
MEDICAL IMAGING AND DIAGNOSTIC RADIOLOGY

Received 26 May 2021; revised 20 August 2021; accepted 10 October 2021.
Date of publication 2 November 2021; date of current version 10 November 2021.

Digital Object Identifier 10.1109/JTEHM.2021.3124937

Ultrasound Sample Entropy Imaging: A New
Approach for Evaluating Hepatic

Steatosis and Fibrosis
HSIEN-JUNG CHAN 1, ZHUHUANG ZHOU 2, JUI FANG 3, DAR-IN TAI4, JENG-HWEI TSENG5,

MING-WEI LAI 6, BAO-YU HSIEH 1,5, (Member, IEEE),
TADASHI YAMAGUCHI7, (Senior Member, IEEE), AND PO-HSIANG TSUI 1,6,8

1Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
2Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China

3x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung 40447, Taiwan
4Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital at Linkou, Taoyuan 333423, Taiwan
5Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan 333423, Taiwan

6Division of Pediatric Gastroenterology, Department of Pediatrics, Chang Gung Memorial Hospital at Linkou, Taoyuan 333423, Taiwan
7Center for Frontier Medical Engineering, Chiba University, Chiba 263-8522, Japan

8Institute for Radiological Research, Chang Gung University, Taoyuan 333323, Taiwan

(Hsien-Jung Chan and Zhuhuang Zhou contributed equally to this work.) CORRESPONDING AUTHOR: P.-H. TSUI (tsuiph@mail.cgu.edu.tw)

This work was supported in part by the Ministry of Science and Technology in Taiwan under Grant MOST 109-2223-E-182-001-MY3,
in part by Chang Gung Memorial Hospital, Linkou, Taiwan, under Grant CMRPD1K0421 and Grant CMRPD1H0381, and in part by the

National Natural Science Foundation of China under Grant 11804013.

This work involved human subjects or animals in its research. Approval of all ethical and experimental procedures and protocols was
granted by the Institutional Review Board (IRB) of Chang Gung Memorial Hospital for the reuse of previously collected data [16] and the

enrollment of new participants for research purposes under Approval No. 201601928B0, Dated February 7, 2017.

ABSTRACT Objective: Hepatic steatosis causes nonalcoholic fatty liver disease and may progress to
fibrosis. Ultrasound is the first-line approach to examining hepatic steatosis. Fatty droplets in the liver
parenchyma alter ultrasound radiofrequency (RF) signal statistical properties. This study proposes using
sample entropy, a measure of irregularity in time-series data determined by the dimension m and tolerance
r , for ultrasound parametric imaging of hepatic steatosis and fibrosis. Methods: Liver donors and patients
were enrolled, and their hepatic fat fraction (HFF) (n = 72), steatosis grade (n = 286), and fibrosis score
(n = 65) were measured to verify the results of sample entropy imaging using sliding-window processing of
ultrasound RF data. Results: The sample entropy calculated using m = 4 and r = 0.1 was highly correlated
with the HFF when a small window with a side length of one pulse was used. The areas under the receiver
operating characteristic curve for detecting hepatic steatosis that was ≥mild, ≥moderate, and ≥severe were
0.86, 0.90, and 0.88, respectively, and the area was 0.87 for detecting liver fibrosis in individuals with
significant steatosis. Discussion/Conclusions: Ultrasound sample entropy imaging enables the identification
of time-series patterns in RF signals received from the liver. The algorithmic scheme proposed in this study
is compatible with general ultrasound pulse-echo systems, allowing clinical fibrosis risk evaluations of
individuals with developing hepatic steatosis.

INDEX TERMS Fatty liver, hepatic steatosis, sample entropy, ultrasound imaging
Clinical and Translational Impact Statement: The proposed ultrasound sample entropy imaging aims to endow
general ultrasound imaging systems with the diagnostic ability in hepatic steatosis assessment and liver
fibrosis detection.

I. INTRODUCTION
Hepatic steatosis, defined as the accumulation of
triacylglycerol-rich lipid droplets within hepatocytes (specif-
ically, at least 5% of hepatocytes contain lipid vacuoles),

may progress to steatohepatitis, fibrosis, cirrhosis, or hepa-
tocellular carcinoma [1]. Liver biopsy is the gold standard
approach for hepatic steatosis diagnosis [2]. Because of the
invasiveness, discomfort, and complications of liver biopsy,
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noninvasive imaging techniques such as computed
tomography (CT), magnetic resonance (MR) imaging,
MR spectroscopy, and ultrasound, are preferred as alternative
assessment tools for hepatic steatosis [3]. However, ionizing
radiation limits the practical utility of CT, and high cost
reduces the clinical availability of MR techniques. Ultra-
sound imaging is a cost-effective, real-time, portable tech-
niquewithout ionizing radiation that could serve as a first-line
approach to evaluating hepatic steatosis.

