients and orbital connective
tissues from 29 GO patients, expression of Ifng (13/14), Tnfa
(5/14), Il1b (8/14), and Il6 (9/14) was mainly detected in EOMs,
while they were less often expressed in orbital connective tissues
in which Il4 (7/29) and Il0 (11/29) were more frequently
expressed (83). Notably, the mean GO duration of the patients
involved in the study was 2 years, which may account for the
lower expression of Ifng and relatively higher expression of Il4 in
orbital connective tissues. Additionally, we cannot neglect the
fact that all patients had undergone orbital irradiation before
tissues were obtained and half had received high-dose GCs.
Wakelkamp et al. investigated cytokine gene expression in
orbital connective tissues from 17 GO patients, of whom six
had untreated active disease and underwent emergency
decompression surgeries. The other 11 patients were in the
inactive phase and underwent rehabilitative surgeries.
Compared with inactive GO patients, active GO patients had
increased expression levels of Il1b, Il6, Il8, and Il10. Expression of
Th1 cytokine genes Ifng, Il2, and Il12p40 was also higher in active
orbital connective tissues. However, expression of Th2 cytokine
genes Il5 and Il13 was comparable in both patient groups and Il4
expression was not found in the study (84). These data imply the
importance of the Th1, but not Th2, immune response and many
other proinflammatory cytokines in the autoimmune
Frontiers in Endocrinology | www.frontiersin.org 9
environment in the active GO orbit, although the gene
expression results need to be supported at the protein level.
Furthermore, the source of the examined cytokines cannot be
identified in the bulk sequencing data.

Many recent studies have confirmed that orbital connective
tissues from GO exhibit strong immunostaining for IFN-g in the
infiltrating cells, especially in the active phase (33, 45, 61). Using
in vivo flow cytometric analysis, we demonstrated an increased
frequency of CD3+CD8- IFN-g-producing T cells in both GO
peripheral blood and orbital connective tissues compared with
control subjects (31, 45). In hTSHR-A subunit plasmid-primed
GO BALB/c mice, splenic T cells secreted IFN-g (53). An
increased frequency of CD4+ IFN-g-producing T cells derived
from splenocytes has also been observed in hTSHR-A subunit-
expressing adenovirus-immunized GO BALB/c mice (36). In an
SKG murine model of GO, expression of Ifng, Tnfa, and Il2 was
augmented in periorbital tissues and their protein levels were
elevated in sera compared with wild type mice (48).

However, the pathological effects of IFN-g on OFs are not fully
understood (Figure 3). An essential function of IFN-g in GO is
acting as the “sinister partner” of CD40-CD40L signaling to
exacerbate orbital inflammation. IFN-g not only up-regulates
CD40 on human fibroblasts derived from lung, skin, and
gingiva, but also shifts fibroblasts to the G0/G1 phase of the cell
cycle (76). Expression of CD40 was further augmented by IFN-g in
FIGURE 3 | The effects of T cell cytokines on orbital fibroblasts (OFs). T helper (Th) 1 cytokine interferon-g, Th2 cytokine interleukin (IL)-4, and Th17 cytokine IL-17A
result in the production of IL-6, IL-8, macrophage chemoattractant protein-1, C-X-C motif ligand 9/10/11, and extracellular matrix in OFs. Interferon–g interferes with
transforming growth factor-b induced fibrosis in OFs while IL-17A strengthens this process.
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both GO and control OFs regardless of CD90 expression (18, 77,
85). Additionally, MHC II expression was increased in both GO
and control OFs after IFN-g stimulation (17, 77, 85) with a more
potent effect on CD90- GOOFs (85). High-dose IFN-g (1000 U/ml)
alone was a potent stimulant of MCP-1 in GO and non-GO OFs as
well as GOOF-differentiated adipocytes (86, 87) and induced IL-8
secretion with long term incubation (24 hours) (86). However,
low- and medium-dose IFN-g (100-500 U/ml) alone did not
up-regulate IL-6 or IL-8 expression in GO and control OFs as well
as their corresponding subsets (77, 85, 88), but greatly promoted
IL-6 and IL-8 production provoked by CD40-CD40L signaling in
mixed GO and control OF populations (77) as well as pure CD90+

