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Molecular Biology, The George Washington University, Washington, D. C., United States of America

Abstract

Human immunodeficiency virus (HIV)-1 encoded Rev is essential for export from the nucleus to the cytoplasm, of unspliced
and singly spliced transcripts coding for structural and nonstructural viral proteins. This process is spatially and temporally
coordinated resulting from the interactions between cellular and viral proteins. Here we examined the effects of the sub-
cellular localization and dynamics of Rev on the efficiency of nucleocytoplasmic transport of HIV-1 Gag transcripts and virus
particle production. Using confocal microscopy and fluorescence recovery after bleaching (FRAP), we report that NF90ctv, a
cellular protein involved in Rev function, alters both the sub-cellular localization and dynamics of Rev in vivo, which drastically
affects the accumulation of the viral protein p24. The CRM1–dependent nuclear export of Gag mRNA linked to the Rev
Response Element (RRE) is dependent on specific domains of the NF90ctv protein. Taken together, our results demonstrate
that the appropriate intracellular localization and dynamics of Rev could regulate Gag assembly and HIV-1 replication.
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Introduction

The nuclear factor 90 (NF90), a multifunctional double strand

RNA-binding protein (DRBP), is involved in RNA splicing, mRNA-

export and in antiviral response [1–8]. The NF90 family of proteins

consists of diverse but closely related isoforms derived by alternative

splicing of the interleukin enhancer binding factor 3 ILF3, gene

[9–11]. The NF90 proteins share identical N-terminal and central

regions but differ in their C-terminal domains. The N-terminal

domain harbors sequences homologous to the NF45 and eIF2a
proteins, as well as a nuclear export signal (NES), the central region

contains a nuclear localization signal (NLS) and two double strand

RNA-binding domains (DRBD1 and DRBD2), and the 70 amino

acid C-terminal region is comprised of an arginine/glycine (RG)

rich domain [12]. Among the NF90 family of proteins, NF90a/b is

the smaller, (,90 kDa), and NF110a/b the longer, (,110kDa),

protein. A four amino acid sequence (NVKQ insert) is present

between DRBD1 and DRBD2 in the NF90b (NF90ctv) and in

NF110b isoforms, whereas NF90a and NF110a lack this insert [12].

NF90 protein is normally localized in the nucleus/nucleolus.

However, its concentration in the cytoplasmic compartment is

increased in response to activation signals [12]. Recently it was

demonstrated that phosphorylation of NF90 by the AKT serine/

threonine kinase is necessary for export of NF90 to the cytoplasm

where it interacts with the AU-rich element (ARE) present in the

39-unstranslated region of interleukin-2 (IL-2) mRNA [13,14].

Liao et al [15] reported that NF90 and the transcription co-

activator, RNA helicase A (RHA), interact with highly structured

RNAs such as the adenovirus RNAII. The affinity of NF90 proteins

for various RNAs differs, dsRNA.virus associated (VA)

RNAII.VA RNAI.ssRNA. NF90 associates with a nuclear

export complex containing exportin 5 and Ran-GTP that parti-

cipates in the nucleo/cytoplasmic shuttling of microRNAs [16]. As

with RHA, NF90 participates in the replication cycle of several

viruses; over-expression of NF90 in CD+/CXCR4+ human

osteosarcoma cells was shown to induce the expression of IFN-

dependent genes and block HIV-1 replication [17]. Isken and

colleagues [4,18] showed that the isoforms NF90/NFAR-1

complexes are essential for the replication of Hepatitis C virus

(HCV). NF90 may negatively regulate influenza virus replication by

interacting with the virus nucleoprotein, that is part of the

polymerase complex essential for the initiation of viral replication

[2]. The NF90/NFAR-1 complex is recruited by the replication

machinery of Bovine viral diarrhea virus (BVDV), which positively

regulates BVDV replication, a virus related to HCV [19]. Depletion

of NFAR1/NFAR2 from murine fibroblasts rendered these cells

dramatically susceptible to Vesicular stomatitis virus replication [3].

Viral proteins required to complete HIV-1 assembly are

encoded by unspliced or partly spliced viral RNAs containing an

untranslated 234 nucleotide-long RNA structure, known as Rev-

responsive element (RRE) [20]. The RRE RNA contains a high-

affinity binding site for the Rev protein, which allows shuttling of
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these transcripts from the nucleus to the cytoplasm in a CRM1-

dependent manner; such RevRRE-CRM1 complexes can be

disassembled by leptomycin B (LMB), an inhibitor of nuclear

export [21,22]. The Gag polyproteins are synthesized from an

unspliced full-length viral genomic mRNA and their export from

the nucleus requires host-cell derived and viral factors. Interest-

ingly, HIV-1 Gag assembly appears to be regulated at an early

step of nuclear export of singly spliced and unspliced mRNAs

[23,24]. In addition, targeting of HIV-1 matrix is regulated by

Gag mRNA trafficking [25]. These results suggest that RNA

export plays an essential role in Gag expression and viral assembly

[26]. However, little is known about the regulation of viral RNA

export and the significance of sub-cellular localization and

dynamics of Rev in viral assembly.

An association between HIV-1 replication and NF90ctv was

first proposed when over-expression of NF90ctv in human

osteosarcoma cells resulted in resistance to HIV-1 replication

[17]. Subsequently, it was demonstrated that NF90ctv can

compete with HIV-1 Tat protein for transactivation response

(TAR) RNA, leading to decreased HIV-1 transcription [5]. We

also demonstrated that NF90ctv inhibits Rev-mediated RNA

export by interacting with the Rev protein, suggesting a mecha-

nism that depends on NF90 protein-RRE interaction [6].