Notably, sonography-based diagnosis has substantial
drawbacks, including a dependency on backend processing
(e.g., image enhancement techniques), reliance on scanning
skills, and the possibility of subjective judgments by the
examiner. As a result of interobserver and intraobserver
variability, the diagnostic sensitivity and specificity of B-scan
ultrasonography range from 60% to 94% and from 66% to
95%, respectively [4]. Researchers have focused on devel-
oping quantitative ultrasound approaches for characterizing
and grading hepatic steatosis to address this variability [5].
The liver parenchyma could be modeled as a scattering
medium and therefore form a speckle pattern in an ultrasound
B-scan [6]. Because of the randomness of ultrasound
backscattering, using statistical distribution models to
perform passive parametrization of speckle patterns is a well-
accepted method of characterizing the microstructures of tis-
sues (i.e., scatterer arrangements and concentrations) [7], [8].
Currently, the Nakagami and homodyned K (HK) distri-
butions are the two primary general statistical models of
ultrasound backscattering [9]. The progression of hepatic
steatosis can be quantitatively described using these models
with parameters estimated using raw envelope signals (before
logarithmic compression) [10]–[12].

One prerequisite of using the distribution models to fit the
backscattered statistics is that the statistical properties of the
envelope signals used in the analysis must meet the require-
ments of the model [13], [14]. In practice, this requirement is
not necessarily satisfiable because the statistical properties of
the envelope waveform are affected by system characteristics
and signal postprocessing. Therefore, Shannon entropy, from
information theory, was proposed as a method to describe
the uncertainty of ultrasound backscattered signals and char-
acterize microstructures of tissues in a more flexible man-
ner [15]. Ultrasound parametric imaging based on Shannon
entropy was demonstrated to improve the accuracy of hepatic
steatosis assessment compared with that of imaging based
on conventional statistical distributions [16] and improved
evaluations of metabolic syndrome risks among individuals
with hepatic steatosis [17]. The diagnostic performance of
Shannon entropy imaging in grading hepatic steatosis is also
competitive compared with that of deep learning [18].

Nevertheless, Shannon entropy is calculated using the
probability density function (PDF) of the data, which is
determined only according to the total information con-
tent, without consideration of the time-series causality of
ultrasound backscattered signals. In addition, different scat-
tering microstructures may produce the same probability

distributions [13], resulting in ambiguity of the physical
meaning. Compared with Shannon and other PDF-based
entropies, approximate entropy and sample entropy are com-
putational solutions for entropic measures of finite time
series; sample entropy was proposed to improve entropy
approximation because it is data-length independent and
offers better computational consistency during the determi-
nation of information regularity based on patterns in the time-
series data [19]. This implies that the use of sample entropy
can achieve more accurate hepatic steatosis characterization
compared with that achieved bymethods that involve analysis
of the PDF of the envelope according to pattern similarities in
the time series of raw radiofrequency (RF) signals obtained
after beamforming. Moreover, this also implies that the use of
sample entropy can provide more information regarding the
physical interactions between the incident wave and acoustic
scatterers.

This study explored the utility of sample entropy in ultra-
sound parametric imaging and grading of hepatic steatosis
and fibrosis. In the following sections, we introduce the the-
oretical background of sample entropy and explain how we
designed an algorithmic scheme and acquired clinical data
for validation of the proposed method. The results revealed
that the diagnostic performance of sample entropy calculated
using raw RF signals was superior to that of conventional
PDF-based Shannon entropy in grading ultrasound images
of hepatic steatosis. Ultrasound sample entropy imaging
could also detect liver fibrosis in individuals with significant
hepatic steatosis.

II. MATERIALS AND METHODS
A. THEORETICAL BACKGROUND
Sample entropy is a measure of the irregularity of a unidimen-
sional series and is defined as the negative natural logarithm
of the conditional probability that a subseries remains similar
when its data length increases, where self-matches are not
included in calculating the probability. Details of the algo-
rithm can be found in a previous study [19] and are briefly
described as follows.

