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Measuring error rates in genomic perturbation
screens: gold standards for human
functional genomics
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Abstract

Technological advancement has opened the door to systematic
genetics in mammalian cells. Genome-scale loss-of-function
screens can assay fitness defects induced by partial gene knock-
down, using RNA interference, or complete gene knockout, using
new CRISPR techniques. These screens can reveal the basic blue-
print required for cellular proliferation. Moreover, comparing
healthy to cancerous tissue can uncover genes that are essential
only in the tumor; these genes are targets for the development of
specific anticancer therapies. Unfortunately, progress in this field
has been hampered by off-target effects of perturbation reagents
and poorly quantified error rates in large-scale screens. To improve
the quality of information derived from these screens, and to
provide a framework for understanding the capabilities and limita-
tions of CRISPR technology, we derive gold-standard reference sets
of essential and nonessential genes, and provide a Bayesian classi-
fier of gene essentiality that outperforms current methods on both
RNAi and CRISPR screens. Our results indicate that CRISPR technol-
ogy is more sensitive than RNAi and that both techniques have
nontrivial false discovery rates that can be mitigated by rigorous
analytical methods.
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Introduction

In the early 1900s, Lucien Cuénot observed unusual patterns of

inheritance when studying coat color in mice and, from his many

crosses, never produced a single homozygous yellow mouse

(Cuenot, 1905; Paigen, 2003). Not long after these observations, it

was shown that Cuenot’s crosses resulted in what appeared to be

non-Mendelian ratios because he had discovered a lethal gene

(Castle & Little, 1910). W.E. Castle and C.C. Little demonstrated that

one-quarter of the offspring from Cuénot’s crosses between hetero-

zygotes died during embryonic development, ushering in embryonic

lethality, or death, as a new phenotypic class for geneticists (Castle

& Little, 1910). Consequently, the idea that organisms harbor sets of

lethal or essential genes has taken shape over the past century. In

the past dozen years or so, systematic genomic studies in eukaryotic

model systems have defined sets of lethal or essential genes under

defined growth conditions, providing a nexus for biologists to study

the essential molecular processes that occur during cell growth and

proliferation.

The importance of defining essential genes is threefold. First, it

provides a blueprint for all components necessary for a cell to grow

and divide under defined conditions. Second, it provides a parts list

that can be deconstructed to uncover all the necessary cellular and

molecular functions that proceed during cell growth and division

under defined experimental conditions. Third, the list of essential

genes and related functions provides a reference point for under-

standing disease. Indeed, the accurate identification of human

disease genes is among the most important goals of biomedical

research, and there exists a complex relationship between disease

genes and essential genes, particularly for cancer genomes. For

example, a recent analysis has shown that the cumulative effects of

copy number variants of cancer drivers and essential genes along a

chromosome explain the recurring patterns of somatic copy number

alterations of whole chromosomes and chromosome arms in cancer

genomes (Davoli et al, 2013).

Broadly speaking, a gene is defined as essential if its complete

loss of function results in a complete loss of fitness. In single-

celled organisms, this is a fairly straightforward assessment;

however, in metazoans, a gene could be reasonably classified as

essential if its loss of function resulted in sterility or failure to

develop to adulthood. In practice, a prenatal lethal phenotype is
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typically the criterion for essentiality. Given the absence of a set

of well-established human essential genes, researchers have gener-

ally relied on orthology to infer essentiality. Lethal or essential

gene sets have been generated under defined growth conditions

for a number of eukaryotic model systems including the budding

yeast S. cerevisiae (Winzeler et al, 1999; Giaever et al, 2002), the

fission yeast S. pombe (Kim et al, 2010), C. elegans (Kamath et al,

2003), D. melanogaster (Boutros et al, 2004; Dietzl et al, 2007),

M. musculus (White et al, 2013) and others. Across model organ-

isms, essential genes are more likely to be hubs in protein-protein

interaction networks (Jeong et al, 2001), a phenomenon driven to

some degree by membership in large essential protein complexes

(Hart et al, 2007; Zotenko et al, 2008). Moreover, model organism

essentials are less likely to have paralogs (Makino et al, 2009),

consistent with the model of gene duplication buffering loss-of-

function phenotypes (Gu et al, 2003). Human orthologs of mouse

knockouts which give rise to developmental lethal phenotypes are

themselves enriched for developmental disease genes, even above

the bias toward developmental genes in the mouse knockout set

(Makino et al, 2009). Furthermore, ubiquitously expressed human

genes are very likely to contain a large proportion of essential

genes and are different in their evolutionary conservation rates

(i.e. higher nonsynonomous/synonomous substitution rates), DNA

coding lengths, and gene functions compared with disease genes

and other genes (Tu et al, 2006).

Experimental assays of human gene essentiality are performed in

cell lines. RNA interference has, to-date, been the weapon of choice

for genome-scale fitness screening, with roughly two hundred

published cell line screens (Luo et al, 2008; Schlabach et al, 2008;

Silva et al, 2008; Cheung et al, 2011; Marcotte et al, 2012). Other

approaches include gene traps in haploid human cells (Carette et al,

2009; Burckstummer et al, 2013) and, more recently, genome-scale

gene editing approaches using lentiviral-based CRISPR technologies

(Shalem et al, 2013; Wang et al, 2013). The RNAi screens to-date

have typically been conducted in cancer cell lines or normal coun-

terparts to elucidate not only which genes are essential, but also

which genes are differentially essential in different contexts, with

the ultimate goal of identifying genes or pathways that are tissue-,

subtype-, or even tumor-specific (i.e. genotype- or context-depen-

dent essential or lethal genes). With the widespread adoption of

pooled library shRNA screens has come the understanding that there

are caveats to this type of genetic screening approach. In particular,

off-target effects can lead to false positives (Echeverri et al, 2006;

Moffat et al, 2007), if the unintended target of an shRNA hairpin is

an essential gene. To mitigate these effects, analytical approaches

have been developed that look for phenotypic consistency across

multiple hairpins targeting a gene (Luo et al, 2008; Cheung et al,

2011; Marcotte et al, 2012) and among the same hairpins in different

screens (Shao et al, 2013). Not surprisingly, different approaches

can yield different results, and the degree to which false positives

contaminate results is largely unknown (Kaelin, 2012).

No method currently exists to systematically evaluate these

various approaches. Studies in other areas of functional genomics

have relied on ‘gold-standard’ positive and negative reference sets

(Jansen & Gerstein, 2004) to evaluate the sensitivity and specific-

ity of, for example, protein-protein interactions (Hart et al, 2006;

Havugimana et al, 2012). This approach applies equally well to

gene essentiality studies, where negatives can outnumber positives

by an order of magnitude. However, no such gold standards

currently exist for screens using mammalian, and more specifi-

cally human, cell lines. The developmental essentials inferred by

orthology contain many genes which are, by definition, essential

for whole-organism development but unlikely to be essential in

any given cell line context. To our knowledge, no putative cell

line nonessential reference set exists at all, though it is certainly

an impossible task to prove that any gene is nonessential in

all contexts.