In the present study we investigated the relationship between

NF90ctv and the sub-cellular localization/dynamics of HIV Rev

with HIV-1 particle production. We used confocal microscopy and

fluorescence recovery after bleaching (FRAP), to show that

NF90ctv and in particular, three of its functional domains are

important in the recognition and export of Gag mRNA linked to

RRE, and the process relies on sub-cellular localization and

dynamics of Rev. Our results thus suggest a functional link

between HIV-1 Gag assembly and HIV-1 budding with the

subcellular localization and cellular mobility of Rev.

Results

Three functional domains of NF90ctv guide RRE-Gag
mRNA export

Previously we reported that specific domains of the NF90ctv

protein influence the nuclear export function of Rev [6]. In these

studies NF90ctv targeted Gag mRNA containing the RRE RNA

for export to the cytoplasm and subsequent translation of Gag

protein, suggesting that NF90ctv binds RRE, as does the HIV Rev

protein. NF90ctv protein contains two DRBDs that strongly bind

highly structured dsRNAs (such as the VA RNA II). We reasoned

that the DRBDs alone or other region(s) of NF90ctv could

recognize the RRE RNA. We constructed expression vectors for

different NF90ctv protein domains (Figure 1A), co-transfected

HeLa cells with the Gag-RRE vector (pCMVGag2RRE), and

assessed pr55Gag expression by Western blots. First, the expre-

ssion of pr55Gag in the presence of Rev was confirmed and served

as positive control (Figure 1B). In the presence of NF90ctv,

expression of pr55Gag was also observed (Figure 1B), however, the

amount of pr55Gag was ,4 fold lower than with Rev. This result

shows that NF90ctv recognizes and facilitates nuclear export and

translation of RRE-containing transcripts.

We next characterized the region(s) of NF90ctv that might

recognize RRE RNA. Expression vectors for different regions of

NF90ctv (Figure 1A) were co-transfect into HeLa cells along with

pCMVGag2RRE, and the effects of the NF90ctv derivatives on

RRE-mediated export were evaluated by Western blotting of

pr55Gag. The NF90ctv protein domains (N-terminal amino acids

89–123 including the NES) designated as the region comprising

the NES (RCN), the two DRBDs (DRBD1/2) between amino

acids 405–593, and the RG-rich (RG) region (between amino

acids 594–670), promoted higher pr55Gag expression as com-

pared to other NF90ctv domains (Figure 1B); the expression level

of pr55Gag was similar to that observed with Rev, used as positive

control. Moreover, the DRBD1 and DRBD2 domains separately

did not lead to pr55Gag expression, indicating that the two DRBP

domains together are necessary for recognition of RRE and the

shuttling p55Gag mRNA to the cytoplasm. These results suggest

that three specific domains of NF90ctv, the N-terminal RCN,

DRBD1/DRBD2 together, and the C-terminal RG promote Rev-

RRE mediated nuclear export of Gag mRNA.

The ability of NF90ctv to export RRE RNA is CRM1-
dependent

The HIV-1 Rev protein is a product of fully spliced mRNA,

which shuttles back to the nucleus where it interacts with RRE

RNA structures present in intron-containing mRNAs; this

interaction leads to the recruitment of exportin CRM1 and other

cellular proteins for the export of Rev-RRE RNAs to the

cytoplasm [27,28]. We evaluated whether export of RRE RNA

by the three NF90ctv protein domains is mediated by CRM1,

using LMB to selectively block CRM1-mediated nuclear export

[29]. The kinetics of Gag (pCMVGag2RRE) expression in the

presence of the NF90ctv RCN, DRBD1/2 or the RG-rich

domains at 4, 8, 12, 16 and 24 h following co-transfection of HeLa

cells were examined. In the presence of RCN (Figure 1C), a weak

expression of pr55Gag was detected at 4 h after co-transfection.

The amount of pr55Gag increased with time, the highest level of

expression was observed at 16 h (followed by stabilization at 24 h).

Similar results were observed with the DRBD1/2 and RG

proteins (results not shown). LMB was introduced at 8 h after co-

transfection and incubated for additional 4 h. Thus, pr55Gag

expression was quantified at 8 h and 12 h after transfection with

or without LMB. The amount of pr55Gag produced at 8 h was

similar to the amount detected after 12 h with LMB (Figure 1D),

suggesting that treatment with LMB caused a decrease in pr55Gag

mRNA export. A similar result was observed for Rev (control) at

the same LMB concentration (Figure 1D); i.e. LMB blocks Rev-

dependent nuclear export of Gag-RRE mRNA, as is the case with

the three NF90ctv protein domains. These results suggest that the

NF90ctv protein domains including the RCN, DRBD1/2 and RG

regions recognize and export the HIV-1 intron-containing

transcripts in a CRM1-dependent fashion.

RCN, DRBD1/2 and the RG domains restrict late events of
HIV-1 replication

We next investigated whether the NF90ctv protein domains with

the ability to bind the RRE-RNA are able to affect HIV-1 particle

production. To approach this issue, we used the pHIV/Denv-GFP

construct whose virus progeny is not infectious. To test whether the

three NF90ctv protein domains interfere with specific steps of HIV-

1 life cycle, HeLa cells were co-transfected with pRCN-mRFP,

pDRBD1/2-mRFP, or pRG-mRFP in the presence of pHIV/

Denv-GFP. Expression level of p24 was evaluated by Western

blotting using an antibody that recognizes the pr55Gag polyprotein

as well as p24. The results showed that over-expression of the

NF90ctv protein domains strongly inhibited HIV-1 p24, compared

with the expression of pHIV/Denv-GFP alone (Figure 2). Inhibition

of p24 expression was 2.5 fold in the presence of RCN and the RG

domains of NF90ctv, whereas in the presence of DRBD1/2, the

decrease was approximately 5 fold lower compared with the control

(Figure 2). In contrast, the level of expression of pr55Gag in the

presence of the NF90ctv protein domains remained unchanged

NF90ctv Alter HIV-1 Particle Production

PLoS ONE | www.plosone.org 2 February 2011 | Volume 6 | Issue 2 | e16686



compared to that of the control, indicating that the effect on HIV-1

particle production is not at the mRNA export step.

