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Abstract: Functional status is considered the main determinant of healthy aging. Impairment in
skeletal muscle and the cardiovascular system, two interrelated systems, results in compromised
functional status in aging. Increased oxidative stress and inflammation in older subjects constitute
the background for skeletal muscle and cardiovascular system alterations. Aged skeletal muscle
mass and strength impairment is related to anabolic resistance, mitochondrial dysfunction, increased
oxidative stress and inflammation as well as a reduced antioxidant response and myokine profile.
Arterial stiffness and endothelial function stand out as the main cardiovascular alterations related
to aging, where increased systemic and vascular oxidative stress and inflammation play a key role.
Physical activity and exercise training arise as modifiable determinants of functional outcomes in
older persons. Exercise enhances antioxidant response, decreases age-related oxidative stress and pro-
inflammatory signals, and promotes the activation of anabolic and mitochondrial biogenesis pathways
in skeletal muscle. Additionally, exercise improves endothelial function and arterial stiffness by
reducing inflammatory and oxidative damage signaling in vascular tissue together with an increase
in antioxidant enzymes and nitric oxide availability, globally promoting functional performance
and healthy aging. This review focuses on the role of oxidative stress and inflammation in aged
musculoskeletal and vascular systems and how physical activity/exercise influences functional status
in the elderly.
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1. Introduction

Social and medical advancements achieved during the 20th century led to a great
increase in people’s lifespans, doubling the life expectancy worldwide [1]. This trend
will be maintained at least during the first half of the present century, which will result
in further growth in both the proportion of older people and the proportion of those
achieving long longevities. The group of people over the age of 80 is expected to experience
a threefold increment [2]. These demographic changes are accompanied by relevant changes
in epidemiology that should lead to changes in the clinical field, taking into account the
new challenges that this population provides for health and social systems, which are quite
different from those of the younger (adult) populations [3].

This challenge for society in general and for health systems in particular means that
the aim of these systems is not only improving lifespan but most importantly improving
healthspan, thus moving the focus from the quantity of life (life expectancy) to the quality
of life, i.e., to function. Aging is characterized by several highly prevalent changes, includ-
ing an increase in morbidity and a decrease in functional performance which, although
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linked, are two separate conditions [4,5]. In this sense, functional performance in older
people is the most strongly related factor to quality of life and the risk of hospitalization,
permanent institutionalization, use of health and social resources, and death [3]. In fact,
the World Health Organization (WHO) has recognized the true relevance of function and
the components involved in its preservation or deterioration in healthy aging [6]. The
WHO defines healthy aging as “the process of developing and maintaining the functional
ability that enables wellbeing in older ages”. This means that the elderly’s health status is
determined by functional status rather than morbidity, since, according to this definition,
older persons with multiple diseases may enjoy a healthy aging process if they maintain
functional ability.

In the aging-related trajectory potentially leading to disability, frailty arises as
an indicator of functional impairment, with important possibilities for reversion by ade-
quate intervention. Frailty is a geriatric syndrome characterized by a reduced functional
reserve, resulting in increased vulnerability to stressors and a limited capacity to main-
tain homeostasis. Frail elders present poor performance in functional tasks and have an
increased risk for negative health outcomes, including falls, institutionalization, mobility
impairment and disability, hospitalization and mortality. Frailty is the consequence of
the interaction between the aging process and some chronic diseases and conditions that
are prevalent in the elderly [7]. This clinical syndrome is characterized by a progressive
decline in multiple body systems that are associated with high vulnerability to stressors,
which results in a dysregulation of multiple physiological systems [8], including skeletal
muscle and the cardiovascular system [9,10]. The musculoskeletal system plays a key role
in the decline in muscle strength and functional capacity in the older people. In this sense,
sarcopenia, defined as lowered skeletal muscle mass and reduced skeletal muscle strength,
is clearly related to the frailty phenotype, although sarcopenia is not always present in
frail elders [11], pointing to the existence of several phenotypes of frailty [12]. However,
as mentioned, frailty is a multisystem manifestation and, in addition to musculoskele-
tal system, alterations in other organ systems are also related to functional decline and
frailty. In this sense, the aging of the cardiovascular system also affects the functional
outcome in the elderly. Cardiovascular health in midlife has been shown to determine the
frailty phenotype in later life, favoring a robust functional status [13]. On the other hand,
large-population studies revealed an increased risk for myocardial infarction and stroke
in frail older people [14]. In fact, the muscular and cardiovascular systems do not stand
isolated one from each other, since interactions in the course of aging between both systems
seem to occur. Indeed, sarcopenia is more prevalent among cardiovascular disease (CVD)
patients and is related to markers of vascular health such as arterial stiffness and coronary
artery calcifications [15].

Oxidative Stress and Inflammation, Constituents of the Background of Aging

Although free radical theory failed to completely explain the aging process, the
outstanding role of oxidative damage in the aging-related decline of function is widely
accepted [16]. Oxidative damage at the molecular and cellular levels is the result of
an imbalance between oxidant and antioxidant processes in favor of the former. Reactive
oxygen species (ROS) are key players in the deleterious impact caused by oxidative stress.
However, ROS are fundamental for acting as signaling molecules to generate hormetic
responses by triggering defense mechanisms, while they cause oxidative damage when
generated in excess without modulation. This dual activity could underlie the inconsis-
tent clinical outcomes obtained with antioxidant supplementation [17–19]. Analogously,
inflammation is a physiological response of the organism to harmful stimuli, but becomes
deleterious when the inflammatory process becomes persistent, leading to low-grade
chronic inflammation that causes tissue damage and impairs adequate acute inflammatory
response. Oxidative stress and inflammation are two closely related processes, and their
interdependence is consistently documented [20]. In this sense, ROS/reactive nitrogen



Int. J. Mol. Sci. 2022, 23, 8713 3 of 36

species (RNS) can initiate an intracellular proinflammatory cascade [21], while the rise in
inflammatory cytokines fuels oxidative stress, creating a vicious cycle [22].

Oxidative stress and low-grade chronic inflammation have been demonstrated to
play an important role in the hallmarks of aging [23]. However, they are related to
an unsuccessful aging outcome rather than to the aging process by itself [24]. In this sense,
oxidative stress and inflammation have been shown to be associated with aging-related
diseases and frailty [25].

Globally, oxidant damage and inflammation would form a background that promotes
functional decline in different tissues and organs. The clinical manifestations of this situa-
tion in the form of aging-related diseases and conditions such frailty can be determined
by the resilience of the specific systems. In this context, frailty will be manifested when
a multisystemic failure occurs that results in a condition prone to disability and
mortality [26] (Figure 1).
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Figure 1. Positive effects of physical activity/exercise on aging-related functional outcomes are
evidenced at different levels.

Aging-associated oxidative damage and chronic inflammation that occur at the cellu-
lar/tissue level form a background that promotes the functional decline in cardiovascular
system and skeletal muscle [7]. The alterations in cardiovascular territory are characterized
by the presence of endothelial dysfunction and increased arterial stiffness [27]. Meanwhile
in skeletal muscle a decrease in muscle function and strength is associated with aging.
A close interaction between both systems exists in which myokine alteration and reduced
blood flow seem to play a role. Frailty arises as the clinical manifestation of this multisys-
temic failure and results in a condition prone to disability [26]. Physical activity/exercise
interventions have been proven to reduce oxidative stress and inflammation at the cellu-
lar/tissue level, to limit cardiovascular and skeletal muscle alterations and to reduce the
risk of unsuccessful functional outcomes [9].

In the pathway leading from robustness to frailty and disability, several approaches
have been assessed. Among them, physical exercise is probably the most successful, as has
been shown in several randomized controlled trails [28–30], usually as part of multimodal
combinatory interventions and including the prevention/reversion of frailty [9]. In fact,
it has been suggested that avoiding the prescription of exercise programs to older people
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could be considered unethical [31]. However, the specific mechanisms driving the effects
of physical activity/exercise on aged skeletal muscle and cardiovascular systems have not
been completely elucidated. This knowledge would help clinicians to adapt the intervention
to the specific condition of the older subject.

This review will focus on the role of oxidative stress and inflammation as drivers of
frailty and adverse functional outcomes in aging, with emphasis on the musculoskeletal and
vascular systems and on how physical activity and exercise might influence the functional
status in the elderly. The analysis of different exercise intervention modalities and some
insight into the mechanisms involved in physical activity/exercise impact on muscle and
cardiovascular systems will also be provided.

2. Aging-Related Changes in Skeletal Muscle and Cardiovascular System

The aging process is associated with different alterations that occur at the muscular
and vascular level, leading to an increased risk of morbimortality and functional decline
in older people. We will discuss the principal mechanisms implicated in skeletal muscle
and vascular age-impairments, with special emphasis on those related to oxidative stress
and inflammation.

2.1. Skeletal Muscle

Skeletal muscle represents the most abundant tissue in animals and humans, com-
prising up to 50% of their body mass. Skeletal muscle is of critical importance for general
health. Indeed, it plays key roles in posture, mobility, thermogenesis, and whole-body
glucose homeostasis [32].

During aging, there is a reduction in muscle mass and strength that causes a decrease in
the ability to carry out activities of daily living, which produces a shift towards a dependent
lifestyle for aging people [9,33], characterized by an increase in disability, the number of
falls, hospitalization and mortality [34,35]. From the age of 30 years onwards, muscle mass
tends to decline at a ratio of 1% per year [36]. This percentage of decline is indeed higher in
people older than 60 years [37]. As a consequence, by the age of 70, skeletal muscle strength
is 20–40% lower than that of young people [38], leading to a loss of function [34]. This
age-related condition which combines a loss of skeletal muscle mass and function is called
sarcopenia [37]. Sarcopenia is a multifactorial and complex phenomenon whose underlying
mechanisms are not clearly defined. Specific aging-related changes in the muscles involve
a decreased cross-sectional area (CSA) of skeletal muscle due to a switch in the fiber
type [38], intramyocellular lipid accumulation and, at later stages, fibrotic tissue [36,39],
a decrease in the number of satellite cells [40] and neuromuscular degeneration [41]. At
the cellular and molecular levels, sarcopenic muscle is characterized by anabolic resistance,
mitochondrial dysfunction, chronic inflammation, and increased oxidative stress [40,42–44].