In this study, we derive gold-standard reference sets of human

cell line essential and nonessential genes. We use them to train a

Bayesian classifier of gene essentiality in pooled library shRNA

screens and, most importantly, to evaluate the error rates of individ-

ual screens. We demonstrate how to leverage this framework to

evaluate the data quality of genome-scale fitness screens in human

cell lines as well as the effectiveness of the analytical approaches

applied to them. In addition, we develop models of gene essentiality

that permit estimation of the number of core essential genes and

total number of essential genes. Our method is applicable to new

pooled screening methodologies such as gene traps with haploid cell

lines (Carette et al, 2009) or genome-scale pooled CRISPR

approaches (Shalem et al, 2013; Wang et al, 2013). The reference

sets can be used to evaluate screen quality regardless of what

analytical method is applied.

Results

Computational framework for predicting essential genes from
reverse genetic screens

Genetic screens in mammalian cells using pooled barcoding

approaches have emerged as a powerful method for functional

discovery. In particular, negative genetic selections have the poten-

tial to reveal entire genetic pathways that govern cell growth and

proliferation (i.e. essential/lethal factors). In order to advance our

ability to analyze and assess the quality of systematic genetic

screens that are emerging, we developed an informatics approach

that is applicable to any genome-scale genetic screen or set of

screens for predicting essential/lethal factors. Using a compendium

of shRNA screens across different human cancer cell lines (Marcotte

et al, 2012), we developed a Bayesian classifier to score essential/

lethal factors. As cells harboring shRNA hairpins targeting essential/

lethal factors drop out of a proliferating population, the correspond-

ing shRNAs show strong negative fold-change relative to controls.

The data for each cell line are comprised of microarray data for up

to three replicates at an initial timepoint (T0) and each of two exper-

imental timepoints, and we calculated fold-change for each observa-

tion relative to the mean of the control microarrays, resulting in a

matrix of fold-changes for ~78,000 hairpins across nearly 400 cell

lines/timepoints. The Bayesian classifier was developed to evaluate

whether the distribution of fold-changes for hairpins targeting a

given gene most closely matched the distribution of fold-changes of

hairpins targeting training sets of essential genes or nonessential

genes using twofold cross-validation to prevent circularity (Fig 1).

The classifier was trained on reference sets we generated, and each

screen’s performance was evaluated against a withheld test set

(Fig 1).
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Source of reference essential genes (EGs)

An effective reference set of EGs should include all genes that are

essential across every cell line or context in which they have been

studied. We used a linear algebra approach to find genes that were

consistently essential across cell line screens previously performed

in our laboratory (Marcotte et al, 2012). Singular value decomposi-

tion (SVD) is a matrix factorization technique that yields a set of

orthogonal basis vectors that describe, in rank order, the major

sources of variation in the data. Briefly, SVD was applied to half

of the shRNA fold-change matrix, yielding one dominant left singu-

lar vector (LSV) that describes ~42% of the total variance in the

matrix (Supplementary Fig S1A). The distribution of all shRNA

projections onto this first LSV is shown in Supplementary Fig S1B.

shRNAs with strong positive projections show consistent dropout

across effective shRNA screens, which had strong negative projections

onto the corresponding right singular vector (Supplementary

Fig S1C), projections which correlated with the number of cell

doublings at which each sample was measured (Supplementary

Fig S1D). For each gene, we found the median projection onto the

first LSV of its cognate hairpins and measured whether hairpins

with median rank or higher rank were enriched in the right tail by

a hypergeometric test, yielding 179 genes at a false discovery rate

(FDR) of 25% (Benjamini & Hochberg). This list was further

filtered to 148 constitutively and invariantly expressed genes, that

is, genes with mean log2(FPKM) > 0 across both the ENCODE [17

cell lines (Tilgner et al, 2012)] and Illumina BodyMap (16 tissues,

EBI accession no. E-MTAB-513) RNA-seq datasets, and standard

deviation of log2(FPKM) less than the mean standard deviation of

all observed protein-coding genes in each dataset (Supplementary

Fig S2).

Figure 1. Analytical overview.
Half of the matrix of shRNA hairpins was decomposed using linear algebra techniques to find a set of reference essential genes. Reference nonessentials were derived from
low-expression genes across a compendium of RNA-seq experiments. For each cell line/timepoint in the 2nd half of the shRNA data, the empirical distributions of training
essentials and nonessentials were determined, and for each remaining gene, a Bayes Factor (BF) is calculated which measures which distribution its cognate hairpin data
most closely matches.

ª 2014 The Authors Molecular Systems Biology 10: 733 | 2014

Traver Hart et al Measuring error rates in genomic perturbation screens Molecular Systems Biology

3



Source of reference nonessential genes (NEGs)

Defining a reference set of nonessential genes is less clear cut, as it

is impossible to experimentally demonstrate nonessentiality in all

contexts. However, we reasoned that genes that are not expressed

in the majority of tissues and cell lines are reasonable candidates for

such a reference set. To generate this set, we again turned to

published RNA-seq data. We selected protein-coding genes that are

probed by our shRNA library and have an expression level of less

than 0.1 FPKM in 15 of 16 BodyMap tissues and 16 of 17 ENCODE

cell lines, as genes expressed below this level are typically not

biologically relevant (Hebenstreit et al, 2011; Hart et al, 2013). We

label the resulting set of 927 putatively nonessential genes the NEG

set. While this set may include some genes that are essential in

other cellular or organismal contexts, the net effect of a small

number of ‘accidental essentials’ in this set should be negligible.

The seed and reference nonessential genes are listed in Supplemen-

tary Dataset S1.

Bayes Factor scores

Reference essentials and nonessentials were divided into equal-

sized training and testing sets for subsequent analyses, and each

cell line in the withheld half of the shRNA fold-change matrix

was analyzed independently. For each timepoint, the fold-change

distributions for the essential and nonessential training sets,

comprising 347 and 2,268 hairpins respectively, were determined.

Then, for each gene, a Bayes Factor (BF) was calculated, repre-

senting the log likelihood that the observed fold-change for a

given gene’s cognate hairpins was drawn from either the essential

or the nonessential reference distribution. Log BFs were summed

across all time points for a final BF for each gene in each cell

line. Supplementary Dataset S2 contains a table of all calculated

Bayes Factors.

F-measure

For each cell line, genes were rank-ordered by BF and compared to

the withheld reference test sets to evaluate precision vs. recall.

Screen quality varied widely, with most screens showing moderate

to high performance, though several outliers showed remarkably

poor results (Fig 2A). We identified the point on the recall-precision

curve for each screen where the BF crossed zero and calculated the

F-measure (harmonic mean of recall & precision) of each screen at

that point. We judged screens with F-measure ≥ 0.75 (n = 48/68;

Fig 2B) to be high-performing screens and retained them for down-

stream analyses. Screen performance measures are listed in Supple-

mentary Dataset S3.

Core essentials

Within this set of high-performing screens, we examined the

frequency with which each gene was called essential (BF > 0)

(Fig 2C). Though 4,451 genes have a positive BF in at least one cell

line, genes observed in few (1–4) screens are enriched for false posi-

tives. Repeated observation greatly improves the likelihood that a

gene is truly essential. To identify likely global essential genes, and

to avoid identifying cancer tissue/subtype-specific genes, we

selected genes observed in at least half of the performing screens

(n = 291 genes). We label these core essentials.