We assume time-series data of length N with a constant
time interval τ for an ultrasound backscattered RF signal,
as given by

X = {x1, x2, x3, . . . , xN } . (1)

The conventional Shannon entropy (denoted by ShanEn) is
calculated as [16]

ShanEn = −
∑n

i=1
w (xi) log2 [w (xi)] , (2)

where xi are the discrete random variables representing the
backscattered signals, w(xi) represents the probability value
of a signal in bin i, and n indicates the number of bins. Tem-
plate vectors (i.e., subseries) with length m (the dimension
parameter) are

Xm(i) = {xi, xi+1, xi+2, . . . , xi+m−1} , (3)
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and their distance function (based on the Chebyshev distance)
is

d [Xm(i),Xm(j)] , i 6= j. (4)

The sample entropy (denoted by SampEn) is then defined
as

SampEn(m, r,N ) = − ln
(
A
B

)
, (5)

where r is the tolerance value, A represents the number of
template vector pairs for which d [Xm+1(i),Xm+1(j)] < r ,
and B is the number of template vector pairs for which
d [Xm(i),Xm(j)] < r . The tolerance value r is a percent-
age multiplied by the standard deviation of the original
sequence; thus, the time series should be normalized before
analysis [20]. Sample entropy approaches zero for signals
with highly periodic patterns and increases for irregular sig-
nals [20], [21]. An example of the sample entropy calculation
process is provided in the top-right corner of Fig. 1.

B. STUDY POPULATIONS
This study received approval from the Institutional Review
Board (IRB) of Chang Gung Memorial Hospital for the reuse
of previously collected data [16] and the enrollment of new
participants for research purposes (IRB no. 201601928B0;
approval date: Feb. 7, 2017). All participants signed informed
consent forms, and experimental methods conformedwith the
approved guidelines. Liver donors were enrolled in Group I
(n = 72). Patients scheduled to undergo liver biopsy due to
confirmed chronic hepatitis B infection or partial liver resec-
tion were enrolled in Groups II (n = 286) and III (n = 65).
The details are described below.

Anthropometric and biochemical examinations (after
overnight fasting for 8 h) were performed tomeasure the body
mass index, aspartate aminotransferase level, and alanine
aminotransferase level of each patient in each group. The
hepatic fat fraction (HFF) of the liver (right lobe) in each
liver donor in Group I was measured through hydrogen-1
(1H) proton MR spectroscopy (i.e., 1H-MRS) (GE Signa
HDXT,Waukesha, WI, USA), a well-recognized noninvasive
approach that accurately quantifies hepatic steatosis [22].
The HFF was defined as (fat mass)/(fat mass + water mass)
and expressed as a percentage. For patients in Group II,
we obtained specimens from the right liver lobe by adopting
an intercostal approach and sent them to the department
of pathology for histological examination. Hepatic steatosis
was graded according to the percentage of involved hep-
atocytes [23]: normal (<5%), mild (5%–33%), moderate
(33%–66%), and severe (>66%). Considering that hepatic
steatosis is a risk factor for nonalcoholic steatohepatitis,
which causes liver fibrosis [23], additional 65 patients histo-
logically graded as having moderate or severe hepatic steato-
sis were included in Group III to undergo METAVIR scoring;
these scores were classified as F0, no fibrosis; F1, portal
fibrosis with no septa; F2, portal fibrosis with few septa; F3,
bridging fibrosis with many septa; and F4, cirrhosis (nodular

TABLE 1. Demographic data of patients enrolled in groups I and II.

stage) [23]. The patients’ demographic data are summarized
in Tables 1 and 2. We performed 1H-MRS and liver biopsy
examinations after abdominal ultrasound scanning.

C. ULTRASOUND DATA ACQUISITION AND ANALYSIS
The subjects underwent standard-care abdominal ultrasound.
We obtained three liver parenchyma scans for each patient
by using the intercostal scanning approach [24], and major
vessels, structures, and acoustic shadowing artifacts were
excluded during scanning [25]. A clinical ultrasound scanner
(Model 3000, Terason, Burlington, MA, USA) equipped with
a convex array transducer with a 3-MHz central frequency
(Model 5C2A, Terason) was used. The gain index in the
software of the Terason scanner is adjustable and was set
at 6, which corresponds to the gain of 33 dB according to
the calibrations performed in the previous study [26]. The
system-default time-gain compensation curve in terms of
an exponentially increasing function constructed using an
attenuation coefficient of 0.3 dB/MHz-cm (a conservative
assumption generally used in commercial ultrasound sys-
tems) was used to reduce the acoustic attenuation effect. The
pulse length (PL) obtained from the pulse-echo measurement
of the transducer was approximately 2.3 mm, and the focus
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FIGURE 1. Algorithmic scheme for ultrasound parametric imaging using sample and Shannon entropies. This illustration presents an example of the
sample entropy calculation process with the dimension m = 2. The data points x6 and x7 are used as the ith template pattern (i = 6). The 2-point
sequences x13, x14 and x49, x50 are matched, and x49, x50, x51 is a 3-point matched sequence. In this case, SampEn = −ln (1/2).