and CD90- GO OF subsets (18, 85).
Another major pathological role of IFN-g is establishment of a

positive inflammatory feedback loop that maintains Th1 immune
response in GO. The serum levels of chemokine C-X-C motif
ligand (CXCL) 10 were higher in GO patients than control
subjects, especially in active disease (23). Dose-dependent
secretion of CXCL9, CXCL10, and CXCL11 after IFN-g
treatment has been observed in GO OFs as well as GO OF-
differentiated adipocytes (23, 24). Although TNF-a alone did not
induce secretion of the chemokines in GO OFs and adipocytes,
IFN-g further promoted MCP-1, CXCL9, CXCL10, and CXCL11
release stimulated by TNF-a in these cells (23, 24, 87). The
proinflammatory effect that IFN-g with TNF-a synergistically
exerts on GO OFs and adipocytes is suppressed in a dose-
dependent manner by PPAR-a agonists fenofibrate, gemfibrozil,
or ciprofibrate, and PPAR-g agonists rosiglitazone or pioglitazone
(23, 24, 87, 89). A study regarding the role of circulating CXCL9
and CXCL10 as potential markers for GO activity revealed that
GC treatment and teleradiotherapy significantly decreased
CXCL9 and CXCL10 serum concentrations compared with
basal values in GO patients. A positive correlation between
CXCL9 and CXCL10 was also found in this study (90). Because
C-X-C chemokine receptor (CXCR) 3 is particularly expressed on
Th1 cells, which binds CXCL9, CXCL10, and CXCL11 (91), the
above studies reflect an accurately self-modulated Th1 immunity-
mediated inflammatory network in GO.

Furthermore, IFN-g results in the accumulation of ECM in GO.
IFN-g enhances hyaluronan synthesis activated by CD40-CD40L
signaling in GO OFs and strengthens IL-1b-induced hyaluronan
synthesis in GO OFs by promoting expression of the hyaluronan
synthase-2 gene (21, 25). It does not directly induce PGE2 secretion
in GO OFs or contribute to PGE2 levels initiated by CD40-CD40L
signaling (21). However, IFN-g acts synergistically with CD40-
CD40L signaling to elicit a dramatic increase in PGE2 production in
CD90+ GO OFs and CD90- GO OFs via up-regulation of PGSH-2
proteins (85). Conversely, IFN-g attenuates IL-1b-provoked PGE2
production in GO OFs via down-regulation of PGHS-2 mediated
by decreased Pghs-2 promoter activity and weakened PGHS-2
mRNA stability. This process is regulated by Janus kinase 2
signaling (25). The different modulation of PGE2 production by
IFN-g in combination with other molecular signals indicates a
potential role of Th1 cell immunity and its related cytokines in
regulating tissue reactivity and remodeling in the orbit. It is
recognized that CD90+ OFs tend to differentiate into
Frontiers in Endocrinology | www.frontiersin.org 10
myofibroblasts, a hallmark of late GO fibrosis, whereas CD90-

OFs tend to differentiate into adipocytes (2, 6, 22). IFN-g blocks
TGF-b-induced a-smooth muscle actin (SMA) expression in
CD90+ GO OFs, which inhibits myofibroblast differentiation (22).
Similarly, high levels of tissue inhibitor of metalloproteinase
(TIMP)-1 gene and protein expression associated with fibrosis
have been observed in IL-1b-treated GO OFs in a dose- and
time-dependent manner, which was attenuated by IFN-g via
down-regulation of Timp1 promoter activity (26). This suggests
that IFN-g is more of a kind of proinflammatory factor that causes
tissue damage and degeneration, and proves that the Th1 immune
reaction is predominantly involved in early active GO.