The effects of NF90ctv on the amount of p24 protein
expressed in pNL4-3 DNA transfected cells

The possible effect of the NF90ctv protein domains on virus

production using pNL4-3 infections was examined. HeLa cells were

co-transfected with different amounts of plasmid DNA expressing

NF90ctv, RCN, DRBD1/2 or RG in the presence of pNL4-3. An

aliquot of the culture medium was removed at 24 and 48 h after

transfection to measure the amounts of p24 secreted from infectious

virus particles into the supernatants by ELISA or in cell lysates by

Western blotting. In the absence of NF90ctv or its different deletion

mutants, the control cells transfected with pNL-4-3 released virus

into the supernatant (Figure 3A). In the presence of increasing

concentrations of plasmid NF90ctv, RCN, DRBD1/2 or RG, the

cells displayed a progressive reduction in the amount of virus

released (p24), reaching undetectable levels of p24 production at

higher concentrations (Figure 3A). Similar inhibition of p24 was

observed in cell lysates (Figure 3B). Taken together these results

Figure 1. NF90ctv recognizes and exports transcripts linked to RRE. A) Schematic representation of full-length NF90ctv and of the various
truncated forms used in this study. The main domains of NF90ctv and their positions are shown. B) Quantification and Western blot results
demonstrating that NF90ctv and specifically, the RCN, DRBD1/2 and RG domains bind and export mRNA-Gag linked to RRE. HeLa cells were co-
transfected with the construct pCMVGag2RRE in the presence of pNF90ctv-mRFP or each of its truncated forms. pRev-GFP was used as positive control.
After 24 h Western blots were performed using pr55Gag antibodies. C) Kinetic and quantification of pr55Gag expression. HeLa cells were co-transfected
with pRCN-mRFP in the presence of pCMVGag2RRE. At different times, the cells were lysed and Western blots were performed using pr55Gag antibodies.
D) Quantification of the results obtained by Western blots demonstrates that RCN, DRBD1/2 and RG mRNA-Gag linked to RRE export is leptomycin-
dependent. HeLa cells were cultured in six-well plates; three wells for each construct of interest were used: one well for leptomycin treatment and two
wells as controls at 8 and 12 h. The cells were co-transfected with pRCN-mRFP or with pDRBD1/2-mRFP, with pRG-mRFP in the presence of
pCMVGag2RRE. Based on the results shown in D, 8 h later the cells of one well were harvested; in the second well, leptomycin B was added and
incubated for 4 h; finally, 12 h later, the cells of the second and the third wells were harvested. Western blots were performed on the cell pellets using
pr55Gag antibodies. Each assay was repeated three times. The Western blots were quantified by densitometric scanning using ImageJ and normalized
using loading controls (b-tubulin). The data shown are the means and standard errors of the mean of three independent experiments.
doi:10.1371/journal.pone.0016686.g001
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suggest that expression of NF90ctv drastically curtails the amount of

p24 expressed, suggesting inhibition of HIV-1 particle production.

On the other hand, the amount of pr55Gag remained unchanged

compared to the controls (Figure 3A), as was observed with pHIV/

Denv-GFP (Figure 2). Consequently, these effects of NF90ctv and its

derivatives on pr55gag processing may be mediated by NF90ctv-

directed sub-cellular redistribution and dynamics of Rev. To test

this possibility, the effect of the three NF90ctv derivatives on the

localization and dynamics of Rev was examined.

NF90ctv-RRE-RNA Interaction alters HIV-1 Rev sub-
cellular localization

The results described above indicate that NF90ctv down-

regulates expression of p24 without affecting pr55Gag expression

Figure 2. The RCN, DRBD1/2 and RG domains of NF90ctv inhibit accumulation of HIV-1 p24 in the cells. HeLa cells were co-trasnfected
with each of the NF90ctv domains of interest in the presence of HIVDEnv.GFP. After 24 h, Western blots were performed on the cell pellets using HIV-
1IIIB pr55Gag antibodies. The quantification of the pr55Gag and p24 proteins was determined as described in Figure 1. The data presented are the
means and standard errors of three independent experiments.
doi:10.1371/journal.pone.0016686.g002

Figure 3. NF90ctv and three of its truncated forms block HIV-1 replication. A) ELISA results show that the effect of NF90ctv and three of its
deletions on HIV-1 replication is dose-dependent. HeLa cells were co-transfected with pNL4-3 and with different concentrations of pNF90ctv-mRFP,
pRCN-mRFP, DRBD1/2- mRFP or pRG-mRFP. After 24 h and 48 h the supernatants from the cell cultures were collected and assayed for HIV-1 p24
accumulation by ELISA. The cells used to obtain the results observed in A, were lysed and Western blots were performed on the cell pellets using HIV-
1IIIB pr55Gag antibodies. B) NF90ctv and three of its deletions inhibit accumulation of p24 in the cells.
doi:10.1371/journal.pone.0016686.g003

NF90ctv Alter HIV-1 Particle Production
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suggesting that NF90ctv can interact with and export the RRE

containing mRNAs. However, the results do not explain how these

interactions could influence the processing of p24 from pr55Gag.