and depth for imagingwere set at 4 and 8 cm, respectively. For
each scan, the imaging data were saved in ULT file format.
No apodization, filtering, and any kind of signal processing
were used during ultrasound transmission and data acquisi-
tion. The software kit provided by Terason was then used
to convert the image data into raw beamformed RF signals
(sampling rate: 12 MHz; 128 scan lines) for offline analysis
(Fig. 1).

The absolute value of the Hilbert transform of each RF
signal was taken to form the envelope image, which was
then compressed through logarithmic computation to display
the brightness mode (B-mode) image at a dynamic range
(DR) of 40 dB. Sliding-window processing, a common pro-
cessing technique for generating an ultrasound parametric
image [15]–[17], was applied to the RF data (not the envelope
image) for entropy parametric imaging. According to the line-
by-line connection basis, two-dimensional (2D) RF signals
within a square windowwere converted into one-dimensional
(1D) time-series data for estimating local entropy values,
which were stored as pixels corresponding to the window
location. The window was moved across the range of RF
data in an overlapping fashion at fixed distances of 50%
of the window side length (WSL) to balance image quality
and computational efficiency [27]. Different WSLs (WSL:
1–3 PL), dimension parameters (m: 1–10), and tolerance

values (r : 0.05–0.5) were used for sample entropy imag-
ing. Conventional Shannon entropy imaging (WSL = 1 PL;
bins = 200) [15], [16] was also performed for compari-
son. Finally, both the Shannon and sample entropy images
underwent two-dimensional interpolation to compensate for
loss in image size caused by the sliding-window processing
method [28], and the entropy images were merged with the
corresponding B-mode images for display purposes (DRs
of Shannon and sample images were set at 3.8–4.2 and
1.7–3.0, respectively). The regions of interest (ROI) on the
B-scan of the liver parenchyma were manually outlined by an
experienced radiologist, and the pixel values in both Shannon
and sample entropy images corresponding to the ROI were
used to calculate the average entropy values for quantitative
analysis.

D. STATISTICAL ANALYSIS
For Group I, the Pearson correlation coefficients rp between
the sample entropy and the HFF obtained from using dif-
ferent WSLs, m, and r were calculated to determine the
optimal combination of computational setting to maximize
rp. For Groups II and III, the entropy values as a function
of steatosis grade and METAVIR score were expressed using
box plots overlaid with dot plots. The Spearman rank cor-
relation rs was also calculated. To evaluate the diagnostic
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TABLE 2. Demographic data of patients in group III (individuals with
moderate or severe hepatic steatosis who had an METAVIR score).

performance, receiver operating characteristic (ROC) curve
analysis was performed. The area under the ROC curve
(AUROC), sensitivity, specificity, accuracy, and other sta-
tistical results were reported. The DeLong test was used to
compare ROC curves and identify significant differences in
diagnostic performance. All statistical analyses were per-
formed using SigmaPlot (version 12.0, Systat Software, Inc.,
CA, USA). Statistical significance was set at p < 0.05.

III. RESULTS
Fig. 2 presents the correlation matrixes of the data in Group I
to visualize the rp values for correlations between the HFF
and the sample entropy values obtained using different com-
binations of computational settings. For each WSL, the cor-
relation matrixes exhibited similar patterns and distributions.
The maximum rp between the HFF and the sample entropy
was observed at m = 4 and r from 0.05 to 0.1. Using a
small window improves the spatial resolution of a parametric
image; therefore, the values WSL = 1 PL, m = 4, and
r = 0.1 were used for sample entropy imaging in the fol-
lowing analysis. Fig. 3(a)–(l) shows typical B-mode, Shan-
non entropy, and sample entropy images for various HFF
values. The brightness and distribution of the false coloring