Due to the importance of skeletal muscle for healthy aging, there is a significant need
for an increased understanding of the mechanisms underlying the changes in skeletal mus-
cle structure and function contributing to frailty and sarcopenia. The main factors involved
in skeletal muscle age-impairments are anabolic resistance, mitochondrial dysfunction,
oxidative stress, and inflammation.

2.1.1. Anabolic Resistance

The loss of muscle mass during aging has been related to a state of anabolic resistance
that generates an imbalance between protein synthesis and degradation in response to
a stimulus [37,41]. There is a decrease in protein synthesis pathways and an increase
in muscle atrophy-inducing factors [40,44], leading to a decrease in muscle mass that
significantly affects mobility [9,45].

The best-defined anabolic pathways leading to protein synthesis in the muscle involve
the mammalian target of rapamycin (mTOR), the serine/threonine kinase Akt/protein
kinase B (PKB), hormones such as insulin-like growth factor-1 (IGF-1) and insulin [44].
Insulin/IGF-1 signaling is impaired with aging, mainly due to insulin resistance and re-
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duced levels of IGF-1 [9]. In this regard, recent findings have shown a direct, longitudinal
relationship between insulin resistance, assessed through HOMA-IR, and the risk of devel-
oping frailty in older people without diabetes [46]. IGF-1 triggers the intracellular signaling
pathway, leading to the sequential activation of phosphoinositide3-kinase (PI3K) and Akt,
which results in the downstream activation of mTOR, which subsequently enhances protein
synthesis. However, this mechanism is decreased in aged skeletal muscle [40]. Insulin
resistance is part of this anabolic resistance that leads to the loss of skeletal muscle [33,44].
Age-associated insulin resistance in skeletal muscle has been evidenced in both animal and
human studies [33]. Increased lactate production in aged individuals could be related to
defective pyruvate dehydrogenase phosphorylation associated with insulin resistance [47].

Protein turnover involves the dynamic process of protein synthesis and degradation,
and it is a key mechanism for modulating muscle mass and protein quality [48]. Some
studies evaluating age-related changes in protein synthesis pathways in humans have
shown an aging-related decline in Akt/PKB-mTOR signaling and protein synthesis that
contributes to sarcopenia [44]. The breakdown of muscle proteins involves the activation of
the ubiquitin proteasome. Although excessive activity of ubiquitin proteasome is associated
with reduced myofiber size and age-related muscle atrophy in mice [49], and ubiquitin con-
tent has been shown to increase in aged human muscle [50], a decline instead of an increase
in ubiquitin proteasome function has been detected in aged muscles [51]. In line with this,
it has been suggested that decreased proteasome activity in aging negatively affects protein
quality control, causing the accumulation of misfolded and damaged proteins [52], thus
compromising muscular function [53]. Other studies have revealed downregulation of the
glycolytic metabolism of the fibers in the muscle fibers of elderly individuals compared to
young people, especially in type II or glycolytic fibers, as well as a decrease in the GLUT4
transporter, which is responsible for insulin-stimulated glucose uptake. All of these changes
may be associated with the loss of CSA and atrophy of type II fibers and loss of muscle
mass [33,54]. However, older human skeletal muscle retains the ability to increase GLUT4
with exercise [55].

Studies in aged humans have shown an increase in muscle atrophy-related factors. In
this sense, increased serum levels of transforming growth factor-ß (TGF-ß) and elevated
intramuscular content of myostatin have been detected [44]. The imbalance between protein
synthesis and protein degradation, leading to muscle atrophy and fiber loss, is caused by
several factors. Among these, the main factors are mitochondrial dysfunction and increased
oxidative stress [56,57], which appear as important contributors to the loss of strength and
function associated with age [58].

2.1.2. Mitochondrial Dysfunction

Multiple studies have linked mitochondrial dysfunction with the development of
sarcopenia. Mitochondrial damage accelerates the accumulation of ROS and cellular en-
ergy deficiency, particularly in the skeletal muscle, which may contribute to a complex
sarcopenic phenotype [34,56]. Mitochondrial quality control (MQC), which includes mito-
chondrial proteostasis, biogenesis, dynamics and autophagy, is crucial for the maintenance
of homeostasis in muscle cells during aging [59,60]

In aging muscle, mitochondrial alterations are associated with downregulation of
peroxisome proliferator-activated receptor-gamma coactivator 1-alpha (PGC-1α), as well as
with oxidative phosphorylation (OXPHOS) impairment, and mitochondrial morphological
changes [56]. These changes have been linked to sarcopenia, poor physical performance,
and chronic fatigue [9,61].

PGC-1α is considered the main factor in regulating mitochondrial biogenesis, integrity
and function, in cooperation with downstream nuclear transcription cofactors, such as nu-
clear respiratory factor-1 and -2 (NRF-1 and NRF-2) [59,62]. Reduced expression of PGC-1α
and mitochondrial transcription factor A (TFAM) and changes in other important factors
in the mitochondrial biogenesis have been detected in the skeletal muscle of sarcopenic
mice [63]. In addition, the biological activity of AMP-activated protein kinase (AMPK),
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which plays a key role in transducing metabolic signals to mitochondrial biogenesis, de-
clines with aging in rats [64]. In older humans, muscle atrophy and decreased physical
activity, key factors in the development of sarcopenia, have been linked to decreased levels
of PGC-1α [61,65]. Furthermore, PGC-1α expression stimulates the expression of antioxi-
dant genes, including heme oxygenase 1 (HO-1) and is increased in tissues and organs with
high-energy metabolic loads, e.g., adipose tissue, cardiac, and skeletal muscle [66].

Mitochondrial proteostasis plays an essential role in maintaining the balance between
synthesis and protein degradation. Alterations in mitochondrial proteostasis during aging
may result from the activation of muscle atrophy regulators and/or the inactivation of
genes regulating protein production such as mTOR complex 1 (mTORC1), contributing to
muscle atrophy [58].

On the other hand, the alteration of autophagy-mediated by mitochondria (mitophagy)
in aged skeletal muscle has been associated with muscle wasting and muscle strength re-
duction [61,67,68]. Mitophagy dysregulation has been denoted as a pathogenic mechanism
in muscle atrophy by an increase in LC3-II, p62, and lysosome-associated membrane pro-
tein 1 (LAMP1) expression in sarcopenic mice [63]. The downregulated expression of the
autophagy mediator, LC3B, has also been detected in muscle from hip-fractured sarcopenic
elderly patients [61].

Therefore, many observations in aged animal models and in humans supported the
assertion that the dysregulation of mitochondrial dynamics and function was associated
with aging-induced skeletal muscle atrophy [34,69]. One of the consequences of this
mitochondrial dysfunction may be related to the presence of oxidative stress in aged muscle.
It is widely accepted that mitochondria serve as a significant source of oxidants as well as
a primary target of oxidative stress. Moreover, evidence shows that both mitochondrial
dysfunction and the increase in oxidative stress associated with age are dependent on
physical activity [59].

2.1.3. Oxidative Stress

A decrease in the redox balance with aging has been widely shown [34,70]. Oxidative
stress has been postulated to play an important role in the outcome of aging at the functional
level [7,26]. The imbalance between the production of ROS, RNS and antioxidant defenses
in the body has been suggested to be an early biomarker of sarcopenia [37,71]. It is widely
accepted that the bulk of ROS produced by muscle contraction are generated by the mito-
chondrial electron transport chain during normal oxidative respiration [72], although other
non-mitochondrial sources of ROS such as NADPH oxidase (NOX) and cyclooxygenase-2
(COX2) seem to significantly contribute to ROS generation in skeletal muscle [7,73].

Within physiological levels, ROS can promote host defense mechanisms such as the
activation of signaling pathways, including the mitogen-activated protein kinase (MAPK)
signaling pathways, NF-kB signaling pathway and Keap1-Nrf2-antioxidant response ele-
ment (ARE) signaling pathway. These pathways play an important role in various cellular
processes such as cell growth, inflammatory response, autophagy or adaptive response for
oxidative stress [74]. ROS contribute to age-related deficits in the muscle through increasing
damage to cell constituents and through the induction of defective redox signaling [75].

There is an increase in ROS production in skeletal muscle with aging in mice that
may contribute to aging-related muscle atrophy [57]. Excessive ROS induces proteolysis
by enhancing the ubiquitin-proteasome system, resulting in skeletal muscle atrophy [76]
and motoneuron degeneration in aged skeletal muscle [44]. In fact, Cu/Zn superoxide
dismutase (SOD1)-knockout mice show accelerated loss of muscle mass and function due
to increased ROS generation, resulting in the loss of muscle fibers and sarcopenia [77].

Moreover, the accumulation of ROS/RNS is thought to be a determinant not only of
muscle quantity reduction but also of the loss of muscle quality with aging [78]. Aging-
induced accumulation of ROS/RNS has been proposed to decrease muscle quality by
impairing muscle fiber activation, excitation/contraction coupling and cross-bridge cycling
within the myofibrillar apparatus [79].
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Antioxidant response represents a main feature of the ROS-induced signaling, which,
indeed, prevents the persistence of oxidative stress. In this sense, in response to an in-
crease in oxidative stress, the nuclear factor Nrf2 is activated, inducing antioxidant genes
transcription [80]. Nrf2 has a critical role in ROS-induced antioxidant response in skeletal
muscle and the cardiovascular system, and its downregulation has been implicated in both
sarcopenia and CVD [81]. In line with this, Bose and colleagues demonstrated that increased
oxidative stress was negatively correlated with a dysfunction in Nfr2 response in aged
skeletal muscle, while nutritional supplementation with the Nrf2 activator sulforaphane
resulted in improved strength and fatigue resistance in old mice [81]. This concept was
supported by other studies with Nrf2 knockout mice, where the absence of Nrf2 was related
to an increase in ROS levels and an altered contractile capacity in skeletal muscle [80].

Human studies showed the association of reduced systemic mRNA expression of Nrf2
and three of its target genes (heme oxigenase-2, thioredoxin reductase-1 and superoxide
dismutase-2) with the presence of frailty in community-dwelling older adults, supporting
animal data and highlighting the role of an adequate antioxidant response in the functional
outcome in the elderly. Furthermore, a positive association between Nrf2 gene expression
and gait speed has been found [82].