Cumulative analysis of EGs

To identify the set of all EGs observed across all screens, we used a

cumulative analysis approach. Most large-scale functional genomics

screens try to differentiate a small number of true ‘hits’ from a pool

of negatives that can often be orders of magnitude larger (Jansen &

Gerstein, 2004). In such screens, even a tiny false positive rate

applied across all true negatives can result in large FDRs for individ-

ual screens.

Researchers can attenuate the final FDR by conducting multiple

repeats of screens and analyzing the frequency with which each hit

is observed across repeats. By considering the cumulative distribu-

tion of hits across multiple screens, information about both the total

number of true essentials in the population and the error rate in

observing those hits can be calculated. In principle, a screen with

A B C

Figure 2. Screen quality and core essentials.

A For each screen, genes are ranked by BF and evaluated against a test set of reference essentials and nonessentials, and a precision vs. recall (PR) curve is calculated.
Three screens representing the variability in global performance are shown.

B Distribution of F-measures of the 68 screens used in this study. Screens with F-measure > 0.75 (n = 48) were considered high-performing and were retained for
downstream analyses.

C Histogram of essential gene observations across the 48 performing cell lines. Genes essential in 24/48 lines (n = 291) were considered core essentials. Genes observed
in only 1–3 cell lines are highly enriched for false positives.
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zero FDR that is repeated to saturation will yield a cumulative

observations curve that flattens to a slope of zero at the total

number of hits in the screened population. In practice, repeated

screens can saturate the true hits, but random discovery of false

positives yields a cumulative curve with positive slope as more and

more false positives are accumulated. A variation of this cumulative

observation analysis was used to evaluate the saturation of protein-

protein interaction screens (Hart et al, 2006).

To test this logic, we rank-ordered the top-performing 36 cell line

screens in our compendium of pooled shRNA screens by F-measure

and plotted the cumulative number of observed essential genes. The

result is indeed a curve that flattens but with a positive slope

(Fig 3A). To estimate both the number of essential genes and the

average screen error rate, we conducted in silico simulations of the

36 screens, determined the synthetic cumulative observation curve

for each set of simulations, and measured the curve’s fit to our

experimental observations. With fixed parameters of 15,687 genes

assayed and 606 genes reported as essential in each screen (the

mean number of genes in the top 36 screens with BF > 0), we find

that a model with a cellular population of 1,025 essential genes and

an average screen FDR of 15% yields a cumulative essentials curve

that mimics the observed curve very closely (Fig 3A). Running the

model across a range of total essential population sizes and FDRs

and calculating root-mean-squared deviation (RMSD) from the

observed cumulative essentials curve show models with 850–1,175

essential genes, and FDRs of 14.0–16.5% yield an RMSD that is less

than 1.5× the minimum RMSD (Fig 3B). Notably, the FDR range for

the best fit models is highly consistent with the average empirically

measured FDR of 13.8% across the top 36 screens. Moreover, while

the top screens encompass several cancer subtypes from three tissues

of origin, the model treats all 36 repeats as replicates. Tissue- or

subtype-specific essential genes in the saturated region will be incor-

rectly treated as false positives using the cumulative approach; there-

fore, FDR estimates derived in this manner are likely conservative.

Though the modeling approach can tell us approximately how

many essential genes are in our cell lines in toto, it does not identify

which genes are truly essential. To separate essential genes from

false positives, we rely on repeat observations of essential genes

across multiple screens. Fig. 3C shows a histogram of gene essenti-

ality calls across the top 12 screens. Of the 2,130 unique hits in

these screens, 945 (44%) are observed in a single screen, while only

392 (18%) are seen in six or more of the 12 cell lines.

To estimate the binwise FDR for this distribution, we again turn

to the cumulative approach. Fig 3C also shows the distribution of

essential gene calls in the 13th–24th ranked screens (blue) and the

25th–36th ranked screens (red). If we assume that the first 12

screens have achieved saturation—a likely false assumption but a

useful approximation for modeling—then all subsequent hits must

be false positives. The second and third sets of 12 screens therefore

model the frequency distribution of false positives and give an esti-

mate of the expected number of false positives in each bin. Based

on these estimates, we conclude that hits in 3 or more of the top 12

screens are essential genes with an FDR of 6–11%. This set comprises

823 genes, which we label total essentials (see Supplementary Data-

set S4 for a complete list), and contains all 291 core essentials.

Given the diversity of tissues and subtypes in the cell lines stud-

ied, it is highly unlikely that all observations beyond the top 12

screens are false positives. Some fraction of subsequent hits may in

fact be true subtype-specific essential genes. For example, the top 12

cell lines include five pancreatic, three ovarian and four breast

cancer cell lines, of which three are basal subtype and one, HCC-

1954, is EGFR-high/Her2 amplified. Well-studied subtype-specific

breast cancer oncogenes CDK4 and FOXA1 are not classified as

essential in any of the top 12 screens, including HCC-1954, though

this line does show a dependence on Her2/ERBB2 (BF = 9.21).

However, across all 48 performing screens, CDK4 and FOXA1 each

show BF > 20 in 4 cell lines; two of the four CDK4 lines and three of

the four FOXA1 lines are HER2+ breast cancer lines, and the remain-

der are all luminal subtype. The net effect of these subtype-specific

essentials in the analysis of cumulative observations is to artificially

inflate the imputed number of false positives in each bin, thus

rendering our FDR estimates conservative.

A B C

Figure 3. The cumulative model of essential genes.

A The top 36 cell lines were rank-ordered by F-measure, and the cumulative count of classified essential genes was plotted (black curve). Simulated repeat experiments
sampling a population of 1,025 essential genes at 15% FDR yield a similar cumulative count (red curve).

B In simulated repeat experiments across parameter space, models sampling 875–1,175 essential genes at 13.5–16.5% FDR (1-Precision) yielded cumulative observation
curves similar to what was observed experimentally.

C Histogram of observations of essential genes in top-ranked 12 screens (black), genes exclusive to the next set of 12 (blue), and exclusive to the 3rd set of 12 (red).
Genes observed in at least 3 of the top 12 screens are classified as global essentials.
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Characteristics of EGs

Core essential genes are expected to be essential in all cell lines and

contexts and must be constitutively expressed. Indeed, 217 of 291

core essentials (74.6%), as well as 483 of 823 total essentials

(58.7%), showed high mean expression with low variation across a

compendium of RNA-seq experiments (Supplementary Fig S2),

compared to 33.4% of other genes. These genes are also highly

enriched for protein complexes; more than half of the set of total

essentials encode subunits of annotated human protein complexes.

Fig 4A shows the top nonoverlapping (i.e. minimal shared subunits)

protein complexes that show strong enrichment for essential genes

(comprising 231 genes), with most subunits detected as core essen-

tials and coverage increased by the set of total essentials (see

Supplementary Dataset S5 for a complete list). These complexes

represent the fundamental molecular functions of cellular life: tran-

scription, translation, and replication. An additional 235 essential

genes are also annotated as subunits of protein complexes, though

the complexes do not meet our threshold for statistical significance.