of Shannon entropy images varied at higher HFFs; the
same phenomenon was observed in sample entropy images.
Fig. 3(m)–(t) presents typical RF signals and the correspond-
ing PDFs used for sample and Shannon entropy imaging,
respectively. The amplitude of RF data strengthened with
increasing theHFF, leading to an increasing in the PDFwidth.
Fig. 4 further illustrates the entropy values as a function
of HFF. The rp value of the sample entropy was propor-
tional to the logarithmic transform of the HFF (rp = 0.70;
p < 0.05), as was the rp value of the Shannon entropy
(rp = 0.60; p < 0.05).
Fig. 5(a) and (b) display the box and dot plots obtained

from the Group II data for sample entropy and Shannon
entropy values stratified according to the grade of hepatic
steatosis. From normal to severe grades of hepatic steato-
sis, the median and interquartile range (IQR) of the sample
entropy increased from 1.75 (IQR: 0.07) to 1.87 (IQR: 0.06)
(rs = 0.73; p < 0.05), and those of the Shannon entropy
increased from 3.69 (IQR: 0.10) to 3.81 (IQR: 0.06) (rs =
0.67; p < 0.05). Fig. 5(c) and (d) display the ROC curves
obtained from using sample entropies and Shannon entropies
for grading hepatic steatosis. The AUROCs of (SampEn, Sha-
nEN) for classifying hepatic steatosis as ≥mild, ≥moderate,
and ≥severe were (0.86, 0.80) (p < 0.05), (0.90, 0.89)
(p > 0.05), and (0.88, 0.87) (p > 0.05), respectively. Detailed
statistical data of performance evaluations are summarized in
Table 3.

Fig. 6(a)–(o) presents typical B-mode, sample entropy, and
Shannon entropy images at different stages of liver fibrosis
for patients with severe hepatic steatosis (Group III). When
sample entropy imaging was used, the brightness of ultra-
sound entropy imageswas lower for patients with greater liver
fibrosis severity; however, conventional Shannon entropy
imaging did not reveal a difference in brightness between con-
trols and individuals with liver fibrosis. Fig. 6(p)–(y) presents
typical RF signals and the corresponding PDFs at different
fibrosis stages. The echo amplitude of RF data for the steato-
sis case without liver fibrosis was relatively strong, and that
for fibrosis cases became weak and exhibited a higher degree
of variations in signal amplitude. Fig. 7(a) and (b) present
box and dot plots for Group III quantitatively confirming
these observations. The median sample entropy decreased
from 2.07 (IQR: 0.31) to 1.85 (IQR: 0.06) as the METAVIR
score increased from F0 to F4 (rs = −0.44; p < 0.05).
The Shannon entropy values were widely distributed and
had no significant association with the METAVIR score
(rs = −0.03; p > 0.05). Fig. 7(c) and (d) display the ROC
curves obtained from using sample and Shannon entropies
to detect liver fibrosis. The AUROCs of (SampEn, ShanEN)
for classifying liver fibrosis as ≥F1, ≥F2, ≥F3, and ≥F4
were (0.87, 0.59) (p > 0.05), (0.77, 0.48) (p < 0.05),
(0.71, 0.48) (p < 0.05), and (0.68, 0.55) (p > 0.05),
respectively. Performance metrics are shown in Table 4. Sam-
ple entropy outperformed Shannon entropy for the detec-
tion of liver fibrosis in patients with significant hepatic
steatosis.

1800612 VOLUME 9, 2021
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FIGURE 2. Correlation matrixes obtained under different computational settings to demonstrate the association between sample entropy and the HFF
values for Group I, suggesting that WSL = 1 PL, m = 4, and r = 0.1 are optimal computational values for the calculation of sample entropy.

TABLE 3. Performance metrics for using Shannon and sample entropies to grade hepatic steatosis as ≥mild, ≥moderate, and ≥severe.

IV. DISCUSSION
A. SIGNIFICANCE OF THIS STUDY
This study explored the feasibility of using sample entropy
in ultrasound parametric imaging of hepatic steatosis and
fibrosis. We compared the diagnostic performance of sample
entropy with that of conventional Shannon entropy by con-
ducting clinical experiments. Raw RF signals obtained after
beamforming were used for the entropy analysis. The results
in Group I suggested that a value set of (WSL = 1 PL, m =
4, r = 0.1) maximizes the strength of the correlation between
sample entropy and the HFF.With this computational setting,
sample entropy has two advantages over Shannon entropy
in clinical evaluations of hepatic steatosis and liver fibrosis.
First, sample entropy outperformed Shannon entropy for the
grading of early hepatic steatosis (≥mild) through ultrasound
parametric imaging, as supported by the Group II results
(Table 3). Second, comparedwith Shannon entropy that failed
in liver fibrosis detection, ultrasound sample entropy imaging

allowed identification of coexisting liver fibrosis (≥F1) in
patients with moderate-to-severe hepatic steatosis, as demon-
strated by the findings for Group III (Table 4). This study
confirms that sample entropy provides improved diagnostic
performance in detecting early hepatic steatosis and iden-
tifying coexisting liver fibrosis as steatosis progresses to
significant stages.