The imbalance in ROS production correlates with an increase in inflammatory media-
tors, such as tumor necrosis factor- α (TNF-α), interleukin-6 (IL-6), NF-kB and C-reactive-
protein (CRP) [37], and leads to a chronic inflammatory state that creates a vicious cycle
wherein chronic oxidative stress and inflammation feed into each other [83]. Thus, together
with oxidative stress, inflammation seems to play a potential role in muscular alterations
related to aging.

2.1.4. Inflammation

Inflammaging is the chronic low-grade inflammatory state present in older people,
characterized by increased systemic concentrations of proinflammatory cytokines such as
TNF-α, IL-6, and CRP, among others [40]. It has been shown that inflammaging increases
the risk of pathologic conditions and age-related diseases, and it is associated with increased
skeletal muscle wasting, strength loss, and functional impairments [40,84].

Recent evidence suggests that the persistent elevation of inflammatory cytokines
in sarcopenic patients was associated with impaired satellite cell regeneration [85], as
well as with reductions in endothelial reactivity and muscle perfusion, leading to an-
abolic deficiencies and/or excessive muscle proteolysis [84]. Inflammaging also affects
the anabolic–catabolic balance in skeletal muscle cells, causing a shift towards catabolism,
atrophy and the progression of sarcopenia, which is a major contributor to functional
decline and frailty [86].

TNF-α is a major activator of the apoptotic signaling pathway that leads to increased
degradation of muscle proteins and results in muscle atrophy [40]. Its impact on muscle
may also be related to the inhibition of muscle regeneration by blocking the proliferation
and differentiation of muscle stem cells [87]. IL-6 acts as a multifactorial cytokine (pro-
inflammatory and anti-inflammatory) depending on the condition [88], but chronic systemic
elevation of IL-6 leads to muscle atrophy via blunting muscle anabolism [89]. Both TNF-α
and IL-6 induce the activation of NF-kB, which in turn activates multiple genes implicated
in inflammation and proteolysis, leading to skeletal muscle loss [7].

Blood levels of TNF-α and IL-6 have been reported to increase 2- to 4-fold in old
persons compared with healthy young adults, promoting sarcopenia [90]. For example,
cross-sectional analysis from the InCHIANTI study (1020 men and women over 65 years)
demonstrated a significant association of IL-6, interleukin-1 receptor (IL-1R), and CRP
serum levels with both poor physical performance and reduced muscle strength [91].

Chronic inflammatory state is not only dependent on the increased expression of
pro-inflammatory mediators, but also on reduced levels of anti-inflammatory cytokines
such as interleukin-10 (IL-10) [92]. This cytokine has been shown to play an important
anti-inflammatory role by inhibiting the production of pro-inflammatory cytokines by
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monocytes [93]. Importantly, mice models with muscle-specific overexpression of IL-10
have been associated with a low level of age-related muscle inflammation and insulin
resistance [94]. Furthermore, IL-10 homozygous knockout mice (IL-10tm/tm) were identified
as a transgenic model of frailty, since they showed a frail phenotype including inflammation
and reduced muscle strength [95].

2.1.5. Myokines

Myokines are defined as cytokines, hormones and other peptides that are produced, ex-
pressed and released by muscle fibers in response to muscle contraction [96]. Myokines exert
an autocrine function in regulating muscle metabolism in addition to its paracrine/endocrine
regulatory function on other organs or tissues including adipose tissue and the heart,
among others, and providing a molecular interaction between muscle function and body
physiology [88,97]. Myokines regulate several processes associated with physical frailty,
including muscle wasting, dynapenia (age-related reduction in muscle strength), and slow-
ness [9]. Multiple studies have reported that myokines mediate exercise-associated anti-
inflammatory effects and the reduction in age-related loss of muscle mass and function [96].

During the aging process, the synthesis of the myokine apelin by skeletal muscle
is decreased, and its plasma levels also decreases. Apelin is related to the induction of
mitochondriogenesis and can reduce inflammation, stimulate regenerative properties, and
avoid age-associated muscle wasting [98]. Another myokine, myostatin, is considered
a negative regulator of muscle mass, impairing muscle synthesis and augmenting muscle
catabolism [88]. Massive muscle hypertrophy is observed in myostatin knockout mice,
which show an increase in fiber CSA and fiber number [96]. Follistatin is a myostatin-
binding protein that is capable of inhibiting myostatin activity. Although it has been
suggested that follistatin could lead to muscle growth [99], contradictory results have been
obtained, since an increased serum follistatin level was independently associated with
decreased gait speed among community-dwelling older individuals [100].

It is important to note the close network between myokines and other molecules
such as adipokines (secreted by adipose tissue) or cardiokines (secreted by the heart) [101].
These mediators play a crucial role in homeostatic adaptation and in counterbalancing
the systemic chronic low-grade metabolic inflammation in aging and diseases [88]. In this
sense, adiponectin (ApN) is a hormone with insulin-sensitizing and anti-inflammatory
properties in several tissues, including the skeletal muscle [102]. Its major effector protein
in skeletal muscle is the AMPK, a critical cellular energetic sensor [103]. A study in aged
mice reported that treatment with an adiponectin receptor agonist (AdipoRon) improved
muscle regeneration, muscle function, and physical performance by producing changes in
fiber type and by increasing mitochondrial activity [103].

2.2. Cardiovascular System

Aging is the main risk factor for CVD, even in the absence of traditional risk factors,
while CVD is considered the principal contributor to morbidity and mortality in older
populations [104,105]. The aging process is associated with both structural and functional
alterations at the vascular level, leading not only to an increase in cardiovascular events in
older subjects but also to functional decline, cognitive deterioration, and frailty [9,106].

Evidence derived from longitudinal studies has demonstrated that vascular aging is
associated with two specific arterial phenotypes: endothelial dysfunction and an increased
stiffness of the large elastic arteries [27]. In fact, different researchers have clearly demon-
strated the presence of endothelial dysfunction, manifested by impaired endothelium-
dependent vasodilation, associated with the aging process in the micro- and macrovascula-
ture of animal models and humans [106,107].

Increased arterial stiffness, another hallmark of vascular aging, is characterized by
a decrease in arteries’ elasticity and is manifested by an increase in pulse wave velocity
(PWV) [108]. Age-related stiffening of large elastic arteries is primarily attributed to in-
creased levels of matrix metalloproteinase-2 (MMP-2) in animals and humans [109]. Klotho-
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deficient mice, an animal model of unsuccessful aging, present greater aortic stiffness and
blood pressure that are accompanied by reduced elastin levels, as well as elevated MMP-2
and MMP-9 expression when compared to control mice [110,111]. In line with this, MMP-2
knockdown attenuates age-dependent carotid stiffness by blunting elastin degradation and
augmenting endothelial nitric oxide synthase (eNOS) bioavailability in mice [112].

Importantly, arterial stiffness is linked to endothelial dysfunction [9]. At the same
time, endothelial dysfunction plays an important role in the development of atherosclero-
sis [113]. In fact, increased levels of asymmetric dimethylarginine (ADMA), a marker of
endothelial dysfunction, were related to an increase in the risk of frailty in older adults
free of arteriosclerosis [114]. Furthermore, previous studies have reported an association
between arterial stiffness and skeletal muscle. In this sense, increased arterial stiffness
was associated with limited blood flow volume in the lower and upper extremities, lower
muscle mass, and diminished physical function, leading to the onset of sarcopenia [10,115].

Several studies have shown a relationship between CVD and reduced muscle mass
in young and old people [116]. Some studies linked muscle mass loss with vascular
calcifications [117]. In the Melbourne Collaborative Cohort study, older women with severe
abdominal aortic calcification showed a decline in handgrip strength [10]. Furthermore,
Rodríguez and colleagues confirmed the association between vascular calcification and
decreased muscle strength [118].

Poor cardiovascular function in the elderly is related to the onset of frailty, and
frailty is an adverse prognostic factor in cardiac patients [116]. In line with this, Minn
and colleagues reported that high muscle mass might protect against ischemic stroke in
community-dwelling adults [119]. Finally, other authors have reported a link between low
muscle mass and an increase in CVD mortality in individuals older than 65 years with CVD
risk factors [113].

Although the mechanisms responsible for aging-related vascular dysfunction have
not been completely elucidated, oxidative stress and chronic low-grade inflammation are
considered the major contributors to age-related vascular dysfunction [106].

2.2.1. Oxidative Stress

Vascular oxidative stress is considered a primary mechanism underlying impaired
endothelium-dependent vasodilatation and increased arterial stiffness related to aging.
An elevated content of several markers of oxidative stress, such as 4-hydroxynonenal
(4-HNE) or malondialdehyde (MDA), has been detected in aged arteries [27].

At the functional level, ROS and, in particular, superoxide anions react with NO, lead-
ing to the formation of peroxynitrite [83] and the subsequent reduction in NO bioavailability.
This latter is associated with increased platelet activity, endothelial dysfunction, inflamma-
tion, and the initiation, progression, and complications of atherosclerosis [120]. In line with
this, increased superoxide anion and peroxynitrite (ONOO−) formation was detected in
aged human vessels that presented a defect in endothelium-dependent vasodilation [121].
Furthermore, the inhibition of ONOO− with its scavenger, FeTMPyP, normalized vasorelax-
ation and suppressed nitrotyrosine expression, the footprint of peroxynitrite formation in
resistance arteries of aged rats [122]. Moreover, reduced NO bioavailability was associated
with arterial stiffness in women older than 65 [27].

Uncoupled endothelial nitric oxide synthase (eNOS) is considered an important source
of superoxide anion. eNOS uncoupling occurs when the availability of the critical cofactor
tetrahydrobiopterin (BH4) is inadequate, leading eNOS to produce superoxide anion
instead of NO [109]. In aged rats’ arterioles, reduced levels of BH4 were accompanied by
impaired endothelium-dependent vasodilation [123]. Furthermore, in estrogen-deficient
postmenopausal women, reduced vascular BH4 seems to be an important contributor to
arterial stiffening, related in part to reduced endothelial-dependent vasodilatory tone [124].