The remaining 357 essential genes not in any annotated protein

complex also show enrichment for core cellular processes, including

ribosome biogenesis (13 genes, 5.6-fold enrichment, P = 3.6e-6),

aminoacyl-tRNA synthetases (4 genes, 6.1-fold, P = 2.8e-2), and

protein tyrosine phosphatases (8 genes, 4.3-fold, P = 2.7e-3). Essen-

tial genes not in complexes are generally not constitutively

expressed; 117 of the 357 (32.8%) show constitutive and invariant

expression compared to 33.4% of nonessentials, suggesting this

may be a rich source of tissue-specific essentials.

Essential genes were divided into the categories described above

(i.e. in enriched complexes, in other complexes, not in any complex;

A B

C

D E

Figure 4. Characteristics of essential genes.

A Essential genes are highly enriched for core protein complexes. Seventeen representative nonoverlapping complexes are shown, with the core essentials (black) and
total essentials (gray) shown relative to the total number of subunits in the complex.

B Total essentials are separated into categories: those in complexes enriched for essential genes, those in other complexes but which fail enrichment tests, and those
not annotated to be in any protein complex. The remaining genes are classified as nonessential.

C Fraction of genes in each category whose mouse orthologs are also essential; colors as in (B).
D Fraction of genes in each category whose yeast orthologs are also essential; colors as in (B).
E Fraction of genes in each category with one or more human paralogs; colors as in (B).
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Fig 4B) to examine the fraction of genes in each of these categories

that overlap/intersect with mouse essential genes or represent para-

logs. For genes whose mouse orthologs have been knocked out,

essentials in protein complexes were much more likely to have an

essential mouse or yeast ortholog than other genes (Fig 4C and D).

Furthermore, we find that essential genes in protein complexes are

less likely to have paralogs than nonessential genes (Fig 4E). In

particular, essential genes in essential complexes are more likely to

be singletons than other classes (Fig 4E).

Biological sources of variability in RNAi negative
selection screens

Having derived a set of performance metrics using essential genes at

the screen and gene level, we sought to understand some of the

drivers of variability, particularly in lentiviral-based pooled RNA

interference screens across a large panel of human cancer cell lines.

Fortunately, the pancreatic and ovarian cancer cell line screens have

matching gene expression microarray data collected on the same

array platform (Marcotte et al, 2012). Measuring the correlation

between gene expression and screen F-measure across 31 cell lines

(one outlier removed), we found that AGO2 had the top-ranked

correlation among more than 10,000 expressed genes (Pearson’s

correlation coefficient = 0.59; Fig 5A). The AGO2 protein, coupled

with short RNA, comprises the RNA-induced silencing complex

(RISC), which catalyzes the cleavage of target mRNA and was

expected to be an important predictor of RNAi efficiency. The

relationship between AGO2 mRNA expression and shRNA screen

quality was weaker in the breast cancer screens (Supplementary

Fig S3), which may reflect some combination of generally better

performing screens in breast cancer cell lines—with corresponding

lower variability—and the fact that the expression data were

collected on a different microarray platform.

While AGO2 expression may help explain why some screens

perform better than others, it does little to explain the variability

within high-performing screens. Though the large number of genes

observed infrequently in Fig 2C reflects the expected distribution of

false positives across the screens, we expected a more pronounced

peak at the right edge of the distribution from core essentials

observed across most or all high-performing screens. We explored

other molecular genetic data to explain this false negative rate

among known essentials and derived absolute copy number for each

gene across 30 pancreatic and ovarian cancer cell lines in our study

(see Materials and Methods and Supplementary Dataset S6). We

calculated a Pearson’s correlation coefficient for each gene’s copy

number profile vs. its Bayes Factor profile across the same screens

and observed that core essential genes show a negative correlation

between copy number and essentiality (Fig 5B). Notably, the core

essential genes largely encode members of essential protein

complexes, and our observation is consistent with a model whereby

increased copy number yields protein levels in excess of stoichiome-

tric requirements for protein complex function. The genes are likely

no less essential, as complete knockout would probably still kill the

cells, but the copy number amplification renders them less sensitive

to RNAi perturbation. Binning core essential genes by absolute copy

number and measuring the fraction in each bin that are successfully

identified in the screens (Fig 5C) support this model. In other

words, as copy number increases, the likelihood that a core essen-

tial is accurately classified drops markedly. Based on the difference

between the overall observed false negative rate and the false nega-

tive rate at copy number = 2, we estimate that 15–20% of false

negatives (core essentials not accurately classified as essential in a

cell line) are attributable to copy number variation. This hypothesis

could be tested by employing orthogonal genome-editing

technologies, such as CRISPR, though such technologies might also

be limited.

Leveraging gold-standard reference sets to improve analyses of
CRISPR and shRNA screens

We used matrix decomposition to generate a seed set of reference

global essentials to train our Bayesian classifier, the application of

A B C

Figure 5. Biological drivers of variation in RNAi screen efficacy.

A Plotting Ago2 gene expression (measured by microarrays; y-axis) versus cell line F-measure (x-axis) for pancreatic, and ovarian cancer cell lines reveals strong
correlation (Pearson’s r = 0.59). Inset, distribution of correlations of expressed genes (n = 10,673) versus F-measure; Ago2 is the top-ranked gene.

B The Pearson’s correlation coefficient of absolute copy number vs. Bayes Factor was determined for all genes across 30 pancreatic and ovarian cancer cell lines. Core
essential genes show a negative correlation between copy number and essentiality.

C Core essential genes were binned by absolute copy number across the 30 samples. In each bin, the fraction of core essentials that were accurately classified in the
corresponding screens is plotted. High copy number among core essentials reduces sensitivity to RNAi.
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which ultimately yielded 291 core essential genes across 48 high-

performing shRNA screens of 68 cell lines. We filtered these genes

for constitutive, invariant expression across the BodyMap and

ENCODE RNA-seq samples, yielding a set of 217 genes we label

Constitutive Core Essentials (CCE). We then divided the CCE, as well

as the previously described NEGs, into equal-sized training and test

sets (CCE-train, CCE-test, NEG-train, NEG-test) and used them as

improved reference sets to train our classifier and evaluate both data

quality and analytical approaches in other data sets as well as

screens withheld from our initial set of 72 cancer cell lines (Fig 6A).

Improving analyses of shRNA pooled library screens

Our laboratory recently published a study of shRNA-driven

synthetic lethality with several query knockout genes in an isogenic

HCT116 colon cancer cell line background (Vizeacoumar et al,

2013). The HCT116 cell line is near diploid and thus does not suffer

from SCNA-driven biological artifacts. We trained our Bayesian

classifier with CCE-train and NEG-train, applying a uniform prior

(P(essential)/P(nonessential); see Materials and Methods) of 0.1,

to yield a posterior log odds (LOD) of essentiality for each gene in

each screen. Recall and precision were evaluated against CCE-test

and NEG-test, and an F-measure was calculated at a point on the

curve where the LOD score crossed zero (Fig 6B). All six screens

had F-measures > 0.8, adding confidence to analyses of essentiality

and differential essentiality gleaned from these screens.