To examine the possibility that the NF90ctv domains involved in

RRE-binding might disrupt the intracellular localization and

dynamics of Rev, and that the altered localization of Rev may lead

to the inhibition of HIV particle production, HeLa cells were

transfected with pcsRev-GFP along or with one of the three

NF90ctv domains (pRCN-mRFP, pDRBD1/2-mRFP or pRG-

mRFP), or with pcsRev-GFP in the presence of one of the three

NF90ctv domains and pCMVGag2RRE. After 24 h, Rev-GFP

localization was examined by confocal fluorescence microscopy

and the distribution of the fluorescent proteins in the nucleoli (Nu),

nucleoplasm (Ns) and cytoplasm (Cy) was quantified (Figure 4A to

C; Graph D to F). Rev alone accumulated in nucleoli, i.e. 73% of

the total cell fluorescence was in the nucleoli. This concentration

measures the affinity of Rev for the nucleolus as previously

demonstrated by its localization [30]. The RCN-mRFP and

DRBD1/2-mRFP peptides were dispersed in the cytoplasm

(Figure 4A) and accumulated in the nucleolus (respectively

Cy = 30–34% and Nu = 49–53%); the RG-mRFP was distributed

between cytoplasm/nucleus (respectively Cy = 48%, nucle-

us = 52%, Nu = 32%). Rev distribution (Graph 4A) indicates that

the three NF90ctv deletions entered into the nucleus and still had a

preferential affinity for the nucleolus.

An alteration of Rev sub-cellular localization was observed in

cells expressing the three NF90ctv-mRFP protein domains. In the

presence of RCN, Rev localized in the nucleolus in 80% of the

cells and in the nucleoplasm and cytoplasm in 20% of the cells

(Figure 4B; Graph 4E). In the presence of DRBD1/2, Rev was

localized in the nucleolus in 60% of the cells and in the

nucleoplasm and cytoplasm in 40% of the cells. In the presence

Figure 4. The RCN, DRBD1/2 and RG domains alter the subcellular localization of the HIV-1 Rev protein. A) Subcellular localization of
Rev in cells transfected with pRev-GFP alone (left panel) or with pRev-GFP in the presence of the RRE (right panel), and subcellular localization of
pDRBD1/2-mRFP alone (middle panel). The cells were fixed 24 h post-transfection and the fluorescence (green or red respectively from Rev or
DRBD1/2) was registered by confocal microscopy. Rev-GFP alone is visible exclusively in nucleoli (Nu); in the presence of RRE, Rev-GFP is also visible in
the cytoplasm; pDRBD1/2-mRFP is visible in the cytoplasm and nucleolus. For RCN and RG a similar subcellular localization as for DRBD1/2 was
observed (results not shown). B) Subcellular localization of Rev in the presence of RCN and DRBD1/2. HeLa cells were co-transfected with pRev-GFP,
with pRCN-mRFP or with pDRBD1/2 and 24 h later, the respective fluorescence was observed. Green and red signals are illustrated alone and merged
in the same cell. The yellow color in the merge indicates co-localization in nucleoli and cytoplasm. A similar result was observed for the RG domain
(results not shown). C) In the presence of the RRE, RCN and RG drastically alter the subcellular localization of Rev. HeLa cells were transfected as
described in B, but in addition with pCMVGag2RRE (to obtain RRE), and 24 h later the cells were observed by confocal microscopy. As illustrated for
RCN-mRFP (upper panel), Rev-GFP is almost excluded from the nucleoli. At low magnification, a group of cells (lower panel) illustrates the variability
of the distribution of Rev in the presence of RG and RRE. A similar result was obtained for DRBD1/2 (results not shown). D) Signal intensity was
quantified in different cells as illustrated in A. GFP or red fluorescence either in the nucleolus (Nu), in the nucleoplasm (Nucleopl) or in the cytoplasm
(Cy) were determined for each cell. E) Signal intensity was quantified in different cells as in B, as described in D. F) Signal intensity was quantified in
different cells as in C, as described in D. As control HeLa cells were co-transfected with pRev-GFP and pmRFP, but no effect on Rev localization was
detected (results not shown).
doi:10.1371/journal.pone.0016686.g004
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of RG, Rev was localized in the nucleolus in 75% of the cells, and

in the nucleoplasm and cytoplasm in 25% of the cells.

Interestingly, in all cases the green and red signals co-localized

and their intensity correlated, suggesting possible protein-protein

interactions between Rev and the three NF90ctv RRE-binding

domains.

In the presence of RRE-RNA, Rev shuttled to the cytoplasm

and to the nucleolus (Figure 4A; Graph 4E). However, the

localization of Rev was disrupted when Rev and one of the

NF90ctv protein domains were expressed in the presence of the

RRE-containing Gag mRNA. Rev and RCN showed diffuse

distribution in the entire cell (Figure 4C). In 40% of the cells, Rev

localized in the nucleoplasm and cytoplasm and in the 60% of the

cells it localized in the nucleolus. In the presence of DRBD1/2,

Rev localized in the nucleolus (50% of the cells) or in the

nucleoplasm and cytoplasm (50% of the cells). In the presence the

RG, Rev localized preferentially in the nucleoplasm and

cytoplasm (75% of the cells), and only in 25% of the cells was

Rev present in the nucleolus (Figure 4C). In all cases colocalization

of both the NF90ctv and Rev proteins was observed. Thus it

appears that the presence of the RRE and the NF90ctv protein

induce global redistribution of Rev within the subcellular

compartment.

The dynamics of intracellular distribution of Rev are
altered by NF90ctv protein

As discussed above, the NF90ctv protein domains (RCN,

DRBD1/2 and RG) alter the sub-cellular localization of Rev. We

next asked if the co-localization of Rev and the NF90ctv domains

could alter the dynamics of Rev localization within the nucleus. To

examine this possibility, the dynamics of Rev-GFP was measured

in cells expressing Rev and specific domains of NF90ctv using

FRAP. FRAP was performed using the 488 nm laser line to bleach

a 0.5 mm2 area of the GFP signals in the nucleolus (Figure 5A).