B. EFFECTS OF HEPATIC STEATOSIS AND FIBROSIS ON
ENTROPY
Entropy values increased with the progression of hep-
atic steatosis, representing an increase in the irregularity
of ultrasound backscattered RF signals, which could be
specifically comprehended and interpreted by changes in the
signal waveform and PDF [15]–[17], [29]. In brief, the pri-
mary acoustic scatterers in normal liver parenchyma include
hepatocytes and lobules, which are diffuse and coherent com-
ponents, respectively [6]. In a fat-infiltrated liver, a single
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FIGURE 3. Typical B-scan, entropy images, RF signals, and PDFs at various HFFs. (a)–(d) B-mode images at the HFF values of 0.78%, 11.27%, 28.72%, and
44.66%, respectively; (e)–(h) Shannon entropy images corresponding to (a)–(d); (i)–(l) sample entropy images corresponding to (a)–(d); (m)–(p)
representative RF signals corresponding to (a)–(d); (q)–(t) PDFs corresponding to (m)–(p).

large fat droplet in a hepatocyte can push the nucleus to
the periphery (i.e., macrovesicular steatosis) [30]. The single
large fat droplet in macrovesicular steatosis is believed to
form from the fusion of multiple small- to medium-sized
fat droplets [31]. These fat-infiltrated hepatocytes are newly
added acoustic scatterers with not only increased density but
also increased scattering cross-section areas to strengthen
constructive wave interference, increasing ultrasound sig-
nal amplitudes, broadening PDFs, and elevating entropies
(Fig. 3). However, the effect of liver fibrosis on the time-series
patterns of ultrasound signals differs from that of hepatic

steatosis. A fat-infiltrated liver with coexisting liver fibrosis
could be treated as an inhomogeneous tissue with various
scattering cross-sections of the scatterers [32]. Thus, such an
inhomogeneity of tissue tends to result in destructive wave
interference, significant variations in amplitude, and narrow
PDFs for the time-domain signals [33] (Fig. 6), reducing
the informational complexity corresponding to a decrease in
entropy.

Notably, conventional Shannon entropy was not associ-
ated with liver fibrosis severity in the patients with hepatic
steatosis; however, the sample entropy was sensitive to liver
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TABLE 4. Performance metrics for using Shannon and sample entropies to detect liver fibrosis in individuals with moderate-to-severe hepatic steatosis.

FIGURE 4. Relationships between entropy values and HFFs. Both types of
entropy were proportional to the logarithmic transform of the HFF;
sample entropy was more strongly correlated with the HFF (rp = 0.70;
p < 0.05).

fibrosis detection. In the next part, a detailed comparison of
sample and Shannon entropies reveals some reasons for this
difference.

C. COMPARISON BETWEEN SAMPLE AND SHANNON
ENTROPIES
Initially, an algorithmic scheme based on Fourier analysis
was proposed to establish the PDF of ultrasound RF data
to calculate Shannon entropy [34]–[36]. The statistical his-
togram was then used as a less computationally complex
alternative method to reconstruct the PDF of ultrasound
signals, increasing the practical applicability of Shannon
entropy [16]–[18], [29], [37]. A common problem for PDF-
based entropies is that the probability distributions of ultra-
sound RF signals may be identical for different scattering
microstructures, causing ambiguity in the physical meaning
of ultrasound backscattering. For example, a tissue with few
scatterers or a homogeneous medium with strong scatterers
causes variation in the size of the scattering cross-section,

FIGURE 5. (a) and (b) Entropy values as a function of hepatic steatosis
grade; (c) and (d) ROC curves for using sample and Shannon entropies for
hepatic steatosis diagnosis. Sample entropy outperformed Shannon
entropy in ultrasound parametric imaging for the grading of early hepatic
steatosis.