Although NOS uncoupling accounts for ROS generation, mitochondrial ROS produc-
tion has an important role in age-related vascular dysfunction. In the aged vasculature,
there is an increase in ROS due to dysfunctional electron transport chain, inhibition of
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mitochondrial antioxidant enzyme manganese-SOD (SOD2), down-regulation of p66Shc55,
and/or impaired Nrf2-mediated antioxidant defense responses [125]. Treatment with
mitochondrial-targeted antioxidants improved endothelial function in aged mice [126].
Furthermore, Park and colleagues demonstrated that treatment with mitochondria-targeted
antioxidant MitoQ reverses age-related vascular dysfunction in human skeletal muscle
feed arteries [127].

NOX enzymes are another major source of oxidative stress in the cardiovascular sys-
tem [128]. NOX are expressed throughout the vessel wall, including endothelial cells and
vascular smooth muscle cells [129]. A large volume of evidence of age-related upregulation
of NOX expression or activity has been obtained in aged rats [109]. In fact, in a rodent
model of aging, it was observed that age-dependent increases in blood pressure, cardiomy-
ocyte hypertrophy, coronary artery remodeling, and cardiac fibrosis were associated with
increased myocardial NOX2 activity [130]. In line with this, the attenuation of NOX activity
improved endothelial function in aged coronary arteries [126]. Furthermore, increased
mitochondrial NOX4 expression seems to play a causative role in age-related aortic stiffness
in hypercholesterolemic mice [128].

Vascular aging is not only characterized by increased ROS generation, but also by
a dysregulated antioxidant defense. In this sense, the Nrf2 antioxidant defense pathway
plays a central role in vascular stress by regulating both cellular DNA repair and the elim-
ination of ROS. Importantly, genetic depletion of Nrf2 exacerbates age-related vascular
senescence [131]. A study showed that the increased oxidative stress in the aging heart
correlates with Nrf2 dysregulation, and this drop in the protective response was attenuated
by the administration of sulforaphane to old mice [81]. Furthermore, short-term pharmaco-
logical activation of Nrf2 decreased the age-related impairment of endothelium-dependent
and ROS-induced vasodilatation in different vascular territories in rats and humans [132].

2.2.2. Inflammation

In addition to oxidative stress, inflammation stands out as a determinant underlying
the mechanisms implicated in vascular aging. In fact, the concept of inflammaging which
was adopted by Ferrucci recognizes that the chronic low-grade inflammation milieu ob-
served in older adults contributes to cardiovascular risk [133], and seems to play a role in
the development of multiple age-related diseases and conditions, including frailty [134].
However, the pathways linking inflammaging to physiological function and healthspan in
humans are not well-known [135].

A large volume of evidence has observed an increase in the different systemic mark-
ers of inflammation, such as CRP and IL-6, being positively related to aortic stiffness
and inversely correlated to endothelial dysfunction in older adults [125]. Additionally,
the TNF-α, IL-1β, and NOD-like receptor protein 3 (NLRP3) inflammasome can con-
tribute to age-related progression of hypertension [136]. According to this, a study in
NLRP3 KO old mice revealed that the ablation of NLRP3-inflammasome prevented many
age-associated changes in the heart, preserved the cardiac function of aged mice and
increased lifespan [137].

Inflammation involves the activation of the ROS-sensitive, pro-inflammatory transcrip-
tion factor, NF-κB. This factor is the master regulator of inflammatory molecules including
TNF-α, interleukins (IL-1β, IL-2, and IL-6), chemokines (IL-8 and RANTES), adhesion
molecules (ICAM, and VCAM), and enzymes (iNOS and COX-2) [109], and is believed
to play a critical role in age-related vascular inflammation. In fact, aged endothelial and
smooth muscle cells exhibit significant NF-κB activation [121]. Selective inhibition of NF-κB
in the vasculature was shown to improve blood flow regulation and decrease systemic
inflammation [126]. Moreover, an age-associated increase in NFκB activity has been directly
implicated in arterial dysfunction in older rodents and humans [27].

The activation of NF-κB may be evoked by dysfunctional mitochondria [133], indicat-
ing the presence of a positive vicious cycle between inflammation and oxidative stress. ROS
generation seem to play a key role in the progression of inflammation in blood vessels [10].
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Therefore, therapeutic interventions which combine antioxidants and anti-inflammatory
activities, such as resveratrol, may have a role in preventing vascular dysfunction in the
elderly [109]. In aged mice treated with resveratrol, lower aorta media thickness, lower
inflammation, and lower fibrosis and oxidative stress were observed when compared to
the control group [138].

Taking into account the involvement of inflammation in the pathogenesis and pro-
gression of CVDs, the search for potential biomarkers linked to microvascular dysfunction
might help to improve diagnoses, disease progression and therapy response [139]. In this
sense, non-coding RNAs have emerged as attractive biomarkers in heart failure, and their
potential clinical applications may be feasible in the era of personalized medicine [140].

The age-related chronic low-inflammation state is not only sustained by an increase in
inflammatory mediators but also by a reduction in circulating anti-inflammatory cytokines
such as IL-10 and adiponectin. This imbalance might exacerbate vascular extracellular
matrix remodeling and arterial stiffening [136]. For example, treatment with IL-37, a critical
anti-inflammatory interleukin in humans [141], improves vascular endothelial function,
endurance exercise capacity, and whole-body glucose metabolism in old mice [142].

It is important to note that there is a crosstalk between some myokines and vascular
function. In this sense, higher concentrations of irisin were detected in centenarian people
without CVD when compared to young individuals, which could be indirect evidence of the
protective role of irisin against the development of CVD. Furthermore, irisin and follistatin-
related protein 1 (FSTL1) improve endothelial cell function and arterial relaxation, and
protect against endothelial injury and atherosclerosis through the activation of PI3K–Akt
and eNOS signaling [113].

Improvements in our knowledge about the molecular and cellular mechanisms in-
volved in vascular aging and functional decline as well as their potential interactions
provide a growing list of factors that can be targets for specific intervention to prevent or
delay the onset of frailty.

3. Impact of Physical Activity/Exercise on Aged Skeletal Muscle and
Cardiovascular System

Physical activity and exercise training appear as the clearest modifiable determinants
of functional outcome in the elderly. This is due in part to their impact on multiple
key systems affected by the aging process, including the skeletal muscle as well as the
cardiovascular system [9,143].

3.1. Skeletal Muscle

Physical inactivity has emerged as one of the greatest threats to the health of the global
population [144] and their health systems [145]. Physical inactivity per se has been linked
to an increased risk of the incidence of several diseases [146], and is nowadays considered
one of the leading causes of preventable death [146–148].

Although several definitions have been proposed to define physical activity [149], the
most used one was published by Caspersen and colleagues [150] as “any bodily movement
produced by skeletal muscles that results in energy expenditure”.

Low physical activity is a domain of frailty [151] and a predictor of mortality by itself
in community-dwelling older adults [12]. In this sense, isotemporal substitution analysis
showed that 1 h of moderate- to vigorous-intensity physical activity (MVPA) instead of
sedentary or light physical activity was associated with higher values of muscle mass,
gait speed and grip strength, as well as with a reduction in the risk of being sarcopenic
by almost half [152]. This latter indicates that a minimum level of intensity is needed for
muscle mass improvement or maintenance.

Exercise is a subset of physical activity, being planned, structured and repetitive [150],
and its benefits have been extensively studied. Exercise improves different parameters
in older adults, such as strength [153,154] and physical function [154,155], and reduces
disability [28,30], as well as preventing falls and fall-associated injuries [156], demonstrating
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that lengthy interventions are safe [157]. Even in older adults who meet the sarcopenia
criteria, physical exercise significantly improves strength (assessed by grip strength, knee
extension and chair test), physical functioning (timed up and go test and gait speed) and
muscle mass [158].

Nevertheless, it is important to note that not everything is valid when it comes to
specifically improving certain parameters, and so defining certain aspects such as frequency,
intensity, time, or type of exercise could be key to obtaining the final result. This aspect is
particularly relevant in the presence of certain conditions, which can substantially modify
the response to exercise [159]. In line with this, the exercise recommendations of WHO for
older adults, even those with chronic conditions or disability, include a multicomponent
exercise program of at least moderate intensity on 3 or more days per week to improve
functional capacity and prevent falls [160]. These recommendations include performing at
least 150 min of moderate-intensity or 75 min of vigorous-intensity aerobic exercise spread
over 3 or more days per week and performing a balance and strength training program of
moderate or higher intensity involving all muscle groups 3 or more days per week [160]. In
fact, older adults who meet the guidelines for aerobic exercise, strength exercise, or both,
are associated with greatly reduced risk of all-cause mortality, as well as disease-specific
mortality, such as hypertension, heart disease, stroke, cancer, or Alzheimer’s disease [161].

On the other hand, resistance training has been proposed as the gold-standard treat-
ment to counteract the age-associated wasting of muscle mass, neuromuscular performance
and cellular adaptations [162–165]. In a recent study comparing different strength training
frequencies (3 days a week vs. 2) and different intensities (low-load vs. high-load) in adults
over 65, it was shown that high-load exercise 3 days per week over a 2-year period of
supervised training significantly increased appendicular lean mass when compared to
those subjects who performed only 2 days of exercise at light loads. Furthermore, all trained
groups showed a similar improvement in their strength [166]. In fact, the combination
of aerobic and resistance exercise may be the most effective combination for improving
muscle mass and one of the best for improving strength and functional capacity in older
adults with sarcopenia [167].

One entity that can co-exist alongside sarcopenia is frailty [11]. A recent systematic
review examined the evidence on the effect of strength training on muscle strength, physical
function, body composition, pre-sarcopenia, sarcopenia, pre-frailty and frailty. Strength
training in early and advanced stages of sarcopenia and frailty was highly effective in
improving these parameters [168].