Three images were collected before bleaching, and immediately

after bleaching. The recovery curves (Figure 5B) were fitted by a

single exponential curve and the t1/2 (half-time to reach the

plateau) was calculated as described previously [31]. The t1/2

measures the mobility of GFP-tagged proteins replacing the

bleached proteins in a 0.5 mm2 area. In the nucleolus, the t1/2

recovery of Rev-GFP is 74.8761.68 sec indicates that Rev has a

relatively weak mobility due to its binding affinity for nucleolar

factors (Figure 5A). By comparison the t1/2 recovery of NF90-GFP

is 4.42 sec under the same conditions (results not shown). The t1/2

of the Rev-GFP co-expressed with NF90ctv or its specific domains

was faster except with the RG peptide. The t1/2 of Rev-GFP in the

presence of NF90ctv-mRFP was 53.5361.62 sec. Moreover, the

mobility of Rev varied in the presence of the different domains of

NF90: it was 32.6862.02 and 38.3661.74 sec with RCN and

DRBD1/2, respectively, and 95.5261.61 sec with the RG-rich

domain. Thus, NF90ctv and its specific domains, RCN and

DRBD1/2 increase the mobility of Rev in the nucleolus; in

contrast, RG decreases the mobility.

The dynamics of Rev relocalization is faster in the
presence of RRE and the NF90ctv RNA-binding domains

The impact of RRE on the dynamics of Rev localization was

measured in the presence of NF90ctv protein domains that bind to

and export the RRE-containing mRNA.

The experimental system consisted of HeLa cells expressing

Rev-GFP and pCMVGag2RRE (which provides the RRE-

containing Gag-mRNA, Figure 5C), in addition to co-transfection

with expression vectors for NF90ctv, the RCN, DRBD1/2 or RG

domains (Figure 5D). The dynamics of Rev distribution was

evaluated by FRAP. The cells selected for this evaluation had to

meet the following conditions: i) both the GFP and mRFP

fluorescent proteins that were expressed as fusion proteins with

Rev or the NF90ctv protein domains had to be expressed, and ii)

in the presence of RRE Rev shuttles from nucleolus to the

cytoplasm. We examined the dynamics of Rev localized in the

nucleolus and compared its mobility in the presence or absence of

RRE.

In cells expressing Rev and RRE containing Gag-mRNA, the

time of Rev residency in the nucleolus increased: 81.4761.28 sec

versus 74.8761.18 sec. (Figure 5D) suggesting that when these

RNA-protein complexes are present, other cell factors are

recruited to the export complex decreasing Rev mobility.

Similarly, when RRE-containing Gag-mRNAs were expressed

together with Rev and NF90ctv, the time of residency of Rev in

the nucleolus also increased compared to Rev and NF90 without

the RRE RNA: 77.9260.95 sec versus 53.5361.62 sec. The same

effect was observed with each NF90ctv domain except RG:

44.1161.05 versus 32.6862.02 with RCN, 78.1461.05 versus

38.3661.74 with DRBD1/2 and 93.2561.28 versus 95.5261.61

with RG. The results show that in the presence of RRE and

NF90ctv or its specific protein domains (except RG), the mobility

of Rev is decreased, indicating that the Rev-export complex

possibly does not use the same host components. In contrast, in the

presence of the RG-rich domain, the mobility of Rev is low

suggesting that different host factor(s) could be recruiting the

RNA-export complex.

Discussion

Recent attention on the significance of the NF90 family of

proteins results from their varied roles in nucleocytoplasmic

transport, and stimulation of antiviral response. Using CAT

reporter gene assays, we previously showed that NF90ctv affects

the export function of Rev [6] and its consequent effect on HIV-1

replication [17]. The results described here indicate that NF90ctv

and particularly, its RCN, DRBD1/2 and RG domains affect

HIV-1 particle production. Indeed, these proteins decrease the

viral protein p24 both in the culture supernatants of HeLa cells

transfected with the pNL4-3 provial clone and in the cell lysates

(Figure 3A and 3B). The effect of NF90ctv on p24 is dose-

dependent. In marked contrast, the effect of NF90ctv on intrace-

llular pr55Gag expression was minimal. A similar result was

observed using pHIVÄEnv-GFP (Figure 2). Since it was recently

demonstrated that HIV-1 Gag assembly and budding are

regulated by the nuclear export mechanism of the Gag-encoding

mRNA, it was felt that alterations in the sub-cellular localization

and the dynamics of Rev may modulate or affect Gag assembly.

Two strategies were used to test this possibility: 1) Rev was

expressed alone or in the presence of the three NF90ctv

derivatives; 2) Rev was expressed in the presence of Gag mRNA

linked to RRE alone or together with NF90ctv or its three

derivatives. The dynamics of Rev localization was studied by

confocal microscopy and FRAP. The presence of RCN, DRBD1/

2 or RG alone or together with RRE, strongly modified the sub-

cellular localization of Rev.