We applied the same analytical approach to the compendium of

102 pooled library shRNA screens from Project Achilles (Cheung

et al, 2011), after filtering the reference sets for genes assayed by

the 54k hairpin library used for those screens. Finding the point on

the precision-recall curve where the LOD score crosses zero (Fig 6C,

blue), we observe wide variability in the quality of the screens: only

65 of the 102 screens had an F-measure of 0.70 or greater. This vari-

ability in screen performance is consistent with that seen in the

A B C

D E

Figure 6. Evaluating other shRNA data and methods.

A Analytical approach. CCE reference set was derived from the initial analysis; NE set is identical throughout.
B, C Evaluating other RNAi data sets. (B) LOD scores were calculated for the pooled library shRNA screens in the HCT116 background in (Vizeacoumar et al, 2013) and

evaluated against CCE-test and NE-test. Recall, TP/(TP+FN); Precision, TP/(TP+FP). All six screens showed very high accuracy. The filled circle indicates the point on
the curve where LOD = 0. (C) LOD scores were calculated for the pooled library shRNA screens in 102 cancer cell lines in (Cheung et al, 2011). Blue points represent
recall & precision at LOD = 0 as measured against CCE-test and NE-test. Red, recall and precision for the same cell lines and same reference sets from ATARiS gene
solutions at phenotype score = �1.

D Integrating gene expression into the Bayesian classifier. For RNAi screens with matched gene expression data (in this example, PDAC cell line CAPAN-2, black curve),
genes are binned by expression level and the fraction of reference essentials in each bin (right y-axis) is plotted against the mean expression of genes in the bin
(green points). A linear fit on the log-log plot (green dashed line) can be integrated into the Bayesian classifier as an informative prior.

E Integrating expression data improves the performance of the classifier (green) over the base algorithm (blue). Both forms show better performance than other
algorithms such as GARP (red) and RIGER (gold).
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Marcotte et al screens, and the lower overall F-measures may reflect

bias from using different shRNA libraries rather than decreased

performance (see below).

The reference sets can be used independently to evaluate any

method of analyzing essentiality screens. For example, we used

CCE-test and NEG-test to evaluate the published results of the

ATARiS algorithm as applied to the Achilles data (Shao et al,

2012). After filtering the reference sets for genes with ATARiS

solutions, genes from each screen were ranked by phenotype

score, with the most negative score indicating strongest phenotype.

Recall and precision were determined at a phenotype score of �1

(Fig 6C, red); generally, only a few hundred genes have stronger

scores. ATARiS gave predictions for many cell lines that were

worse than random, perhaps in part because it included all the

Achilles data sets, including the lower quality ones. Filtering the

input data for known performing screens could potentially improve

scoring performance.

Using a different approach, Solimini et al (2013) analyzed the

distribution of copy number changes of tumor suppressors (‘STOP’

genes) and essential genes (‘GO’ genes) across thousands of tumor-

normal pairs. In the absence of a reference set of essential genes,

the authors used two approaches to define GO genes: screening and

theoretical. In the screening approach, the authors identified hair-

pins that dropped out in 5 of 9 library shRNA screens, yielding

1,127 genes with at least one hairpin. Though the single-hairpin

approach is not widely accepted due to the frequency of off-target

effects (Kaelin, 2012), the error rate is mitigated somewhat by

requiring multiple observations across multiple screens. Evaluated

against CCE-test and NEG-test, this set shows 49.5% recall and

16.9% FDR. The theoretical approach drew upon genes from

selected core pathways in KEGG and yielded 545 genes with 54.1%

recall and 1.7% FDR.

While the reference sets are broadly applicable to cancer func-

tional genomics studies, the Bayesian approach used to classify

essential genes can be readily extended to integrate other molecular

data. We collected RNA-seq gene expression data on four

pancreatic cancer cell lines withheld from our analysis of the

COLT-cancer dataset and rank-ordered and binned (n = 500)

genes by expression level. Within each bin, we plotted the mean

expression (� s.d.) versus the fraction of genes in the CCE-train

reference set (Fig 6D). We then used a linear fit to these data to

calculate an expression-based informative prior for each gene,

replacing the uniform prior used above in the calculation of LOD

score (see Materials and Methods). Fig 6D shows the relationship

between gene essentiality and expression in the CAPAN-2 cell

line, while Fig 6E shows the relative performance of four analytical

approaches evaluated against CCE-test and NEG-test. Applying

the gene expression prior improved the performance of the

screen in all cases (see Supplementary Fig S4 for the other 3

screens) over the LOD score with the uninformative prior and

increased the margin of improvement over two current state of

the art algorithms for library RNAi screens, GARP and RIGER.

Thus, the combination of the reference set of core essentials and

the Bayesian classifier offers a best-in-class method for analyzing

such screens as well as a framework for integrating other molecular

data to improve performance. Moreover, the core essentials offer

a ready reference set against which to evaluate the relative

performance of such screens.

Evaluating CRISPR Negative Selection Screens

Gold-standard reference sets of essential and nonessential genes can

be used to evaluate any large-scale assay of gene essentiality.

Recently, the CRISPR system has been adapted to induce targeted

genetic modification of human cells (Cong et al, 2013; Mali et al,

2013) and has been applied in genome-scale pooled library positive

selection screens for specific pathway members and negative selec-

tion screens for essential genes. For example, Shalem et al (2013)

recently published negative selection screens targeting 18,080 genes

with ~65,000 guide sequences (gRNA) in two human cell lines,

A375 melanoma cells and HUES62 embryonic stem cells. As with

shRNA screens, a CRISPR gRNA targeting an essential gene will

drop out of a population, resulting in a strong negative fold-change

for that gRNA. As expected, the fold-change distributions of gRNA

targeting training-set essential genes were left-shifted relative to the

distributions of gRNA targeting nonessential genes (Fig 7A). We

used these distributions to train our Bayesian classifier and evalu-

ated our results against the withheld test sets. Fig 7B shows the

improvement that the Bayesian classifier offers over the approach

used in the original study. It also highlights the poor performance of

the HUES62 screen, which explains the sparse overlap between the

two screens reported in the original study.

Concurrently, Wang et al (2013) reported negative selection

screens targeting 7,114 genes in two human cell lines, including the

near-haploid KBM7 cell line. The performance curves of these

screens, measured against CCE-test and NEG-test and shown in

Fig 7C, are impressive but likely underestimate the actual error rates

of these screens as core essential ribosomal genes are overrepre-

sented and the nonessential reference set is severely underrepre-

sented among target genes (~6-fold depletion relative to the Shalem

et al library).

Taken together, these analyses offer two key insights into the

differences between CRISPR and RNAi screens. The Bayes Factor

analysis of the Shalem et al screen classifies 805 targets as essential

at zero FDR. These 805 genes represent 47% recall of the reference

essential set; extrapolation suggests there may be well over 1,600

essential genes in this cell line. As this is more than double the

number of high-confidence essentials detected in most shRNA screens,

and 50% more than the total number of essentials suggested by the

cumulative analysis of RNAi screens, it suggests that CRISPR

screens may have substantially greater sensitivity than pooled

library shRNA screens.