Alternatively, due to the multiorgan and biological systems that are involved in the
frailty syndrome, the inclusion of different types of exercise, such as strength, aerobic,
balance or flexibility, could be the best intervention for this type of patient [30,154,169–171].
In line with this, recent research has been published with data from the SPRINTT study
(Sarcopenia and Physical Frailty in Older People: Multi-component Treatment Strategies)
conducted in community-dwelling older adults with a mean age of 78.9 years with phys-
ical frailty who also met the sarcopenia criteria. In this study, subjects with moderate
physical function, assessed with the Short Physical Performance Battery (SPPB, between
3 and 7 points) who undertook a multi-component exercise program (moderate-intensity
physical activity supervised twice a week, and up to 4 times a week at home), together
with nutritional counseling, displayed reduced number of disability events. In addition,
the difference between the groups with respect to their SPPB score was 0.8 points and
1 point at 24 and 36 months in the intervention group, respectively. Additionally, the loss
of grip strength and muscle mass was lower in women in the intervention group [30],
demonstrating that exercise can relieve the decline in functional performance, strength and
muscle mass associated with aging.

Muscle power has been linked to physical function in older adults [172,173]. Power
exercise has been proposed as an effective intervention to improve cognitive, neuromuscu-
lar and physical function in older adults [174,175], and has been suggested for inclusion in
the physical exercise recommendations for this population [176,177]. However, while this
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type of intervention may improve muscle mass in older adults compared to the control, it
does not offer further improvements in hypertrophy over conventional training [178]. Fur-
thermore, in a meta-analysis evaluating the effect of training at high versus moderate inten-
tional speeds, no significant improvements were found for either exercise modality [179]. In
a recent study by Coelho-Júnior and Uchida [180], the effect of a 16-week training program
on functional parameters in prefrail and frail individuals was evaluated. Participants were
randomized into a control group, a low-speed strength training group and a high-speed
strength training group. Although in both training groups frailty status was reversed and
their physical performance was improved notably, different patterns of improvement were
observed among resistance training protocols. In fact, high-speed training was the most
effective in reversing frailty status, as well as mobility and dual tasks, whereas low-speed
training was the most effective in improving strength, power and balance. Additionally,
this study reported no differences in blood pressure or heart rate.

3.2. Cardiovascular System

Cardiorespiratory fitness (CRF) is the ability of the cardiovascular (heart and blood
vessels) and respiratory (lungs) systems to supply oxygen to the musculoskeletal system
during sustained physical activity [150]. One of the best studied markers of physical fitness
is maximal oxygen uptake (VO2 max), increased levels of which decreased the overall
mortality rate [181]. In fact, lower VO2 max was shown to be reduced in older subjects [55].
Furthermore, it has been hypothesized that elevated levels of VO2 max is associated with
the improvement or maintenance of different systems or organ functions (including heart
and muscle) in middle aged and older subjects [143]. Thus, to evaluate CRF means to assess
the proper functioning of heart, blood vessels and lungs, among others. CRF should be
assessed in clinical practice due to its association with cardiovascular disease, all-cause
mortality, and mortality rates attributable to several clinical conditions [182–186]. During
aging, there is a decrease in CRF, but this decline is nonlinear and could be modulated by
a physically active lifestyle [187].

Physical activity has positive effects on cardiovascular risk factors, such as type
2 diabetes, arterial function, myocardial infarction and heart failure [188]. Recently, data
from a large prospective study were published, suggesting that total physical activity
reduces the risk of myocardial infarction in women, whereas participation in leisure-time
physical activity reduces the risk of myocardial infarction and stroke in men [189]. In
addition, Gonzalez-Jaramillo and colleagues [190] looked at physical activity patterns
in patients with coronary heart disease. They observed that those who remained active,
became active, and those previously active who became inactive had mortality reductions
of 50%, 45%, and 20%, respectively, when compared with subjects that remained inactive.
For cardiovascular death, those who remained active and increased their activity had
a significantly lower risk than those who remained inactive [190].

Arterial stiffness is another early marker of cardiovascular disease, which has been
associated with muscle mass [191] or frailty [192]. Physical activity, objectively monitored
by steps per day, has been shown to be significantly associated with arterial stiffness in
adults and older adults [193].

Furthermore, exercise has emerged as a cornerstone in the non-pharmacological treat-
ment of patients with incipient or established hypertension [194,195]. There is moderate
evidence that physical exercise improves physical function and quality of life [196], de-
creases mortality associated with cardiovascular disease [161,196], and decreases systolic
and diastolic hypertension, especially aerobic exercise [197,198]. Endurance training atten-
uates age-related endothelial function in older men [199,200] but not in older women [199].
Nevertheless, after 19 exercise sessions over 10 weeks, an interval aerobic training pro-
gram with recovery bouts significantly reduced blood pressure values in sedentary older
adults, of whom 70% were women [201]. Eight weeks of moderate-intensity exercise sig-
nificantly improve endothelial function in middle-aged and older individuals (including
men and women) with prehypertension or hypertension, irrespective of the exercise-type
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performed [202]. Furthermore, in adults over 60 years of age with or without hyperten-
sion, there are no significant differences between performing exercise in the format of
high-intensity interval training (HIIT), intermittent bursts of vigorous-intensity exercise
interspersed with periods of low-intensity exercise or rest, and moderate-intensity continu-
ous training [203]. On the other hand, an aerobic exercise program also improved cerebral
blood flow in sedentary men aged 60–70, which may explain the beneficial effects of aerobic
exercise on executive function and improvements in glucose metabolism [204].

Alternatively, strength exercise has been proposed as an effective tool to reduce both
systolic and diastolic blood pressure in prehypertensive and hypertensive subjects, being
particularly effective in older adults [205]. Strength exercise impacts on functional capacity,
muscle strength and mobility in older adults with coronary artery disease [206]. Moreover,
a recent network meta-analysis studied the effects of different types of exercise on arterial
stiffness, finding that either combined exercise, aerobic exercise, or intervallic training
showed significant improvements, with the most effective being combined mind–body
interventions (such as Pilates, Tai Chi or Yoga) [207]. However, this study mostly included
young subjects and did not consider other types of exercise such as stretching. Stretching
was shown to be an effective strategy in a meta-analysis to reduce arterial stiffness, improve
endothelial function, and reduce blood pressure, especially diastolic blood pressure [208].

It is important to note that each subject does not respond equally to exercise and
may not respond to a particular intervention or in a given way, and that there is a wide
inter-individual variability, especially in certain clinical settings or conditions [209,210].
In fact, one study reported alterations in systolic blood pressure, HDL, triglycerides, and
insulin levels [211]. However, given the solid evidence in favor of the potential benefits of
exercise, not providing it to the aged population may be unethical [31].

4. Impact of Physical Activity/Exercise on Oxidative Stress and Inflammation in
Muscle and Vascular Aging

The effects exerted by physical activity/exercise seem to be systemic and there are
multiple signaling pathways that are beneficially modulated by exercise [143], including
those related to oxidative stress and inflammation. Understanding the different molecular
mechanisms through which physical activity and exercise exert their effects on skeletal
muscle and vascular functions may help to develop adequate strategies aimed at improving
physical performance in elderly subjects and to prevent or even reverse/reduce frailty.
Therefore, we will discuss the underlying signaling pathways related to oxidative stress
and inflammation which are modulated by physical activity/exercise in the aged skeletal
muscle and cardiovascular system.

4.1. Skeletal Muscle

Skeletal muscle plays a central role in the response to physical activity/exercise. As
mentioned above, there is increasing evidence supporting the benefits yielded by exercise
and multimodal interventions on the functional status of older people, including the
prevention/reversion of frailty [9] and in managing sarcopenia, which is considered one of
the substrates of frailty [212].

The impact of exercise on skeletal muscle is rather vast and complex. In this sense, the
anti-oxidative effects of exercise training are widely accepted (Figure 2). In fact, exercise
training was postulated by some authors as an antioxidant [70]. It increases oxidant produc-
tion by cells which is not only limited to muscle cells but also encompasses endothelial cells
associated with contracting muscles. This seems to be a key element of hormesis activation
of antioxidant signaling pathways, resulting in an increase in antioxidant capacity [70].
In line with this, a very recent clinical trial has shown that a greater volume of resistance
training can promote superior improvement on different oxidative stress biomarkers in
older women [213].
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Figure 2. Exercise modulates different signaling pathways affected by aging in skeletal muscle. Aging
is associated with muscle mass loss and a reduction in muscle strength resulting from inefficient
pathway of anabolic resistance (characterized by decreased insulin-like growth factor (IGF-1) and
proteasome dysregulation and mitochondrial dysfunction, specifically reduced expression of factor
peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) and transcription factor A mi-
tochondrial (TFAM). In addition, increased oxidative stress resulting from the imbalance of increased
reactive oxygen species, ROS, and reduced nuclear erythroid-2 like factor-2 (Nrf2), increased chronic
low-grade inflammation (increased proinflammatory cytokines and decreased anti-inflammatory
cytokines), jointly with myokine dysregulation play a key role in muscle alteration observed with
aging. Exercising results in improved proteostasis regulation where protein synthesis increased while
protein degradation is reduced. On the other hand, exercise increased mitochondrial biogenesis,
reduced age-related oxidative damage, diminished chronic inflammation, and improved myokine
profile, which consequently improves muscle structure and function.

It is important to note that the response to exercise is not homogeneous and it de-
pends on its type, duration, and intensity. For instance, single bouts of exercise when
exceeding a certain intensity and duration have been shown to increase ROS production
by mitochondria and cellular oxidases, leading to cell damage [214]. In contrast, chronic
exercise alleviated oxidative stress in aged skeletal muscle [215]. Furthermore, less systemic
concentrations of oxidized LDL, considered a marker of oxidative stress, have been detected
in peripheral mononuclear cells derived from trained older subjects when compared to
sedentary individuals, concomitantly with a lower expression of genes involved in oxidant
production [216]. A recent study found that decreased systemic oxidative stress was associ-
ated with exercise-induced limb muscle structural and functional adaptations (increased
muscle size, pennation angle, muscle strength and exercise capacity) in older individuals
with chronic obstructive pulmonary disease [217].