It has been reported that localization of Rev in the nucleolus is

important for Rev function [30,32]. In the present study, we

demonstrate that the RCN, DRBD1/2 and RG regions of NF90cv

induce redistribution of Rev both in the nucleus and in the

cytoplasm. However, when in addition to the NF90ctv domains,

RRE-RNA is also present in the cells, Rev concentrates neither in

the nucleolus nor in the cytoplasm, but diffuses throughout the cell

NF90ctv Alter HIV-1 Particle Production
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Figure 5. NF90ctv, RCN, DRBD1/2 and RG alter Rev mobility. A) Rev mobility was measured by FRAP in HeLa cells expressing Rev-GFP. The
recovery of the Rev fluorescence in the nucleolar region bleached by laser was measured for 200 sec. Three images were taken before bleaching. B)
FRAP analysis shows the effect of NF90ctv and its truncated forms on Rev mobility. HeLa cells were co-transfected with pRev-GFP in the presence of
pNF90ctv-mRFP, of pRCN-mRFP, of DRBD1/2-mRFP or of pRG-mRFP and subjected to photobleaching 24 h post-transfection using a 488 nm laser.
The average from at least 12 cells is shown. FRAP demonstrates that the FRAP rate of Rev-GFP alone is slower than in the presence of NF90ctv or each
of its truncated forms, especially in the presence of RCN. C) The same as A but Rev is in the presence of RRE. D) The same strategies were used as
described in B, but in addition, the cells were also transfected with pCMVGag2RRE. The FRAP analysis shows that in the presence of RRE and NF90ctv
or each of the truncated forms of NF90ctv, the mobility of Rev was slower during the first 30 sec, but that afterwards Rev its mobility was faster,
especially with RCN. As control HeLa cells co-transfected with pRev-GFP and pmRFP were used, but no effect on Rev mobility was detected (results
not shown).
doi:10.1371/journal.pone.0016686.g005
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(Figure 4C). In all cases, Rev co-localizes with the NF90ctv

domains, suggesting protein-protein interaction could directly or

indirectly interfere with intracellular Rev trafficking.

The FRAP assays used to examine the mobility of Rev show

that Rev has rather slow dynamics (T1/2 = 74.8761.6 sec) in

agreement with a previous report [33], perhaps related to the

strong affinity of Rev binding sites within the nucleolus. This

relatively long T1/2 could also be related to the multimerization of

the Rev protein. Indeed, the three NF90ctv protein domains

disrupt the sub-cellular localization of Rev in the presence or

absence of RRE. We therefore utilized FRAP assays to determine

the effect of the NF90ctv domains on the dynamics of Rev in the

nucleolus. In the presence of NF90ctv or any of its three domains,

either alone or together with RRE RNA, the mobility of Rev was

changed, suggesting an effect on the affinity of Rev for its natural

target, RRE. These data therefore suggest that alterations in either

Rev sub-cellular localization or in the dynamics of the nucleolus or

in both, could explain the effect of NF90ctv and its three domains

on HIV-1 particle production (Figure 3). To our knowledge, a

possible connection between the localization and dynamics of Rev

with a possible negative effect on Gag assembly or budding of the

virus (via down-regulation of p24), mediated by (a) cellular

protein(s) or specific protein domains has so far not been reported.

Jin et al., [25], suggested that efficient membrane targeting by

the HIV matrix (MA), requires Rev-dependent trafficking. The

authors show that in the absence of Rev-dependent trafficking, the

MA exhibits an inhibitory effect on Gag assembly [25]. It was

previously demonstrated that perturbation of the RNA export

elements of avian leucosis virus is associated with budding and

genome packaging [34]. Thus disruption of both Rev localization

and Rev dynamics could also affect Gag assembly. Our results

support a model whereby in addition to its function in the export

of singly spliced and unspliced HIV-1 transcripts, Rev may

participate in other crucial steps of the HIV-1 replication cycle

such as Gag assembly, packaging and budding. This interpretation

of the data is in agreement with the results reported by Swanson et

al., [24] who suggested that RNA export and capsid assembly are

linked.

Alterations of these processes remarkably affect the HIV-1

cycle. For example, Staufen I, another double-strand specific

RNA-binding protein similar to NF90, enhances pr55Gag multi-

merization and virus-like particle production [35]. The data

presented here suggest that alteration of Rev trafficking can also

regulate the functions of the HIV-1 proteins involved in assembly

or budding. Together with the reports on the assembly-deficient

Rev-dependent HIV-1 Gag observed in murine cells [36–38], our

model can contribute to the study of HIV-1 Gag assembly and can

help determine if there is a temporal and spatial link between Gag

assembly and genome packaging.

The export of HIV-1 transcripts by Rev is highly regulated and

coordinated by interaction with host factors, and in addition a link

between RNA export and Gag trafficking to the plasma mem-

brane has been described [24]. Thus, specific RNA localization

contributes to protein functions at diverse levels [39]. Rev may

therefore be the viral protein responsible for regulating trafficking

of the unspliced genome to the packaging site. The alteration of

both the localization and the dynamics of Rev, could affect the

cytosolic localization of the RNA genome, resulting in differences

in the composition of the ribonucleoproteins exported. If the

dynamics of Rev with or without RRE is slow, but is enhanced in

the presence of NF90ctv or its specific domains, this could explain

coordinated changes in Rev localization. In addition, an

interaction between the two proteins could affect the addition or

removal of ‘‘natural’’ partners of Rev involved in export complex

formation. This possibility is supported by the accumulation of

Rev-GFP observed on the nuclear pore complexes in the presence

of NF90ctv deletions leading to GFP accumulation that appears as

rings in the nuclear envelope (Figure 4B). In addition, colocaliza-

tion of both proteins is observed in the cytoplasm and in the

nucleolus. Daelemans et al. [40] showed that Rev multimerizes in

the nucleolus and this may be important in nucleocytoplasmic

transport. Thus, multimerization could be altered by NF90ctv

deletions; in addition, interaction between Rev and NF90ctv has

been described [6].

We also show that NF90ctv has a similar function to that of

HIV-1 Rev suggesting that NF90ctv can bind and export RRE-

containing mRNAs to the cytoplasm where they are translated

(Figure 1B). Interestingly, our results show that to bind to and

export RRE, both DRBDs (DRBD1/2) must act together.