The pathological effects of Th2 cytokines on OFs have yet to
be examined carefully (Figure 3). Studies in GO murine models
have not been able to duplicate Th2-dominated immune
responses. A decreased frequency of CD4+ IL-4-producing
splenic T cells has been observed in hTSHR-A subunit-
expressing adenovirus-immunized GO BALB/c mice (36).
However, compared with wild type mice, expression of Il4, Il5,
and Il13 was increased in periorbital tissues of GO SKG mice
(48). In another study, serum IL-4 remained at a higher level in
hTSHR-A subunit plasmid-immunized GO BALB/c mice than in
normal mice with extension of the immune time when IL-6,
TNF-a, and granulocyte-macrophage colony stimulating factor
were gradually declining (92). These results imply a possible role
of Th2 cell-triggered immune responses in orbital connective
tissues of stable GO. We used flow cytometry to confirm that the
frequencies of CD3+CD8- IL-13-producing T cells and
CD3+CD8-GATA3+ T cells were augmented in orbital
connective tissues from GO patients. Both IL-13 and GATA3
were significantly related to GO development in a multivariate
logistic regression model (31). These results suggest an
indispensable and major role of Th2 immunity in GO
inflammation. Although IL-4 cannot up-regulate CD40
expression in fibroblasts (76), it has many similar effects in
regulating the biological behaviors of GO OFs. IL-4 suppresses
Timp1 promoter activation by IL-1b, which reduces the levels of
TIMP-1 gene and protein expression in GO OFs (26). IL-4 also
suppresses Pghs-2 promoter activation by IL-1b, thereby
inhibiting secretion of PGE2 from GO OFs (25). However, IL-4
promotes IL-1b-initiated hyaluronan synthesis in GO OFs by
up-regulating hyaluronan synthase-2 gene expression (25). The
identical functions of IFN-g and IL-4 suggest transition from Th1
to Th2 cells to maintain the delicate balance between ECM
production and degradation in orbital connective tissues as GO
progresses from the early to late stage. In view of the major
involvement of Th2 cell immunity in tissue fibrosis (93), more
research on the relationship between Th2 cytokines IL-4, IL-5,
and IL-13 and GO tissue remodeling is needed.
EMERGING ROLE OF THE TH17
IMMUNE RESPONSE

The first evidence regarding the possible role of Th17 cells in GO
pathogenesis was published in 2008. A total of 216 GD patients
April 2021 | Volume 12 | Article 648732

https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Fang et al. T Cells in Graves’ Orbitopathy
and 368 control subjects were genotyped for single nucleotide
polymorphisms of Il23r. rs2201841 was strongly associated with
GO, especially AA (P=1.0×10-4; OR=2.4) and CC (P=1.4×10-4;
OR=2.36) genotypes (27). This indicates that Il23r variants may
increase susceptibility to GO by regulating the expression or
function of IL-23R on Th17 cells. Soon after, Kim et al. reported
significantly higher detectable rates and serum levels of IL-17A in
GO patients than those in control subjects, especially in the active
phase (94). This was confirmed by another study in which serum
IL-17A was higher in both active and inactive GO patients than in
control subjects, despite its relative reduction compared with GD
patients without eye disease (95). Additionally, Wei et al. observed
the highest levels of serum IL-17A in active GO patients compared
with those in both inactive GO and GD patients (96). Other
studies that focused on lacrimal glands and the ocular surface have
revealed elevated IL-17A levels in the tears of active and inactive
GO patients (97–99). An orbital magnetic resonance scan showed
that the axial lacrimal gland area was positively correlated with IL-
17A concentrations in GO patient tears (99). Both serum and tear
IL-17A levels have been positively correlated with the GO clinical
activity score (94, 96, 99). We also observed up-regulated serum
levels of IL-17A, but not IL-17F, in GO patients (44). More
importantly, IL-23 (44, 94), IL-6 (44, 95, 97–99), and IL-1b (44,
97–99) concentrations were elevated in both sera and tears from
active and inactive GO patients and more enriched in active phase,
which are crucial factors for the differentiation of Th17 cells (100,
101). Analogously, the expression of IL-17A, IL-23, IL-6, and IL-
1b increases diffusely around small vessels or fibroblasts and
adipocytes within GO orbital connective tissues (44). These
cytokines may construct a suitable microenvironment for the
survival and activation of Th17 cells both systemically and
locally in GO. We found that CD3+ IL-17A-producing T cells
were increased among GO PBMCs compared with controls.
Furthermore, both CD3+CD8- (Th17) and CD3+CD8+ (Tc17)
IL-17A-producing subsets are augmented in GO peripheral blood
(44, 45). The CD3+CD8- T cells in GO also express a higher
proportion of retinoic acid receptor related orphan receptor
(ROR)-gt, the key transcription factor for Th17 cells (44).
Intriguingly, most Th17 and Tc17 cells are CD45RO+ memory
T cells (30, 44, 45), which indicates that these IL-17A-producing T
cells might have been exposed to autoantigens such as TSHR and
activated in the very early phase of GO or even in the GD stage.
This is supported by the fact that the frequency of peripheral Th17
cells is higher in new-onset and intractable GD patients (102–104).
More importantly, IL-17A-producing and RORgt-bearing Th17
cells were recruited at a higher fraction in GO orbital connective
tissues, which were significantly associated with GO occurrence in
a multivariate logistic regression model (31).