We explored this finding by comparing both CRISPR and

shRNA results to sample-matched gene expression data. In the

Bayes Factor analysis of the four withheld pancreatic cancer cell

line screens described above (without any expression prior to

prevent circularity), the screens have an average of 664 genes with

BF > 5 (range 584–740). We therefore defined the top 664 genes

from each screen as hits. We then quantile normalized the

corresponding gene expression values (rendering the distributions

identical), rank-ordered each cell line’s genes by expression level,

and binned genes into groups of 500. For each screen, the mean

expression level of genes in the bin was plotted against the

fraction of genes in each bin that are classified as essential.

Fig. 7D (red) shows the relationship between gene expression level

and essentiality for the four shRNA screens. Genes with trace or

zero expression (left edge of plot) cannot be essential, and hits in

ª 2014 The Authors Molecular Systems Biology 10: 733 | 2014

Traver Hart et al Measuring error rates in genomic perturbation screens Molecular Systems Biology

9



this group are almost certainly false positives. The fraction of

genes with expression < �2 that are classified as hits (Fig 7D, red

dashed line, right axis) therefore estimates the screen’s background

error rate.

We compared this to the CRISPR Bayes Factor results described

above. At a BF ≥ 20, we identify 660 essential genes, roughly the

same number as the average of the shRNA screens. Plotting these

genes as described above (Fig 7D, green), we observe a background

error rate > 10-fold lower than that of the shRNA screens. Relaxing

the threshold to BF ≥ 10 (Fig 7D, blue), we find 1,319 essential

genes with a false positive rate comparable to, though still lower

than, that of the shRNA screens. Though this is preliminary analysis

of a single CRISPR screen measured against gene expression

data from a different study, to a first approximation, the CRISPR

technology shows a tenfold lower off-target rate at the same

coverage as shRNA, or double the coverage at a comparable error

rate. Moreover, CRISPR appears to show increased sensitivity at

lower, but still biologically relevant, expression levels.

Though CRISPR appears to offer a more accurate assay of gene

essentiality, the error rate increases markedly after the top ~1,500

hits. False discovery rates of genome-scale CRISPR screens are

largely unexplored in the first-generation published screens, but our

analysis indicates that nontrivial numbers of false positives are

indeed present in these screens. It is currently unknown whether

these false positives arise from the technical variability inherent in

large-scale screens or from the biological activity of off-target gRNA

sequences. The reference sets and analytical methods we describe

here offer a framework for understanding the nature of these false

positives and, in turn, for refining the design of CRISPR gRNA

libraries and experimental protocols.

A B

C D

Figure 7. Evaluating CRISPR negative selection screens.

A The fold-change distributions of gRNA targeting reference essential and nonessential genes in Shalem et al (2013) are similar to those shown by shRNA hairpins (see
Fig 1) and enable the application of the Bayes Factor approach.

B Published results from Shalem et al (2013), evaluated against CCE-test and NE-test. Dashed line shows that Bayes Factor approach more accurately captures
essential genes in the A375 screen, the only screen for which raw data is available.

C Whole-screen results from Wang et al (Wang et al, 2013), evaluated against the same sets. NE-test genes are underrepresented in the Wang et al gRNA library, which
gives the appearance of an artificial boost in precision when compared to the Shalem et al (2013) results.

D Comparing shRNA to CRISPR. Genes are rank-ordered by expression (gray curve, left axis) and binned. For four shRNA screens in pancreatic cancer cell lines withheld
from the original analysis (red), the fraction of essential genes (by BF, no prior) in each bin (� s.d., right axis) is plotted against the mean expression of all genes in
the bin. Genes with trace expression (log2(FPKM) < �2) are not essential and can therefore estimate background error rate (dashed line). Comparing CRISPR results
demonstrates that, for the one dataset available, CRISPR can yield a similar number of essential genes at ~10-fold lower FPR (green, BF ≥ 20, 660 genes), or double
the number of essential genes at similar error rates (blue, BF ≥ 10, 1,319 genes).
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Minimizing bias by integrating data sets

We derived a preliminary set of core essential genes by finding

essential genes in a majority of high-performing shRNA screens in

the COLT compendium from Marcotte et al. The genes contained in

this set are highly enriched for core cellular processes—in particu-

lar, they encode subunits of the protein complexes involved in tran-

scription, translation, and replication—and have a very low

incidence of false positives. This set improves on the results in

Marcotte et al, which described 297 ‘general essentials’ (293 with

current gene IDs). The intersection of this set with our 291 core

essentials (n = 199) shows a high proportion of genes with constitu-

tive, invariant expression (81%). Of the genes unique to Marcotte

et al (n = 94), only 42% have constitutive, invariant expression,

compared to 61% of those unique to this study (n = 92), indicating

higher accuracy.

These screens were all performed using the same shRNA library,

and cell lines from only three cancer tissues of origin were assayed,

likely yielding a biased summary of essential genes with an

unknown number of false negatives. To minimize this bias, we

integrated our results with those derived from an identical analysis

of the Project Achilles screens, which were conducted with a differ-

ent pooled shRNA library. Taking the 65 Achilles screens with

F-measure > 0.70 (Supplementary Fig S5A), we identified the Bayes

Factor threshold at which the average screen FDR was similar to the

average screen FDR of the 46 COLT screens used above. At BF > 5,

corresponding to an average screen FDR of 16%, we identified 345

genes that were essential in at least 33 of the 65 Achilles screens

(Supplementary Fig S5B), of which 247 showed constitutive, invari-

ant expression (Supplementary Fig S5C). Of these, 104 are the same

as those in the 217-gene COLT-derived CCE set, for a final set of 360

core essential genes. Genes unique to either set show similar propor-

tions of constitutively expressed genes (63–65%), suggesting similar

accuracy. The union of the two analyses is ~50% larger than the result

from either data set alone, suggesting a substantial false negative rate

for individual data sets derived from a single shRNA library.

The Daisy model of gene essentiality

The mouse knockout data highlight an important factor in the study

of gene essentiality. The definition of essentiality is context-depen-

dent: a mouse (or human) gene may reasonably be classified as

essential if its complete loss of function results in a phenotype rang-

ing from prenatal to juvenile lethality or even sterility, with the onus

on the researcher to explicitly define the term. Cell line assays of

gene essentiality necessarily sample only the genes required for the

proliferation of that cell line in cultured conditions; genes which

may be required for organismal health may not be expressed in a

given cell line and thus will not be detectable. Nevertheless, there is

a core set of ubiquitously expressed, ubiquitously essential genes

that should be detectable in virtually any cell line screen. This gives

rise to the ‘daisy model’ of gene essentiality (Fig 8A), where each

petal represents a cell-line- or tissue-specific context in which a

gene’s activity might be required. Petals will overlap to varying

degrees but all will share the core set of essential genes. The core

essentials described here represent our effort to define this set of

universally essential genes.

The link between gene essentiality and genetic predisposition

to disease has long been a topic of active study. We took the set

of mouse knockout essentials and divided them into core and

B CA

Figure 8. The Daisy model of gene essentiality.

A The Daisy model, where each petal represents a tissue or context in which a gene is essential. Petals overlap to varying degrees but all share a core set of essential
housekeeping genes that should be detectable in any cell-based assay. Whole-organism studies will sample from the whole flower, not specific petals.