Several authors have demonstrated that NF90 can bind to highly

structured RNAs, such as Human adenovirus RNAII [15] or the

HIV Tar structure [5]. We have mapped two additional dsRNA-

binding domains in NF90ctv, one in the N-Ter which includes an

RCN, and one that corresponds to the last 70 amino acids (aa) in

the C-Ter which is rich in RG. Surprisingly, the full-length

N-Ter or C-Ter was unable to bind the RRE, which could result

from conformational changes in both regions. However, the

C-Ter of NF90ctv can bind to dsRNA and ssRNA synthesized in

vitro [41]. Bearing in mind that proteins with an RG motif are

involved in RNA binding, it has been proposed that the last 70 aa

of the C-Ter can bind RNA. Indeed, we show here that this

region is not only able to bind the RRE-containing mRNA, but is

able to export the mRNA that is then translated. While the

physiological relevance of the interaction of these two domains

(RCN and RG) of NF90ctv with the RRE remains to be

elucidated, our results suggest that one function could be

interaction with exogenous dsRNA, such as the virus genome,

and participation in virus replication. It will be very interesting to

examine if export of unspliced mRNA mediated by NF90ctv or

by its three deletions, leads to virus-like particle formation as

occurs with Rev export of unspliced mRNA, or if viral genome

expression in the presence of these proteins leads to the

production of infectious virus.

Materials and Methods

Constructs and plasmids
The pCI-neo/NF90 construct that allows expression of NF90ctv

was described previously [17]. To clone the NF90ctv gene and the

sequence coding for its different deletion mutants in pmRFP

(plasmid with the monomeric red fluorescent protein), the following

strategy was used. The mRFP cassette was amplified from pcDNA3

(kindly provided by R. Y. Tsien, University of California, San

Diego) using the 59primer GGATCCGCGGCAGACCATGGC-

TAGCA and the 39primer GCGGCCGCTTAGGCGCCGGTG-

GAGTG. The 59primer presents a BamHI site (underlined) and the

39primer a NotI site (underlined). pEGF-N1 (Clontech, USA), which

expresses the green fluorescent protein (GFP), was cleaved with

BamHI and NotI to delete the GFP cassette, and replace it by the

mRFP PCR product to obtain the pmRFP construct used to

transform Escherichia coli DH5á. The NF90ctv gene and the regions

coding for its deletions were amplified from pCI-neo/NF90 using

specific primers (Table 1). The forward primer contains an EcoRI

site (underlined) and the reverse primer contains a SmaI site

(underlined). The PCR products were digested with EcoRI/SmaI

and ligated into pmRFP previously digested with the same enzymes

to obtain NF90ctv and the different deletions cloned in pmRFP

(Figure 1A).
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The pcsRev-GFP construct was kindly provided by G. Pavlakis

(National Cancer Institute Frederick, MD, USA) and the

pCMVGag2RRE was provided by F. Maldarelli (National

Institute of Allergy and Infectious Diseases, National Institutes of

Health (NIH), Bethesda, MD, USA). The construct pHIV/Denv-

GFP (kindly provided by J. He (University of Indiana, Indianap-

olis, USA) that contains the entire HIV-1 genome but has an

insertion at nucleotide position 5950 that displaces the env gene in

the open reading frame (ORF), resulting in inhibition of Env

expression; additionally, the gene encoding the Nef protein was

replaced by the sequence encoding GFP [42]. pNL-4-3GFP and

pNL-4-3 were kindly provided by M. Stevenson (Program in

Molecular Medicine, University of Massachusetts Medical School,

Worcester, Mass, USA). The expression of each construct was

evaluated by fluorescence microscopy.

Cells lines and transient-transfection
HeLa cells and 293T cells were maintained in Dulbecco

minimum essential medium (DMEM; GIBCO, Carlsbad, USA) at

37uC in 5% CO2. The medium was supplemented with 1%

penicillin/streptomycin, 1% glutamine, 1% pyruvate (Sigma-

Aldrich, St. Louis, USA) and 10% fetal bovine serum (Invitrogen).

For all experiments, the HeLa cells were seeded in 6-well dishes

using 36105 cells per 35 mm-diameter dishes. After 24 h the cells

were transfected with the appropriate plasmid DNA, using

Superfect Transfection Reagent (Qiagen, USA), according to the

manufacturer’s instructions.

Cell localization
To determine if NF90ctv or its truncated forms influence the

cellular localization of Rev, in the presence or absence of RRE, the

following strategy was used. HeLa cells were co-transfected with

pcsRev-GFP either alone or in the presence of pNF90ctv-mRFP

or one of the following deletion constructs (pRCN-mRFP,

pDRBD1/2-mRFP or pRG-mRFP), or pRev-GFP + pmRFP as

negative control. In parallel, cells were also co-transfected as

described above but in the presence of pCMVGag2RRE;

pCMVGag2RRE+pmRFP was used as negative control. In all

assays, after 24 h the cells were treated as described previously [6].

In the nucleolus, nucleoplasm and cytoplasm of 7–10 cells of each

category, the area, integrated density and mean gray value were

measured using ImageJ.

RRE-RNA binding study
To characterize the NF90ctv region(s) involved in RRE-RNA

interaction, HeLa cells were co-transfected with each deletion mutant

in the presence of pCMVGag2RRE that produces RRE-containing

Gag mRNA. The cells co-transfected with pCMVGag2RRE+pcsRev-

GFP were used as positive control. After 24 h, the cells were harvested

and lysed as described [6]. The protein concentration was determined

using the Bradford assay (Bio-Rad, USA). The ability of NF90ctv and

its deletions to bind RRE was determined by Western blot of the

expression of Gag, using HIV-1IIIB p55 Gag antibodies (obtained

through the NIH AIDS Research and Reference Reagent Program,

Division of AIDS, NIAID, NIH). All assays were repeated three times.