Th17 cells facilitate the inflammatory state of OFs in GO
autoimmunity (Figure 3). In our in vitro model, IL-17A
promoted transcriptional and translational expression of IL-6,
IL-8, and MCP-1 in GO OFs in a dose- and time-dependent
manner compared with fibroblasts derived from eyelid tissues.
However, IL-17A did not affect the production of IL-23, IL-1b, or
TGF-b in GO OFs (44). IL-17A alone did not stimulate RANTES
(regulated upon activation, normal T-cell expressed and
Frontiers in Endocrinology | www.frontiersin.org 11
secreted) production, but strongly induced its mRNA and
protein expression in the presence of CD40-CD40L signaling
in both GO and control OFs in a dose- and time-dependent
manner (45). In a Th17 cell-OF coculture system, Th17 cells
promoted the secretion of IL-6, IL-8, MCP-1, macrophage
inflammatory protein (MIP)-3, TNF-a, and granulocyte-
macrophage colony stimulating factor from both CD90+ and
CD90- OFs (30). In recent years, circulating fibrocytes have been
recognized to participate in GO inflammation and tissue
remodeling (105, 106). These cells express CD45, CD34,
CXCR4, collagen I, thyroglobulin, TSHR, and IGF-1R, and
were far more frequent in the circulation of GD and GO
patients than in control subjects and were highly detected in
GO orbital connective tissues, but were absent in control orbits
(28, 29, 107). Both GO and control fibrocytes secreted TNF-a,
IL-6, IL-8, IL-12, MCP-1, RANTES, MIP-1a, MIP-1b, CXCL10,
and granulocyte colony-stimulating factor when stimulated by
TSH or M22, a monoclonal TSHR-activating antibody (28, 29,
108). We found that GO and control fibrocytes synthesized IL-6,
IL-8, and MCP-1 robustly in response to IL-17A, while GO
fibrocytes had higher levels of basal and induced secretion of
these cytokines than control fibrocytes (32). In a Th17 cell-
fibrocyte coculture system, we found that expression of Il6, Il8,
Mcp1, Mip3a, Tnfa, Cxcl9, and Cxcl10 was augmented in GO
fibrocytes and their proteins had accumulated in the culture
supernatants (32). Both fibrocytes and OFs as well as OF subsets
delineated by CD90 express IL-17RA (30, 32, 44), which suggests
consecutive stimulation by Th17 cells from peripheral circulation
to local orbital connective tissues in GO.