resulting in the same type of backscattered statistics [13].
In addition, because fibrous structures in the liver are acous-
tically weaker scatterers than are fatty droplets, the forma-
tion of backscattered signals tends to be dominated by fatty
droplets [32]. For these reasons, changes in the PDF of
the backscattered signals caused by liver fibrosis may not
be apparent, causing Shannon entropy and other PDF-based
entropies to exhibit information-mixing problems that inhibit
the detection of liver fibrosis. Comparatively, sample entropy
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FIGURE 6. Typical B-scan, entropy images, RF signals, and PDFs for different stages of liver fibrosis in patients with severe hepatic steatosis. (a)–(e)
B-mode images at F0–F4, respectively; (f)–(j) Shannon entropy images corresponding to (a)–(e); (k)–(o) sample entropy images corresponding to (a)–(e);
(p)–(t) representative RF signals corresponding to (a)–(e); (u)–(y) PDFs corresponding to (p)–(t).

is an adaptive analysis method for measuring the irregularity
of raw time-series data without information mixing or the
information loss caused by the transformation of the signal
into a probability distribution. Also, sample entropy is con-
structed directly using RF signals, which are generated from
the interaction of ultrasound with the liver tissue; thus, the
physical interpretations of sample entropy imaging may be
more relevant to changes in the microstructures. As supported
by Fig. 6, even if in a challenging condition that steatosis
and fibrosis coexisted in the liver, the time-domain RF signal
appeared to be more sensitive to variations in the scatterer
properties, which were not reflected by the PDF. These
advantages likely explain why sample entropy outperformed
Shannon entropy in grading early hepatic steatosis for the
detection of liver fibrosis in patients with significant hepatic
steatosis.

The p value obtained from comparing the sample and
Shannon entropy ROC curves for the detection of liver

fibrosis ≥ F1 was larger than 0.05 despite the AUROC of the
sample entropy being larger than that of the Shannon entropy.
The lack of statistical significance is probably attributable
to the inclusion of only seven controls in Group III; a lim-
ited sample size influences statistical comparisons using the
DeLong test.

D. EFFECTS OF COMPUTATIONAL SETTINGS ON SAMPLE
ENTROPY
The ultrasound parametric imaging of sample entropy has
three computational settings: WSL, m, and r . As shown in
Fig. 2, the WSL had a relatively small effect on the sample
entropy estimation; one PL was sufficient to observe the
characteristics of oscillation and irregularity in ultrasound
RF signals. However, the sample entropy was sensitive to
the dimension m and tolerance r . The tolerance value r may
be determined empirically for different practical applications
and purposes and for different types of received signals
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FIGURE 7. (a) Sample and (b) Shannon entropy values as a function of
liver fibrosis score; (c) Sample and (d) Shannon entropy ROC curves for
liver fibrosis diagnosis. Sample entropy outperformed Shannon entropy
in the detection of liver fibrosis in patients with moderate-to-severe
hepatic steatosis.

because it measures the regularity, or frequency, of occur-
rence of patterns similar to a given template of a given length
(i.e., the dimensionm). Therefore, a universal tolerance value
does not exist and must be calibrated for different diagnostic
requirements. In contrast to r , the threshold magnitude for
signal distances, the dimension parameter m is used to deter-
mine the length of a given time series for pattern similarity
comparisons. The ultrasound backscattered RF signals used
in the analysis are discrete time-series data obtained from
sampling continuous signals through analog-to-digital con-
version. Thus, an effective dimension valuem should be close
to the number of sampling points in one cycle to ensure that
the similarity comparison is based on onewave pattern. In this
study, the central frequency of the transducer was 3 MHz,
and the sample rate of the system was 12 MHz; therefore,
one cycle consisted of approximately four sampling points.
This cycle length may explain why the strongest correlation
between sample entropy and HFF was observed at m = 4.

E. CLINICAL AND TRANSLATIONAL IMPACTS OF THIS
STUDY
Currently, the FibroScan device (Echosens, Paris, France)
based on vibration-controlled transient elastography has been
recognized as a noninvasive technique in the diagnosis of
hepatic steatosis and liver fibrosis [38]. FibroScan measures
the shear wave velocity, which is then converted into the
stiffness expressed in kilopascals for liver fibrosis detection;
it also measures ultrasound attenuation to calculate controlled
attenuation parameter (CAP) for hepatic steatosis assessment.
However, FibroScan only assesses part of the liver without
imaging guidance [38]. Some factors affect the reliability
of stiffness measurements by FibroScan, such as inflamma-
tion, obesity, food intake, and operator training [39], [40].