Another target of exercise against oxidative stress is the increased activity of antiox-
idant response. In this sense, lifelong-trained older subjects showed increased catalase
expression in muscle biopsies when compared to the untrained counterparts [218]. Further-
more, Bouzid and colleagues observed a significant increase in blood SOD and glutathione
peroxidase (GPX) activities in old subjects after exercise when compared to old sedentary
subjects. By contrast, similar antioxidant activities and lipid peroxidation were detected
between old active and sedentary young subjects, suggesting that beneficial effects of
regular physical activity in antioxidant defense and lipid peroxidation damage could be
impaired by the aging process [219].
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Despite their well-known deleterious role, ROS have been recognized as key players in
initiating an adaptive response in exercising muscles, with H2O2 playing a central role. In
fact, a chronic increase in mitochondrial H2O2 has been pointed to as being responsible for
redox-attenuated adaptation to contractile activity associated with aging [220]. The adap-
tive response promoted by exercise involves the transcription of different redox sensitive
factors including NF-κB, MAPK, and PGC-1α, among others, resulting in enhanced cyto-
protective proteins such as SODs, catalase, and heat shock proteins that prevent oxidative
damage. This adaptive response seems to be markedly attenuated with aging [9,220,221].
In line with this, a very recent study showed differences in protein abundance between
muscles from adults and older subjects at rest, with a marked increase in those related to
slow muscle fibers and a significant decrease in glycolytic or mitochondrial proteins in
elders. In contrast, the redox state in vastus lateralis muscle was maintained at rest, but
a clear disruption was observed following exercise in older subjects. This alteration includes
an increase in the oxidation of various cytosolic and mitochondrial proteins and a decrease
in protein abundance. Specifically, a significant increase in the number of oxidized cysteine
residues was observed in muscles from older subjects, reflecting either an exacerbated
increase in ROS production related to exercise or even a diminished antioxidant system.
Although the impact of exercise-related redox disruption with aging is not definitively
clear, it likely will contribute to a compromised muscle function and probably plays a role
in the attenuation of adaptation to exercise [222].

PGC-1α is a key regulator of mitochondrial integrity, function, and biogenesis. Several
studies have reported that regular endurance exercise, independent of load and intensity,
induces gene expression of this factor in skeletal muscle derived from aged animals and
from old subjects [223]. Furthermore, lifelong exercise training seems to prevent mito-
chondrial fragmentation associated with age in skeletal muscle of mice by suppressing
mitochondrial fission protein expression in a PGC-1α dependent manner [224]. Moreover,
a very recent study carried out in elderly men reported increased levels of different proteins
associated with biological aging including PGC1-α after 12-week resistance training. This
evidence supports the beneficial effects of exercise on mitochondrial protein and enzymatic
function impaired by aging [225].

An increase in the transcription factor, Nrf2, considered as the central regulator of
intracellular antioxidant response, seems to be another mechanism involved in the response
to exercise in an aged subject [7]. A very recent study carried out in aged mice indicated
that long-term exercise intervention increased the mRNA expression of Nrf2 in skeletal
muscle and improved mitochondrial quality by regulating Drp-1-dependent mitochondrial
fission. This resulted in the attenuation of sarcopenia phenotypes in vivo [226]. Growing
evidence illustrates the increased expression of Nrf2, which promotes protection against
ROS-induced skeletal muscle damage produced by physical activity [227,228]. In addition
to its antioxidant function, Nrf2 seems to orchestrate anti-inflammatory processes in skeletal
muscle [229]. It is worth mentioning that Nrf2 activation by exercise does not seem to only
occur in skeletal muscle, but rather it extends to a systemic level. In line with this, Done
and colleagues showed that Nrf2 activity is attenuated in response to exercise in peripheral
blood mononuclear cells derived from older adults [230].

In addition to the antioxidant role of exercise, another main mechanism by which
exercise training reduces age-related functional deterioration is by diminishing muscle
inflammation and promoting anabolism, resulting in an increase in muscle protein syn-
thesis [231]. In line with this, it has been previously reported that a multicomponent
exercise program in frail obese elderly subjects, but not diet-induced weight loss, down
regulated mRNA expression of markers of inflammation such as IL-6 and TNF-α, which
are linked to muscle catabolism. Moreover, increased mRNA expression of an anabolic
factor, mechano-growth factor of skeletal muscles, was associated with positive effects on
functional status [232].
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Furthermore, physical activity exerts systemic anti-inflammatory effect. In line with
this, a very recent meta-analysis of randomized controlled trials reported that physical
exercise resulted in a reduction in the systemic concentration of different inflammatory
markers (IL-6, TNF-α and CRP) in middle aged and older subjects [233]. Similar observa-
tions were reported in postmenopausal women [234]. Furthermore, a very recent study
demonstrated how a moderate-intensity aerobic physical exercise program carried out over
12 weeks reduced the resting expression of inflammasome constituents (NLRP3 and TLR4)
and levels of downstream effectors (IL-1β, TNFα, and IL-6) in older women [235].

Additionally, higher levels of physical activity, besides the reduction in pro-inflammatory
cytokines, were also associated with higher levels of the anti-inflammatory mediator,
adiponectin, and IL-10 [236]. Furthermore, Lavin and colleagues reported that lifelong
exercise partially prevented an age-related pro-inflammatory milieu both at the systemic
level and at the local level in muscle and maintained the acute inflammatory response
observed in young exercising men [237].

Finally, it is important to highlight that the impact of physical activity on inflammatory
response depends on exercise modality, intensity, and frequency as well as on subject’s
characteristics [236]. For example, resistance training attenuated TNF-α expression in
aged skeletal muscle, which may result in alleviating muscle changes related to the ag-
ing process [214]. Meanwhile, Abd El-Kader and colleagues, showed that the impact of
6 months of aerobic exercise on modulating inflammatory cytokines and immune system
response among the elderly was more appropriate than resistance exercise training [238].
Although there is accumulating evidence in older subjects related to the anti-inflammatory
effect of exercise due to its influence on cytokine concentrations, some research has failed
to reach such positive conclusions [233]. In this sense, Ziegler and colleagues showed
that although long-term resistance training enhanced muscle strength and mass, it did
not show any effect on resting- or exercise-induced muscle inflammation markers [239].
Moreover, prolonged progressive resistance training had no influence on IL-6, IL-8 and
TNF-α circulating levels in either frail or prefrail older adults, despite increased circulating
levels of these cytokines being associated with lower strength gains during resistance
exercise training [240].

Another benefit of exercise includes stimulating the release of muscle myokines. These
muscle factors promote a healthy anti-inflammatory environment, resulting in a decrease in
the loss of both muscle function and mass related to the aging process [113]. For example,
the PGC-1α-dependent myokine, irisin, which is induced by physical activity, improves
mitochondrial function and decreases ROS production [241]. In addition, irisin seems
to protect skeletal muscle against metabolic stresses, including oxidative stress, but the
mechanism is not well-known [242]. In aged humans, serum irisin levels increased in
response to exercise. Furthermore, circulating irisin was significantly decreased in those
subjects presenting strength and muscle loss at the end of the study [243] suggesting irisin as
a possible marker for improved physical performance in elderly individuals. Furthermore,
Mafi et al. showed that the improvement in skeletal muscle strength provided by 8-week
resistance training in sarcopenic older adults was related to decreased myostatin and
increased follistatin serum levels [244].

In humans and rodents, an age-dependent reduction in the levels of apelin was
reported. This exerkine is induced by muscle contraction and is positively associated with
the beneficial effects of exercise in older persons. In fact, mice deficient in apelin or its
receptor (APLNR) showed dramatic alterations in muscle function with increasing age [98].
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4.2. Cardiovascular System

The clinical improvement in functional status in the elderly driven by elevated physical
activity or exercise performing could be contributed to by the beneficial impact produced
by these lifestyle attitudes/interventions on cardiovascular system. Different studies have
demonstrated the beneficial effects of exercise on both age-related endothelial dysfunction
and arterial stiffening [245]. In this sense, preserved endothelial function in addition to
a reduction in age-related arterial stiffness was observed in older subjects who underwent
habitual aerobic exercise when compared to sedentary adults [246,247].

Available studies identified the diminution of oxidative stress and inflammation as
possible mechanisms by which exercise may prevent and/or reverse endothelial dys-
function and arterial stiffness related to the aging process [245]. The above-mentioned
benefits of exercise on lowering muscle oxidative stress and inflammation associated
with aging might be extended to vascular tissue (Figure 3). In fact, voluntary wheel run-
ning (10–14 weeks) by old mice decreased aortic expression of different inflammatory
markers (IKK-NF-κB activation, IL-1 and IL-6, IFN-γ, and TNF-α), adventitial and perivas-
cular T cell and macrophage infiltration, and reversed impaired nitric oxide-mediated
endothelium-dependent dilation [248].
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Figure 3. Physical activity/exercise improves different mechanisms through which aging deteriorates
vascular function. Endothelial dysfunction and arterial stiffness are two specific vascular pheno-
types of vascular aging. The underlying mechanisms of vascular alteration associated with aging
includes decreased mitochondrial function and increased expression of vascular NOX, both leading
to increased ROS production and further reducing NO availability. Additionally, decreased antiox-
idant response mediated by Nrf2, increased MMP, reduced SOD activity, enhanced inflammatory
mediators, NF- κB, and increased levels of the NO synthase endogenous inhibitor, ADMA, contribute
to increasing the risk of developing cardiovascular disease and age-related frailty. Exercise/physical
activity improves endothelial function and arterial stiffness through reducing inflammatory and
oxidative damage signaling in vascular tissue together with an increase in antioxidant enzymes and
NO availability. These improvements prevent or delay the onset of frailty and decrease clinical cardio-
vascular disease. ADMA: asymmetric dimethylarginine, CVD: cardiovascular disease, NF-κB: nuclear
transcription factor-kappa B, NO: nitric oxide, NOX: nicotinamide adenine dinucleotide oxidase,
Nrf2: nuclear erythroid-2 like factor-2, ROS: reactive oxygen species, SOD: superoxide dismutase.
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Furthermore, data obtained from human studies have reported a decreased content of
nitrotyrosine, a marker of nitrosative stress, in endothelial cells derived from exercising
elderly subjects when compared to the sedentary peer group. In addition, exercise was
related to reduced endothelial expression of p47(phox) subunit of the oxidant enzyme,
NADPH oxidase, and the redox-sensitive inflammatory transcription factor, NF-κB (p65
subunit). By contrast, the expression of SOD2 and the activity of endothelium-bound
extracellular SOD (SOD3) were greater in the exercising group of older subjects [249]. On
the other hand, different studies from animal models and humans suggested that exercise
training increases NO production, which may play a causal role in the reduction in arterial
stiffness risk [250]. Shimomura et al. further supported this observation. A reduction in
ADMA elicited by aerobic exercise increased circulating NOx (a surrogate of NO produc-
tion) and was associated with a decrease in arterial stiffness in both middle age and older
men and women [251]. In addition, age-related BH4 deficiency in soleus muscle arterioles
was restored by exercise. BH4 restoration prevented eNOS uncoupling and stimulated
NO availability [252].