Th17 cells also modulate the fibrosis and adipogenesis balance
in GO OFs. IL-17A directly leads to various ECM depositions in
orbital connective tissues. Compared with control OFs, the gene
and protein synthesis offibronectin, collagen I, collagen III, TIMP-
1, TIMP-2, matrix metalloproteinase (MMP)-1, and MMP-2 was
greatly induced by IL-17A treatment of GO OFs in a dose- and
time-dependent manner (44). Up-regulation of a-SMA gene and
protein expression has been observed in IL-17A-treated GO OFs,
which demonstrates differentiation of OFs into myofibroblasts
(44). Unexpectedly, when we used pure CD90+ and CD90- GOOF
subsets, IL-17A exerted distinct effects on the two cell types. Low-
dose IL-17A (10 ng/ml) was sufficient to enhance the fibrotic
process marked by increased protein levels of a-SMA, fibronectin,
collagen I, TIMP-1, and MMP-2 in GO OFs provoked by TGF-b.
However, both low- and high (100 ng/ml)-dose IL-17A interfered
with adipogenic differentiation of CD90- OFs induced by 15-
deoxy-D12,14-PGJ2. The protein levels of perilipin A, adipocyte
differentiation-related protein, adiponectin, and PPAR-g were
down-regulated in CD90- OFs in the presence of IL-17A (30).
IL-17A promoted phosphorylation of JNK/c-Jun in CD90+ OFs,
but impeded phosphorylation of CEBP/a in CD90- OFs.
Additionally, in CD90+ OFs, proteomics analysis has revealed
that IL-17A enhances the production of ECM and proteins that
are positive regulators for TGF-b and JNK cascade, but prevents
adipocyte differentiation of CD90- OFs by up-regulating proteins
involved in fatty acid oxidation, degradation, and efflux processes
(30). Owing to the considerably high proportion of the CD90+
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phenotype among GO OFs (30, 109), these findings suggest that
GO OFs have a repertoire of differentiation that is more skewed
towards myofibroblasts under IL-17A stimulation.

However, GO OFs regulate the phenotype and function of
Th17 cells. In a Th17 cell-OF coculture system, both CD90+ and
CD90- GO OFs enhanced the secretion of IL-17A from Th17
cells. Other supernatant-enriched cytokines included IL-22 and
IL-21. An increased frequency of IL-17A+RORgt+ Th17 cells was
shown by flow cytometry in the coculture system, which was
repressed by down-regulating PGE2 released from CD90+ and
CD90- GO OFs (30). The molecular mechanisms were possibly
mediated by up-regulating IL-23R and IL-1R expression on Th17
cells, which was caused by PGE2-EP2/EP4 signaling that led to
intracellular cAMP formation and subsequent phosphorylation
of cAMP-responsive element-binding protein (31). These in vitro
findings are consistent with the observation that GO orbital
connective tissues contain a level of PGE2 and orbit-infiltrating
Th17 cells express more IL-23R and IL-1R (31). Moreover, the
Th17 cell-OF interaction results in a dramatic elevation of
the expression of CD40, MHC II, ICAM-1, and VCAM-1
on CD90+ and CD90- GO OFs, particularly on those that are
also CD34+ (30). Such CD34+ OFs may originate putatively from
CD34+ fibrocyte progenitors (106). Flow cytometric analysis has
shown that CD34+ GO OFs have higher levels of IL-17RA than
native residential CD34- subsets, which might account for the
overexpressed CD40 and MHC II on CD34+ cells (31).
Moreover, Th17 cell-fibrocyte interplay not only enhances IL-
17A production in Th17 cells, but also significantly promotes
CD40 and MHC II expression on GO fibrocytes (32).

How are Th17 cells recruited into orbital connective tissues in
GO? Both peripheral and orbit-infiltrating Th17 cells express C-C
chemokine receptor (CCR) 6, a MIP-3 receptor (30–32).
Therefore, the MIP-3 released by GO fibrocytes might be a
strong attractant that directs Th17 cells to sites of inflamed
orbital connective tissues. Guo et al. demonstrated that orbit-
infiltrating T cells in GO express CD44 (110), a specific cell surface
receptor for hyaluronan (111). CD44 is highly elevated on
activated T cells (112, 113) and particularly on CCR6+ IL-17A-
producing Th17 cells in our study (30). However, T cell subsets
with low expression of CD44 hardly secrete IL-17A in GO patients
(30). Thus, with increased pericellular hyaluronan deposition,
CD44 may facilitate Th17 cell attachment to GO OFs.