B Human orthologs of mouse essential genes were divided into core and noncore (‘peripheral’) essentials. Peripheral essentials show strong enrichment for disease
genes while core essentials do not.

C Frequency of putative deleterious mutation by gene class, normalized for transcript length, derived from population exome studies (Tennessen et al, 2012). Inset,
fraction of genes by class in which no variant was observed. Little variation is tolerated among core essentials, probably explaining the infrequency with which they
are associated with disease.
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peripheral essentials based on whether or not they were included in

our integrated set of 360 core essential genes. Analyzing these sets

for disease gene enrichment reveals that peripheral essentials are

strongly enriched for disease genes (P = 2.5e-41; Fig 8B), while core

essentials show no enrichment beyond random expectation. This is

consistent with previous findings (Lohmueller et al, 2008; Chavali

et al, 2010; Dickerson et al, 2011), which gives rise to a model

wherein core essential genes are less tolerant to genetic variation

than peripheral essentials. The recent publication of large-scale

human population genetic studies allows us to test these hypothe-

ses. Fig 8C shows the rate of putative deleterious mutation observed

in 2440 exomes (Tennessen et al, 2012), by gene class. Core essen-

tials are much less likely to show deleterious variants than other

essential or nonessential genes and are twice as likely to have no

observed variant (Fig 8C, inset). This is further reflected when

comparing our core essential genes to the human essential genes

delineated by Liao and Zhang (Liao & Zhang, 2008). They find 120

human null mutations that give rise to juvenile lethality or sterility,

which are organismal or peripheral essentials by our definitions, and

as predicted show little overlap (n = 3) with our core essentials.

Discussion

In this study, we have generated a global set of essential genes in

human cell lines based on experimental data. Drawn from genes that

show consistent strong antiproliferative effects across a panel of

pooled library shRNA screens in cancer cell lines, these essential

genes are highly enriched for conserved protein complexes that carry

out the fundamental work of the cell: transcription, translation, DNA

replication, and protein degradation. Consistent with previous stud-

ies, these genes are more likely to be essential in mouse knockout

studies and less likely to have a human paralog than other genes.

We label these genes ‘core essentials’ as they are likely essential

across all cell lines, tissue types, and developmental states.

We exploit the difference between core and peripheral, or

context-specific, essentials in two ways. First, at the organismal

level, we show that peripheral essentials, including human homo-

logs of mouse essential genes, are more likely to be disease genes

and demonstrate that core essentials show lower incidence of

putative deleterious mutation in a normal human population. This

finding explains a longstanding observation that human disease

genes are enriched for whole-organism essentials but tend not to

be housekeeping genes. That is, hypomorphic alleles of peripheral

essentials cause a partial loss of fitness (i.e. disease), but

hypomorphic alleles of core essentials are fatal. Cumulative

analysis of RNAi screens suggests a total population of ~1,000

human cell line essential genes, while preliminary analysis of

genome-scale CRISPR screens suggests roughly double this

number, perhaps reflecting reduced sensitivity of RNAi methods

against lower-expression genes.

Second, we derive the ‘daisy model’ of gene essentiality from

the difference between core and context-specific cell line essentials,

wherein each petal represents the set of essential genes in one cell

line, tissue, or genomic context. Petals will overlap to varying

degrees, but all contexts share the common core essentials. While

the focus of essentiality studies in cancer cell lines is to find

context-specific essentials that can provide highly specific therapeutic

targets, the degree to which a screen recapitulates the shared core

essentials is a critical measure of its accuracy.

We used the core essentials, in conjunction with a set of putative

nonessentials derived from the Illumina BodyMap and ENCODE

studies of gene expression in human tissues and cell lines, as gold-

standard reference sets to train a Bayesian predictor of gene essenti-

ality in pooled library shRNA screens and to test our algorithm as

well as several previously published algorithms and data sets. Our

algorithm substantially outperforms other methods on the data sets

we tested, particularly when coupled with sample-matched gene

expression data. We also demonstrate that our method is applicable

to other pooled library negative selection screens using CRISPR

genome-editing technology and look forward to the onslaught of

genome-scale screens that will emerge using this technology.

Our analyses reveal that copy number amplification in cancer

cell lines can substantially decrease a core essential gene’s sensitiv-

ity to RNAi perturbation. This is most likely driven by the encoded

protein’s membership in a protein complex: genomic amplification

leads to over-expression and protein abundance beyond the stoichio-

metric requirements for complex function. Interestingly, the

converse is also true: hemizygosity increases sensitivity. A recent

study found that partial loss of some genes in tumors resulted in

increased vulnerability to perturbations of those genes—the so-

called CYCLOPS genes (Nijhawan et al, 2012). As CYCLOPS genes

are enriched subunits of core essential complexes, our findings may

extend the CYCLOPS concept to all core essential complexes. That

is, copy number losses among essential subunits may render cancer

cells more susceptible to pharmacological compounds targeting

these complexes. This concept may apply to expression-sensitive

enzymes as well.

Broadly speaking, the reference sets of cell line essential and

nonessential genes we provide represent a useful yardstick against

which cancer functional genomics studies can be measured. Lack of

such suitable yardsticks has contributed to critical errors in the field,

including high profile reports of synthetic lethal interactions with

common oncogenes (Scholl et al, 2009) that were later disproven

(Babij et al, 2011; Luo et al, 2012; Weiwer et al, 2012) (and also do

not appear in our data), and has led to a reassessment of shRNA

methodologies (Kaelin, 2012). Such gold-standard reference sets will

become increasingly important as the CRISPR genome-scale genetic

perturbation technology matures (Cong et al, 2013; Mali et al,

2013). Our analysis of available data indicates that CRISPR screens

can be more sensitive than RNAi methods in detecting essential

genes, but that CRISPR library screening is also subject to a non-

trivial false discovery rate—a finding that is largely ignored in the

current literature. Progressively improving performance against an

established set of benchmarks is the best way to validate such new

technologies and their accompanying analytical methods, to ensure

their widespread adoption, and to unlock the biological discovery

that their application enables.

Materials and Methods

Software

A collection of python scripts and sample data is available as a

supplementary archive file (Supplementary Software Package). The
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archive contains all the scripts, data, and reference sets necessary to

calculate Bayes Factors for one cell line.

Using Matrix Decomposition to find a seed set of
putative essentials

The 72 pooled library shRNA screens were divided into three sets:

group one (n = 34), group two (n = 34), and withheld (n = 4; see

sample key in Supplementary Dataset S1). For screens in group

one, all repeats from all timepoints were combined into a fold-

change matrix of ~78,000 hairpins by ~200 arrays. Singular value

decomposition was performed on the matrix; the top singular

value was found to explain > 40% of the total variance of the

matrix (see Supplementary Fig S1). Hairpins with strong positive

projections onto the first left singular vector (U1) showed strong

negative fold-change across most of the 34 samples in the group

one matrix.