It is noteworthy to mention the crosstalk between muscle derived myokines, induced
by exercise, and the vascular bed [96]. In line with this, different studies have suggested
that irisin may regulate vascular endothelial function [253]. Furthermore, the study carried
out by Fujie and colleagues further supports these observations, since they reported that
after 8 weeks of aerobic exercise training, plasma apelin concentrations increased along
with plasma NOx levels in middle-aged and older subjects. Meanwhile, a concomitant
decrease in arterial stiffness was detected in these subjects [254].

However, although age-related micro and macrovascular dysfunction is reversed/
prevented by aerobic exercise in men, these positive effects in women are not consistently
shown. In this sense, Santos-Parker and colleagues showed in healthy non-obese estrogen-
deficient postmenopausal women that despite the fact that aerobic exercise was associated
with lower circulating levels of CRP and oxidized low-density lipoprotein compared with
the sedentary postmenopausal group, these systemic markers were not correlated with
both micro and macrovascular mediated dilations. Those results suggest that aerobic
exercise does not protect against age-related forearm micro and macrovascular endothelial
dysfunction in this group of women [255].

The effect of exercise is not only limited to alleviating age-related inflammation and
oxidative stress, but increases vascular response to external stressors [104]. Aerobic ex-
ercise (voluntary wheel running) has been shown to prevent the negative impact of age
and Western diet on vascular dysfunction across the lifespan in mice. This protective
effect seems to be mediated by the alleviation of vascular mitochondrial oxidative stress
and inflammation [256].

On the other hand, despite exercise being accepted as a positive inducer of mito-
chondrial biogenesis and function in skeletal muscle, its impact on vascular mitochondria
remains elusive [257]. Preclinical studies seem to point to vascular mitochondrial function
improvements as a possible mechanism underlying the protective effect of exercise on
vascular function. This observation is supported by the fact that chronic aerobic exercise en-
hanced protein expression of the master regulator of mitochondrial biogenesis, PGC-1α, in
aorta derived from old animals. The preservation of mitochondrial function by exercise was
marked by reduced oxidative stress formation and mitochondrial swelling [258]. Positive
changes in mitochondrial health were accompanied by an improvement in endothelium-
dependent relaxation [251].

Finally, and as mentioned above, Nrf2 plays a key role for redox adaptation to exercise.
This latter is also important at the vascular level, since the downregulation of this transcrip-
tion factor seems to be related to age-associated vascular dysfunction which, in turn, is
ameliorated after short term pharmacological activation of Nrf2 with sulforaphane [132].
In this sense, exercise has been shown to increase Nrf2 expression in mouse cardiac fibrob-
lasts [259] and in human peripheral blood mononuclear cells [230].



Int. J. Mol. Sci. 2022, 23, 8713 20 of 36

5. Conclusions

Healthy and successful aging is mainly determined by good functional status in
advanced age. In this sense, in an increasingly aged population, trying to identify path-
ways underlying markers of unhealthy phenotypes seems mandatory. Functional status
is compromised by aging-related alterations in the muscle, but also in other organs and
systems such as the cardiovascular system. Aging-related impairment of skeletal muscle
function and strength precedes the appearance of muscle mass loss, suggesting that the
impact of aging affects both muscle quantity and quality. This impact is related to defi-
cient proteostasis with inefficient anabolic pathways of protein synthesis, while protein
degradation can be augmented or improperly regulated, leading to misfolded or damaged
protein accumulation. Impaired mitochondrial function, increased oxidative stress, reduced
antioxidant response, inflammation, and myokine malfunction are also associated with
the structural and functional impairment of skeletal muscle with aging (Table 1). Arterial
stiffness and endothelial function stand out as the main cardiovascular alterations related
to aging. These modifications of vascular health are also associated with increased systemic
and vascular oxidative stress and inflammation (Table 2). The combination and expression
of these multisystem impairments (skeletal muscle and cardiovascular system), among
others, underlie frailty, a geriatric syndrome that is independent but is related to others
such as sarcopenia, which warns of an important risk for disability and other negative
outcomes in older adults. Some lines of evidence show a pathogenic link between these
two systems that could explain its usual concomitant involvement.

Physical activity and exercise training appear as two of the modifiable determinants of
functional outcomes in the elderly. High levels of physical activity are related to a lower risk
for frailty and other negative functional outcomes in older people. Furthermore, exercise in-
terventions not only prolong functional abilities and retard frailty in the course of aging, but
also recover functional performance when prescribed to older populations. Although all
exercise intervention modalities have shown beneficial effects, specific prescriptions could
improve the functional results in specific older subjects. For this personalized concept of
exercise intervention, a deep knowledge of the mechanisms responsible for the therapeutic
effects of exercise is required to provide the optimal dose for each improvable deficit. In this
sense, physical activity/exercise enhances antioxidant response through Nrf2, decreases
pro-inflammatory signals, and promotes activation of anabolic and mitochondrial biogene-
sis pathways in skeletal muscle. Additionally, exercise reduces inflammatory cytokines and
oxidative stress markers at the systemic level, but also improves endothelial function and
arterial stiffness through reducing inflammatory and oxidative damage signaling in vascu-
lar tissue together with an increase in antioxidant enzymes and NO availability (Figure 4).
However, future research is needed to determine the specific mechanisms involved in
different types of exercise programs and to explore the specific requirements in the different
phenotypes of human aging.
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Table 1. Oxidative stress-related pathways influenced by aging and exercise.

Biological System Signaling Pathway Tissue Effect Evidence in Animals Evidence in Humans Effect of Exercise

Skeletal muscle

Increased ROS/RNS
Cellular damage

Defective redox signaling
Increased proteolysis

SOD-1 KO mice lost muscle
mass and function [77]

Signals of increased oxidative
stress was related to functional

outcomes in the elderly [26]

Increased catalase expression in
trained older subjects [218]

Exercise increased SOD and GPX [219]
Decreased oxidative stress by exercise
was associated with muscle size and

strength in older individuals
with COPD [217]

Reduced PGC-1α
Reduced mitochondrial

biogenesis
Mitochondrial dysfunction

Associated with sarcopenia
in mice [59]

PGC-1α was related to
reduced physical activity and

muscle atrophy in
older humans [57,61]

Endurance exercise induced PGC-1α
expression in skeletal muscle in aged

animals and humans [223]
12-weeks resistance training increased

PGC-1α levels in elderly men [225]

Reduced Nrf2 Increased oxidative stress
Reduced muscle strength and

increased fatigue
in mice [75,76]

Positive association of Nrf2
with gait speed in
older subjects [82]

Long-term exercise increased Nrf2
expression in aged mice related to

attenuation of sarcopenia phenotype
in vivo [226]

Physical activity increased Nrf2
expression promoting protection
against ROS-induced damage in

skeletal muscle [227,228]
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Table 1. Cont.

Biological System Signaling Pathway Tissue Effect Evidence in Animals Evidence in Humans Effect of Exercise

Vascular system

Increased ROS/RNS Reduced NO availability

Inhibition of peroxynitrite
normalized vasorelaxation in

resistance arteries of
aged rats [122]

Increased superoxide anion
and peroxynitrite were

detected in aged human
vessels with defective

endothelial vasodilation [121]

Expression of SOD2 and activity of
SOD3 were greater in

exercising vs. sedentary
older subjects [249]

Uncoupled
eNOS/BH4 deficiency

Reduced NO availability
Increased ROS production

Reduced levels of BH4 were
associated with impaired

endothelial vasodilation in
aged rat arterioles [123]

Vascular reduction in BH4 was
related to arterial stiffness and

endothelial dysfunction in
postmenopausal women [124]

Old age reduced and exercise training
restored levels of BH4 in rat soleus
feed arterioles related to improved

flow-mediated dilation [252]

Increased NOX Increased ROS production

Age-dependent increase in
blood pressure,

cardiomyocyte hypertrophy,
coronary remodeling and

cardiac fibrosis was
associated with increased

NOX2 activity [130]
Attenuation of NOX activity

improved endothelial
dysfunction in aged

coronary arteries [126]

NOX was overexpressed in
arteries from older subjects

while NOX inhibition
improved

endothelial vasodilation [121]

Exercise was related to reduced
endothelial NOX expression in

elderly subjects [249]

Reduced Nrf2
Defective antioxidant

response
Increased oxidative damage

Increased oxidative stress in
hearts from old mice
correlates with Nrf2

dysregulation and is reversed
by sulforaphane [81]

Short-term pharmacological
activation decreased

age-related impairment of
endothelium-dependent and
ROS-induced vasodilation in

rat and human
vascular tissues [132]

Exercise increases Nrf2 expression in
mouse cardiac fibroblasts [259] and in

human peripheral blood
mononuclear cells [230]

BH4: tetrahydrobiopterin; COPD: chronic obstructive pulmonary disease; eNOS: endothelial NO synthase; GPX: glutathione peroxidase; KO: knockout; NO, nitric oxide; NOX: NADPH
oxidase; Nrf2: nuclear factor erythroid 2-related factor 2; PGC-1α: peroxisome proliferator-activated receptor-γ coactivator-1α; RNS: reactive nitrogen species; ROS: reactive oxygen
species; SOD: superoxide dismutase. Reference list numbers of the supportive literature are in brackets.
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Table 2. Inflammation-related pathways influenced by aging and exercise.