LMB treatment
To determine if the interaction between the NF90ctv derivatives

and RRE-RNA is LMB-dependent, the following strategy was used.

HeLa cells were co-transfected independently with the plasmid

expressing each of the regions of interest of NF90ctv in the presence of

pCMVGag2RRE and incubated at 37uC in 5% CO2; three wells for

each construct were used. After 8 h, the cells of the first well were

harvested, lysed and the total extracts were maintained at 220uC;

12 ng/ml of LMB were added to the second well, and the third well

served as control; both the second and third wells were incubated for

an additional 4 h at 37uC in 5% CO2. Finally, the cells were harvested

and the level of expression of Gag was evaluated by Western blot,

using Gag antibodies. All assays were repeated three times.

HIV replication assays in vitro: quantification of p24 in
cell lysates and supernatants

HeLa and 293T cells were transfected with pHIV/Denv-GFP or

pNL-4-3 independently or together in the presence of pmRFP (as

control). Cells were also co-transfected with different amounts of

pNF90-mRFP, pRCN-mRFP, pDRBD1/2-mRFP or pRG-mRFP

(0.25, 0.5, 1.0, 2.0 and 3.0 mg) DNA. After 24 h, an aliquot of the

supernatant of each essay was taken and kept at 220uC. After 48 h

the cells were harvested, lysed and the total proteins were quantified

as described above; the supernatants were kept at 220uC. To

evaluate the effect of NF90ctv or each of its deletions on HIV-1

replication, the level of expression of p24 was determined by

Western blot in the cell pellets using the HIV-1 p24 Gag, and in the

supernatants by ELISA, using the QuickTiterTM Lentivirus Titer

Kit (Cell Biolabs, Inc USA) following the manufacturer’s instruc-

tions. All assays were repeated three times.

FRAP assays
HeLa cells were plated onto glass bottom microwell dishes at

36105 cells/well. After 24 h, the cells were co-transfected with the

DNA expressing the protein of interest and maintained at 37uC in

5% CO2 using a professional hot-air blower in fresh DMEM

supplemented with 10 nM HEPES pH 7.4. FRAP experiments

were performed on a Leica SP2 AOBS confocal microscope (Leica

Microsystem). Excitation of GFP was carried out at 488 nm laser

line of an argon laser. Before photobleaching, three images were

taken that were acquired every 1.31 sec. A diffraction-limited spot

was photobleached by a single laser pulse of 100 ms at 100% of

the beam. Recovery images were acquired every 1–4 s. The

average intensity was determined in the photobleached region,

before photobleaching and post-photobleaching. The data were

normalized as was described by Negi and Olson [43].

Antibodies
NF90ctv was detected by Western blot using Ab78 polyclonal

antibodies kindly provided by JC Larcher (Université Pierre et

Table 1. Primer used to cloned NF90ctv and each of its
regions on pmRFP-N1.

Primers Sequence

39NF90nostopmRFP gggggg CCCGGGGAAAACCTGTGTAGCCTGC

59pAEGFPNF90Nter GgggggGAATTCGCCCACCACTAATGCGTCCAATGCGA

39N-terNF90mRFP GgggggCCCGGGCTGCCTTCTCCTCTTTCAA

59C-terNF90mRFP ggggggGAATTCGCCCACCACTAATGAATGCCCTGATG

39RCN ggggggCCCGGGGTTCTGGGCTTCTTCTTAC

59RCN ggggggGAATTCGCCCACCACTAATGTGTCGGGGAGTG

39DRBD1 ggggggCCCGGGCCATGTCCTGTAACACCTT

39DRBD2 ggggggCCCGGGAAAGCTTTTCTAGGGCAGC

59DRBD2 ggggggGAATTCGCCCACCACTAATGAACCCAGTCATG

59RG ggggggGAATTCGCCCACCACTAATGTTCCCTGACACC

doi:10.1371/journal.pone.0016686.t001
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Marie Curie, Paris, France). pAb HIV1 p24 ab63913-100 (Abcam,

USA), HIV-1IIIB p55 Gag (obtained through the NIH AIDS

Research and Reference Reagent Program, Division of AIDS,

NIAID, NIH), b-Actin clone AC-74 (Sigma-Aldrich, St Louis,

USA) was used. The GFP monoclonal antibody (1A5): sc-101536,

and the b-Tubulin antibody (D-10): sc-5274 were obtained from

Santa Cruz international (USA).

Western blots
The cells were lysed with 150 ml of Kit luciferase lysis buffer

(Tropix, Applied Biosystems. Fostre City, CA, USA) and 25 ml of

protease inhibitor Complete EDTA-Free (Roche, Diagnostic

GMBH, Mannheim, Germany), and frozen 3 times at 270uC to

ensure complete cell lysis. After centrifugation, the total proteins

were quantified as described [6].

Densitometry analysis
Laser scanning (Epson PerfectionH 4490 Photo) was used to

convert the Western blots into digital images for subsequent

densitometric analysis by the ImageJ program (http://rsbweb.nih.

gov/ij/). After background correction, the integrated density of

every blot and its controls (b-Tubulin and b-Actin) was measured

for normalization. Finally, the Relative Intensity was calculated,

dividing the absolute intensity of each band by the absolute

intensity of the standards. Statistical calculations and analyses were

performed with the Prism 4 (GraphPad Software, Inc) statistical

software package. Student’s t-test or Anova no parametric test

(Kruskal-Wallis) was used to test significant differences.
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