We used a statistical filter to find genes enriched for hairpins

with strong U1 projections. For each gene, hairpins were rank-

ordered by U1 projection, and the median projection p among hair-

pins targeting the gene was determined. Then, the enrichment

P-value was calculated by the hypergeometric test:

P(enrichment) = hypergeometric(X >= x|n, m, N).

where x is the rank of the median hairpin for the gene; n is the

number of hairpins targeting the gene; m is the total number of hair-

pins in the population with U1 projection >= P; and N is the total

number of hairpins in the experiment.

Adjusted P-values were calculated by the method of Benjamini

& Hochberg, and genes with adjusted P-value < 0.25 were selected

as putative seed essentials. This list was further filtered for genes

with constitutive, invariant gene expression across two sets of

RNA-seq data, the ENCODE set of 17 human cell lines, and the

Illumina BodyMap set of 16 healthy human tissues (see RNA-seq

analysis, below).

RNA-seq analysis

We used Tophat v1.4.1 to align RNA-seq reads to the hg19 human

transcriptome defined in the Gencode v14 GTF file, using default

Tophat parameters. We used Cufflinks in quantitation-only mode

with the same GTF file to generate FPKM values for each gene.

FPKM values were filtered for protein-coding genes (as defined by

HGNC, www.genenames.org) and log-transformed (adding 0.01 as a

pseudocount). The mean log(FPKM) of technical or biological

repeats was used, where applicable (e.g. biological repeats in

ENCODE and technical repeats at 2 × 50 and 1 × 75 read type for

BodyMap).

For ENCODE (GEO accession GSE30567) and BodyMap (EBI

accession E-MTAB-513), constitutive, invariant genes were

defined as genes with mean expression in each data set > 0 and

standard deviation < mean standard deviation across all protein-

coding genes. Genes must be constitutive and invariant in both

data sets. The reference set of putative nonessential genes is

defined as protein-coding genes with FPKM < 0.1 in 15 of 16

BodyMap tissues and FPKM < 0.1 in 16 of 17 ENCODE cell lines.

The set is filtered for genes that are assayed by the pooled

shRNA library.

Calculating the Bayes factor

Seed essentials from SVD of group one and nonessentials from gene

expression were divided into equal-sized sets for training and test-

ing, and used to train and evaluate the classifier for each cell line in

group two (and vice versa). Each cell line was assayed at two time-

points. For each timepoint, a density function of the fold-changes of

all hairpins targeting essential genes in the training set was esti-

mated by Gaussian kernel density estimation using the

scipy.stats.gaussian_kde function in Python. The process was

repeated for nonessential genes. Then, for each gene, the Bayes

Factor is calculated as follows:

BF ¼ Prðdata j essentialÞ
Prðdata jnonessentialÞ ¼

Y

i;j

Prðfci;j j essentialÞ
Prðfci;j jnonessentialÞ

across hairpin observations i and timepoints j, where Pr(x) is the

density function.

Log-transforming the equation yields:

logðBFÞ ¼
X

i;j

ðlogðPrðfci;j j essentialÞÞ � logðPrðfci;j jnonessentialÞÞÞ

For a typical gene with 5 cognate hairpins assayed with three

biological repeats, the log(BF) is the sum of 15 values at each of two

timepoints.

Contributions to the BF score can be dominated by high fold-

change hairpins, where the Pr(data | nonessential) term is very

small. To prevent these outliers from dominating the final BF, we

empirically truncate log2 fold-changes at �4 and +0.5. This keeps

individual hairpin contributions to the BF within a reasonable

dynamic range, and greater absolute fold-changes do not provide

substantially greater evidence for or against essentiality.

Using priors to calculate posterior log odds

A Bayes Factor can be extended to a posterior odds ratio by multi-

plying by an appropriate ratio of priors:

OR ¼ Prðdata j essentialÞ
Prðdata jnonessentialÞ �

PrðessentialÞ
PrðnonessentialÞ

logðORÞ ¼ logðPrðdata j essentialÞÞ � logðPrðdata jnonessentialÞÞ
þ logðprior ratioÞ

Where indicated in the main text that a posterior log odds ratio

(LOD score) was calculated (e.g. the withheld group, the

HCT116 screens, and the Achilles screens), a uniform prior ratio

of 0.1 was applied (by adding log2(prior) = �3.32 to each

logBF), representing a background expectation that ~10% of

assayed genes are essential.

For samples in the withheld group, we also calculated a

specific prior for each gene based on its expression level. We

generated log2(FPKM) values for all protein-coding genes as

described above. Genes were rank-ordered by expression level

and binned (n = 500). For each bin, we calculated the mean

expression level of genes in the bin and the log2 of the fraction

of genes in the CCE-train reference set, adding a pseudocount of

0.001 to prevent infinities (see Fig 6D). A linear fit was applied
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to bins with mean expression > 1. This linear fit was used to

calculate an expression-based prior, with the log2(fraction essen-

tial genes in bin) approximating the log-prior described above.

Evaluating precision and recall for each screen

For each screen, the applicable reference sets were divided into

equal-sized training and testing sets. Training sets were used to esti-

mate the density functions of essential and nonessential hairpin

fold-changes, as described above, and (where applicable) to calcu-

late the expression-based prior. Withheld testing sets were used to

evaluate the performance of each screen.

Genes from each evaluated screen were rank-ordered by Bayes

Factor or LOD score, which ever was applicable. Then, for each

gene, the cumulative precision and recall were calculated as

Recall = TP/(TP + FN) and Precision = TP/(TP + FP), where

TP = true positives, the number of genes in the essentials test set

with BF/LOD score greater than the current gene; (TP + FN) = the

total number of essentials in the test set; and FP = false positives,

the number of genes in the nonessentials test set with BF/LOD score

greater than the current gene.

The F-measure was calculated as a single, global metric for

screen quality. The F-measure is the harmonic mean of precision

and recall calculated at a specified BF/LOD (typically 0):

F ¼ 2
ðprecision� recallÞ
ðprecisionþ recallÞ

To evaluate the ATARiS results, we used phenotype scores from

Achilles_102lines_gene_solutions.gct (downloaded from http://

www.broadinstitute.org/achilles/). For each screen, genes were

rank-ordered by phenotype score and precision and recall were

calculated as above, using the CCE-test and NE-test reference sets.

F-measure was calculated at phenotype score = �1.

Absolute copy number

SNP analysis was performed at the University Health Network

Microarray Center (Toronto, ON, CA) using Illumina (Illumina,

San Diego, CA) HumanOmni1 BeadChip according to manufac-

turer’s instructions. Normalized LogR ratio (LRR) and B allele

frequency (BAF) signals for each probe were exported from the

Illumina BeadStudio utility. Export files were then processed

with the Genome Alteration Print (GAP) algorithm (Popova et al,

2009). Projections of LRR and BAF profiles were created, and

pattern recognition was performed for each samples. Parameters

were set as followed: germHomozyg.mBAF.thr > 0.97 and

p_BAF = 0 (no normal contamination). Each pattern was visually

inspected and corrected when the grid was off the segment

center clusters. Output files produced by GAP were processed in

order to obtain segments defined by copy number change only.

Briefly, adjacent segments with identical absolute copy number

were merged, and the LRR values were averaged. Gene level

absolute copy number and LRR were obtained using the

CNTools package.

Supplementary information for this article is available online:

http://msb.embopress.org
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