Biological System Signaling Pathway Tissue Effect Evidence in Animals Evidence in Humans Effect of Exercise

Skeletal muscle

Increased pro-
inflammatory cytokines

Muscle inflammation
(increased NF-κB)

Increased proteolysis

Blockade of TNF-α prevents
sarcopenia in aged mice [82]

Increased TNF-α and IL-6
correlates with muscle mass

loss in older subjects [90].
Associated with poor physical

performance and reduced
muscular strength in

older subjects [85]

Multicomponent exercise program
downregulated expressions of IL-6 and

TNF-α in frail obese elderly subjects [232]
Physical activity resulted in a reduction in

systemic concentrations of IL-6, TNF-α,
CRP in middle aged and older subjects
and postmenopausal women [233,234]

Moderate-intensity aerobic exercise
reduced the expression of inflammasome

constituents (NLRP3, TLR4) and IL-1β,
IL-6, and TNF-α [235]

Reduced anti-
inflammatory cytokines Muscle inflammation

Muscle overexpression of
IL-10 was associated with

a low level of muscle
inflammation and

insulin resistance [94]
IL-10 KO mice was proposed

as a model of frailty with
reduced muscle strength [95]

Increased IL-6/IL-10 ratio in
older subjects

with sarcopenia [92]

Physical activity was associated with
higher levels of IL-10
and adiponectin [236]

Myokine alteration

Apelin increases
mitocondriogenesis and
reduces inflammation

Myostatin inhibits muscle
synthesis and promotes

muscle catabolism and is
inhibited by follistatin
Adiponectin increases

mitochondrial function and
augments oxidative fibers

Irisin improves
mitochondrial function

decreases ROS production
and protects skeletal muscle

from metabolic stresses

Apelin restoration prevented
muscle wasting in

aged mice [92]
Adiponectin signaling

improves skeletal muscle
function in aged mice [97]

Elevated myostatin has been
related to sarcopenia

in humans [43]
Circulating irisin was

decreased in older subjects
losing muscle strength [243]

Serum irisin levels increased in response
to exercise in aged humans [243]

Improvement in muscle strength by
resistance training was related to

decreased myostatin and increased
follistatin in sarcopenic older adults [244]
Production of apelin in response to muscle

contraction contributes to the positive
feedback of physical activity and

muscle Tfunction [98]
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Table 2. Cont.

Biological System Signaling Pathway Tissue Effect Evidence in Animals Evidence in Humans Effect of Exercise

Vascular system

Activated NF-κB

Vascular inflammation
Transcription of

inflammatory cytokines and
mediators of inflammation

Vascular remodeling

Inhibition of vascular NF-κB
improved blood flow

regulation and decreased
systemic inflammation [126]

Enhanced activation of NF-κB
in vessels from aged humans

which correlated with
endothelial dysfunction [121]

Voluntary wheel running by old mice
decreased aortic NF-κB activation [248]

Increased pro-
inflammatory cytokines

Endothelial dysfunction
Vascular remodeling

Abrogation of inflammasome
(NLRP3) preserved cardiac

function in old mice and
increased the lifespan [137]

Anti-inflammatory cytokine,
IL-37, improved vascular

endothelial function in
old mice [142]

CRP and IL-6 have been
positively related to aortic

stiffness and inversely
correlated to endothelial

function in older adults [125]

Voluntary wheel running by old mice
decreased aortic expression of

inflammatory cytokines and macrophage
infiltration and reversed impaired

NO-mediated endothelial dilation [248]

Myokine alteration

Irisin improves
vascular function

Apelin could increase
NO production

Higher concentrations of irisin
were detected in centenarian

people without CVD [113]

Aerobic exercise training increased apelin
concentrations along with higher NO

production and lower aortic stiffness in
middle-aged and older subjects [254]

CRP: C-reactive protein; CVD: cardiovascular disease; IL: interleukin; KO: knockout; NF-κB; nuclear factor-κB; NLRP3: NOD-like receptor protein-3; NO, nitric oxide; ROS: reactive
oxygen species; TNF-α: tumor necrosis factor-α; TLR4: Toll-like receptor-4. Reference list numbers of the supportive literature are in brackets.
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192. Piotrowicz, K.; Gryglewska, B.; Grodzicki, T.; Gąsowski, J. Arterial Stiffness and Frailty-A Systematic Review and Metaanalysis.
Exp. Gerontol. 2021, 153, 111480. [CrossRef]

193. Cavero-Redondo, I.; Tudor-Locke, C.; Álvarez-Bueno, C.; Cunha, P.G.; Aguiar, E.J.; Martínez-Vizcaíno, V. Steps per Day and
Arterial Stiffness. Hypertension 2019, 73, 350–363. [CrossRef] [PubMed]

194. Williams, B.; Mancia, G.; Spiering, W.; Rosei, E.A.; Azizi, M.; Burnier, M.; Clement, D.; Coca, A.; de Simone, G.; Dominiczak, A.; et al.
2018 Practice Guidelines for the Management of Arterial Hypertension of the European Society of Hypertension and the European
Society of Cardiology: ESH/ESC Task Force for the Management of Arterial Hypertension: Erratum. J. Hypertens 2019, 37, 456.
[CrossRef] [PubMed]

195. Mancia, G.; Fagard, R.; Narkiewicz, K.; Redon, J.; Zanchetti, A.; Böhm, M.; Christiaens, T.; Cifkova, R.; de Backer, G.; Dominiczak, A.;
et al. 2013 ESH/ESC Guidelines for the Management of Arterial HypertensionThe Task Force for the Management of Arterial
Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur. Heart J. 2013,
34, 2159–2219. [CrossRef]

196. Dempsey, P.C.; Friedenreich, C.M.; Leitzmann, M.F.; Buman, M.P.; Lambert, E.; Willumsen, J.; Bull, F. Global Public Health
Guidelines on Physical Activity and Sedentary Behavior for People Living With Chronic Conditions: A Call to Action. J. Phys.
Act. Health 2020, 18, 76–85. [CrossRef]

197. Sosner, P.; Guiraud, T.; Gremeaux, V.; Arvisais, D.; Herpin, D.; Bosquet, L. The Ambulatory Hypotensive Effect of Aerobic Training:
A Reappraisal through a Meta-Analysis of Selected Moderators. Scand. J. Med. Sci. Sports 2017, 27, 327–341. [CrossRef] [PubMed]

198. Saco-Ledo, G.; Valenzuela, P.L.; Ruiz-Hurtado, G.; Ruilope, L.M.; Lucia, A. Exercise Reduces Ambulatory Blood Pressure in
Patients with Hypertension: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Am. Heart Assoc. 2020,
9, e018487. [CrossRef]

199. Pierce, G.L.; Eskurza, I.; Walker, A.E.; Fay, T.N.; Seals, D.R. Sex-Specific Effects of Habitual Aerobic Exercise on Brachial Artery
Flow-Mediated Dilation in Middle-Aged and Older Adults. Clin. Sci. 2011, 120, 13–23. [CrossRef]

200. DeSouza, C.A.; Shapiro, L.F.; Clevenger, C.M.; Dinenno, F.A.; Monahan, K.D.; Tanaka, H.; Seals, D.R. Regular Aerobic Exercise
Prevents and Restores Age-Related Declines in Endothelium-Dependent Vasodilation in Healthy Men. Circulation 2000, 102,
1351–1357. [CrossRef]

201. Bouaziz, W.; Lang, P.O.; Schmitt, E.; Leprêtre, P.M.; Lefebvre, F.; Momas, C.; Kaltenbach, G.; Geny, B.; Vogel, T. Effects of
a Short-Term Interval Aerobic Training Program with Recovery Bouts on Vascular Function in Sedentary Aged 70 or over:
A Randomized Controlled Trial. Arch. Gerontol. Geriatr. 2019, 82, 217–225. [CrossRef]

202. Pedralli, M.L.; Marschner, R.A.; Kollet, D.P.; Neto, S.G.; Eibel, B.; Tanaka, H.; Lehnen, A.M. Different Exercise Training Modalities
Produce Similar Endothelial Function Improvements in Individuals with Prehypertension or Hypertension: A Randomized
Clinical Trial. Sci. Rep. 2020, 10, 7628. [CrossRef]

203. Carpes, L.; Costa, R.; Schaarschmidt, B.; Reichert, T.; Ferrari, R. High-Intensity Interval Training Reduces Blood Pressure in Older
Adults: A Systematic Review and Meta-Analysis. Exp. Gerontol. 2022, 158, 111657. [CrossRef] [PubMed]

http://doi.org/10.1161/CIR.0000000000000461
http://www.ncbi.nlm.nih.gov/pubmed/27881567
http://doi.org/10.1016/j.mayocp.2018.08.040
http://www.ncbi.nlm.nih.gov/pubmed/30935704
http://doi.org/10.1111/sms.13980
http://doi.org/10.1177/2047487320930873
http://doi.org/10.1001/archinternmed.2009.312
http://www.ncbi.nlm.nih.gov/pubmed/19858436
http://doi.org/10.1161/JAHA.115.002495
http://doi.org/10.1186/s12889-022-12923-5
http://doi.org/10.1016/j.jacc.2022.02.036
http://doi.org/10.1016/j.atherosclerosis.2010.05.026
http://doi.org/10.1016/j.exger.2021.111480
http://doi.org/10.1161/HYPERTENSIONAHA.118.11987
http://www.ncbi.nlm.nih.gov/pubmed/30624991
http://doi.org/10.1097/HJH.0000000000001961
http://www.ncbi.nlm.nih.gov/pubmed/30379783
http://doi.org/10.1093/EURHEARTJ/EHT151
http://doi.org/10.1123/jpah.2020-0525
http://doi.org/10.1111/sms.12661
http://www.ncbi.nlm.nih.gov/pubmed/26891716
http://doi.org/10.1161/JAHA.120.018487
http://doi.org/10.1042/CS20100174
http://doi.org/10.1161/01.CIR.102.12.1351
http://doi.org/10.1016/j.archger.2019.02.017
http://doi.org/10.1038/s41598-020-64365-x
http://doi.org/10.1016/j.exger.2021.111657
http://www.ncbi.nlm.nih.gov/pubmed/34921916


Int. J. Mol. Sci. 2022, 23, 8713 34 of 36

204. Kleinloog, J.P.D.; Mensink, R.P.; Ivanov, D.; Adam, J.J.; Uludağ, K.; Joris, P.J. Aerobic Exercise Training Improves Cerebral Blood
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