Body mass index and the thickness of subcutaneous adipose
tissue also influence CAP [41], which has worse perfor-
mance in detecting severe steatosis [40]. Importantly, CAP
(i.e., attenuation) physically reflects the redistribution of the
acoustic energy caused by the effects of wave absorption in
the liver [24]. Such a physical meaning for CAP is asso-
ciated with the viscoelastic properties of the liver [24] and
does not exactly correspond to a pathological change in the
microstructures of the liver parenchyma (i.e., the criteria used
for diagnosing steatosis) [40].

In comparison, ultrasound backscattered statistics analy-
sis has some advantages to complement FibroScan in the
management of liver disease. First, ultrasound backscatter-
ing varies with changes in microstructures, and therefore
its association with pathological changes is more significant
accordingly [16], [25]. Second, ultrasound backscattering is
less affected by the inflammation effect [25], implying that
backscattered statistics may be applicable to examinations
on patients with chronic inflammation in the liver (e.g.,
steatohepatitis). Third, the algorithmic scheme of ultrasound
backscattered statistics parametric imaging is totally com-
patible with ultrasound pulse-echo imaging systems, pro-
viding opportunities to upgrade general B-scan machines as
the alternative of FibroScan to produce a value-added and
image-guided diagnosis. Notably, as mentioned in Introduc-
tion, ultrasound parametric imaging using the Nakagami and
HK distributions has been applied to clinical assessment of
hepatic steatosis. It has been reported that the AUROCs for
using Nakagami and HK imaging to detect hepatic steatosis
(≥mild, ≥moderate, ≥severe) were (0.75, 0.82, 0.82) and
(0.76, 0.80, 0.83), respectively [11], [12], which exhibits
worse diagnostic performances compared with that of sample
entropy imaging. The proposed sample entropy not only out-
performed the statistical distribution parameters and Shannon
entropy in characterizing hepatic steatosis but also provides
the diagnostic ability in clinical fibrosis risk evaluations of
individuals with developing hepatic steatosis, as supported by
the current findings.

F. LIMITATIONS AND FUTURE WORK
This study had some limitations. First, the number of patients
contributing data for validation of the liver fibrosis detection
performance was limited. The inclusion of a larger con-
trol group and more patients with different fibrosis scores
would increase the reliability of the statistical analysis results.
Second, most patients with liver fibrosis also had various
grades of hepatic steatosis. Although ultrasound parametric
imaging based on sample entropy successfully character-
ized liver fibrosis in the patients with moderate-to-severe
hepatic steatosis, using ultrasound backscattering analysis
to detect liver fibrosis in livers without hepatic steatosis
or with mild hepatic steatosis is substantially more chal-
lenging [32]. Using appropriate surrounding tissues and the
corresponding sonographic features as references for stan-
dardization of entropy analysis and decomposition of fea-
tures may be necessary to be further investigated. Third, our
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recommended computational value set of (WSL, m, r) for
estimating sample entropy is not universally applicable to all
systems, transducers, or diseases. Different signal processing
procedures (e.g., digital sampling, filtering, or detrending)
could affect the time-series pattern and the corresponding
sample entropy value [42]. Additional calibrations of the
computational settings for sample entropy calculations are
necessary for reliable performance in different tissue char-
acterization applications. Finally, RF data that is required for
sample entropy imaging but unavailable in most commercial
scanners is more objective and beneficial to quantitative anal-
ysis because it is independent of demodulation and signal
processing in the system. Consequently, functional extension
for RF data access in clinical imaging systems should be
considered as a critical task in future applications.

V. CONCLUSION
Sample entropy is proposed as a new approach to ultrasound
parametric imaging for the characterization of hepatic steato-
sis and fibrosis. We tested the performance of ultrasound
parametric imaging with sample entropy by processing raw
backscattered RF signals through a sliding-window technique
for clinical validation of the results. The results suggest that
the set of computational values (WSL= 1 PL,m = 4, r = 0.1)
maximizes the strength of the correlation between sample
entropy and the HFF, as measured through 1H-MRS. In par-
ticular, sample entropy outperformed conventional Shannon
entropy in the assessment of early hepatic steatosis (≥mild);
sample entropy could also be used to detect liver fibrosis in
individuals with significant hepatic steatosis. The superiority
of sample entropy compared with conventional PDF-based
entropies may be attributable to the more comprehensive
manner inwhich sample entropy can be used to interpret wave
interference in differentmicrostructures through the detection
of similarities within the signal waveform and thus be used to
assess the irregularity of ultrasound time-series data. Sample
entropy imaging proposed in this study is a useful strategy
to endow general ultrasound imaging systems with a value-
added diagnostic ability in hepatic steatosis assessment and
fibrosis risk evaluation.
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