In recent years, the concept of Th17 cell plasticity has become
prominent. Th17 cells acquire much more complex functional
phenotypes than previously thought. Although they can shift
phenotype within their lineage, Th17 cells have a dynamic ability
to trans-differentiate into other CD4+ T cell subsets such as Th1
and Th2 cells (100, 114, 115). IFN-g- and IL-22-producing Th17
cells are detected at significantly higher levels among GO
PBMCs, especially in active patients (30, 45). These so called
pathogenic Th17 cells express both RORgt and Tbet. They
infiltrate into GO orbital connective tissues and more likely
produce IFN-g instead of IL-17A (31). TSH and M22 robustly
induced gene and protein expression of IL-23 in GO fibrocytes,
but not IL-12, which was significantly produced by GO OFs
under the same conditions (34). However, pure CD34+ OFs
Frontiers in Endocrinology | www.frontiersin.org 12
preferentially expressed Il23p19, while their homologous CD34-

OFs greatly expressed Il12p35 (34). The distinct roles of CD34+

and CD34- OFs reflect the potential shift from a non-pathogenic
to pathogenic state of circulating Th17 cells into orbit-infiltrating
Th17 cells, which is consistent with the TSHR signaling that
drives the specific cytokine milieu by CD34+ fibrocytes that
masquerade as CD34+ OFs within orbital connective tissues.
The expression of IL-23 by CD34+ fibrocyte/OF lineages might
play a prominent part in reinforcing the highly IL-23R-bearing
Th17 phenotype in GO orbits (31) by endowing Th17 cells with
“pathogenic” effector functions. We recently reported an increase
in peripheral classic CD3+CD8-CXCR3+CCR6- Th1 cells in
active moderate-to-severe GO patients and GD patients, which
were decreased in active very severe GO patients. Conversely, we
found that classic CD3+CD8-CXCR3-CCR6+ Th17 and non-
classic CD3+CD8-CXCR3+CCR6+ Th17.1 cells were elevated
among PBMCs from active very severe GO patients compared
with both active moderate-to-severe GO and GD patients.
Intriguingly, the non-classic Th17.1 cells favored IFN-g
production in active very severe GO patients, but preferentially
secreted IL-17A in active moderate-to-severe GO patients.
Moreover, the peripheral Th17.1 cells expressed higher levels
of RORgt in active moderate-to-severe GO patients, whereas they
had augmented levels of Tbet in active very severe GO patients,
which was in concert with the different cytokine production
phenotypes of these two patient cohorts. Very severe GO patients
who did not respond to intravenous GC treatment had a
sustained higher frequency of circulating and orbit-infiltrating
Th17.1 cells (33). Therefore, we speculate an immunological
transition process from Th1 cell immunity to Th17 cell
immunity may indicate the development of very severe eye
disease in GD. The overactivity of Th17.1 cells may serve as a
hallmark for the not yet subsided inflammatory storm in orbital
connective tissues. Evidence from animal models is indicating
that IL-17A and IFN-g double-producing Th17 cells are
pathogenic drivers of various human autoimmune diseases
such as multiple sclerosis, diabetes type 1, uveitis, dry eye,
rheumatoid arthritis, and inflammatory bowel disease (100,
114). Unfortunately, no convincing evidence of detectable
Th17 cells has been observed in current GO murine models
(36, 53), which makes it difficult to prove our hypothesis. The
distinctive genetic backgrounds of BALB/c and C57BL/6J mice
may partially be responsible for their susceptibility to GD and
GO as well as the different T cell responses under autoimmune
disease conditions (116). In this regard, a role of the gut
microbiota that influence the immunological responses of
induced GO murine models cannot be neglected (37, 117). For
example, the YCH46 strain of Bacteroides fragilis reduces Th17
cell numbers by releasing propionic acid in GD patients (118).
An interesting study reported correlations between murine GO
manifestation and gut microbial taxonomies. Significant
differences in the diversity and spatial organization of the gut
microbiota of hTSHR-A subunit plasmid-immunized BALB/c
mice were shown in two centers from different countries (37).
Thus, the impact of different regions is also a source of
potentially conflicting results, since the microbiome changes
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across different countries. Disease-associated gut microbiota may
contribute to the induced immune responses in GO murine
models. Despite the confounding deviation from real human
GO, future animal models will certainly be developed from
existing experience and provide researchers with novel points
of study to investigate the immunopathogenesis of GO.
FUTURE PERSPECTIVES

To date, immunomodulation therapy has been widely used for
treatment of GO. Traditional non-specific immunosuppressants
are effective in combination with GC treatment as alternative
options for active moderate-to-severe GO (8, 11). Azathioprine
and methotrexate interfere with purine synthesis that is
necessary for lymphocyte proliferation. Mycophenolate, which
inhibits inosine monophosphate dehydrogenase, and
cyclosporine, which prevents IL-2 secretion, also exert anti-
proliferative effect on lymphocytes (8, 11). However, none of
these therapeutic approaches appear to alter the natural course of
GO, which makes development of more specific drugs critical to
address an important unmet medical need. Considering the
complexity of GO pathogenesis, there remain many ambiguous
aspects of the pathological T cell activities within orbital
connective tissues. For example, T cell migration and
activation induced by autoantigens, autoantibodies, and
immunomodulatory proteins. Activating TSHR on thymocytes
enhances thymic output and therefore the functional T cell
repertoire in the periphery (119). A larger proportion of
peripheral CD3+CD45RO+IGF-1R+ T cells is seen in GO
patients compared with control subjects. IGF-1R, which
increases upon TCR stimulation, not only inhibits Fas-
mediated apoptosis, but also supports the expansion of
memory T cells in GO (120). Furthermore, the proportion of
peripheral IGF-1R+ T cells declines with clinical improvement in
GO patients after rituximab treatment (121). Autoantibodies
from GO patients up-regulate T cell chemoattractant IL-16 and
RANTES from GO OFs (122). Moreover, T cell immunoglobulin
domain and mucin domain 3, which restrains cytokine
production in effector T cells except Th2 cells, is down-
regulated in peripheral Th1 and Th17 cells in GO patients
(123, 124). Slit2 from residential CD34- OFs might inhibit
production of IL-6 from GO CD34+ OFs, thereby ameliorating
orbital inflammation and repressing Th17 cell differentiation
(125). These findings offer new insights to explore novel
approaches for therapy of GO. Existing evidence for the
efficacy and relative safety of rituximab against CD20+ B cells,
tocilizumab against IL-6, etanercept, infliximab, and
adalimumab against TNF-a is encouraging (7, 71, 126). The
impressive results of teprotumumab have provided the
unprecedented possibility for monoclonal antibodies in
combination with GCs for GO therapy, although more
evidence must be provided. Trials of utilizing belimumab
against BAFF (EUDRACT 2015−002127−26), K1-70 against
TSHR (NCT02904330), and iscalimab against CD40
(NCT02713256) are currently underway. Blocking the IL-23/
Frontiers in Endocrinology | www.frontiersin.org 13
IL-17A axis as a therapeutic strategy for GO is also promising
considering its effectiveness in other autoimmune diseases such
as psoriasis and mandatory spondylitis (71). Notably, a recent
interesting study had the first attempt of antigen-specific
immunotherapy with ATX-GD-59 that contains two TSHR
peptides 9B-N and 5D-K1 in GD, which suggests that ATX-
GD-59 is a safe and well-tolerated treatment (127). This antigen-
specific method blocks the activation of APCs by binding with
HLA-DR molecules, thereby inhibiting the subsequent cascade
reactions of self-reactive T and B cells, which truly represents the
needed breakthrough for targeted and effective therapy with less
prone to general side effects. Novel biological agent identification
on the basis of advances in GO pathogenesis is time-consuming
but rewarding, which ultimately benefits patients with this
debilitating disease.
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