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Abstract
Gelatin is a promising material as scaffold with therapeutic and regenerative characteristics due

to its chemical similarities to the extracellular matrix (ECM) in the native tissues, biocompatibil-

ity, biodegradability, low antigenicity, cost-effectiveness, abundance, and accessible functional

groups that allow facile chemical modifications with other biomaterials or biomolecules.

Despite the advantages of gelatin, poor mechanical properties, sensitivity to enzymatic degra-

dation, high viscosity, and reduced solubility in concentrated aqueous media have limited its

applications and encouraged the development of gelatin-based composite hydrogels. The draw-

backs of gelatin may be surmounted by synergistically combining it with a wide range of poly-

saccharides. The addition of polysaccharides to gelatin is advantageous in mimicking the ECM,

which largely contains proteoglycans or glycoproteins. Moreover, gelatin–polysaccharide bio-

materials benefit from mechanical resilience, high stability, low thermal expansion, improved

hydrophilicity, biocompatibility, antimicrobial and anti-inflammatory properties, and wound

healing potential. Here, we discuss how combining gelatin and polysaccharides provides a

promising approach for developing superior therapeutic biomaterials. We review gelatin–

polysaccharides scaffolds and their applications in cell culture and tissue engineering, providing

an outlook for the future of this family of biomaterials as advanced natural therapeutics.
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1 | INTRODUCTION

Biomaterials play a pivotal role in designing functional scaffolds, provid-

ing three-dimensional (3D) templates that facilitate cell adhesion,

growth, proliferation, and differentiation. Engineered scaffolds may pro-

mote vascularization and tissue formation, which are essential for tissue

engineering and regenerative medicine.1 Biomaterials may be prepared

from natural polymers,2 such as alginate, gelatin, chitosan, hyaluronic

acid (HA), and collagen, or be made up of synthetic polymers,3 such as

poly(ethylene glycol) (PEG), poly-L-lactic acid (PLLA), polycaprolactone

(PCL), and poly(lactic acid-co-caprolactone). One of the major challenges

in designing biomaterial scaffolds is to modify their building blocks to

mimic the extracellular matrix (ECM) in the native tissues. ECMs consist

of an acellular 3D network of various amino acid- and sugar-based mac-

romolecules, which bring cells together, support them, and control tissue

structures. Simultaneously, they regulate the cell function and morpho-

genesis and facilitate the diffusion of nutrients, metabolites, and growth

factors.4 In this context, hydrogels have played a crucial role by providing

structural similarities to the biomacromolecules found in the ECM,

leveraging cellular functions and enhancing the permeability of oxygen,

nutrients, and other water-soluble metabolites.5,6 Hydrophilic polymeric

networks in hydrogels can take up and maintain liquids (swell) when

exposed to an aqueous medium. These properties render hydrogels an

attractive class of biomaterials for 3D cell culture.7–11

Gelatin is one of the most common biomaterials for 3D cell cul-

ture, providing suitable chemical and biological cues for hosting a vari-

ety of cells. Despite a broad spectrum of applications, poor

mechanical properties, fast enzymatic degradation, and low solubility

in concentrated aqueous media are among the limitations of gela-

tin.12,13 To overcome these shortcomings, gelatin has been combined

with polysaccharides. Compared to synthetic polymers, such as

PEG,14 PCL,15 poly(lactic-co-glycolic acid) (PLGA),16 and PLLA,17

polysaccharides–gelatin composite biomaterials better resemble the

native ECM. The integration of gelatin and polysaccharides not only

resembles the glycoproteins in the ECM but also introduces new syn-

ergistic characteristics that would otherwise be impossible to achieve

using solely one of the materials. This strategy may serve as a power-

ful tool for designing complex hybrid polymeric frameworks in a broad

spectrum of tissue engineering applications.

To mimic the key physiological features of ECM, proper peptides/

proteins, cell-signaling factors, enzyme-sensitive moieties, and growth

factors must be conjugated to polysaccharides. Cell behavior can be

directed to develop functional tissues via engineering gelatin–polysac-

charide hybrid 3D scaffolds using chemical, physical, and mechanical

modifications.18 For instance, conjugating integrin, selectin, and CD44

to polysaccharides have imparted cell-adhesive domains to the hybrid

scaffolds, supporting cell functions and organization.19,20 Moreover,

since both components are green materials derived from natural

resources, they also contribute to eco-technology and sustainable

material design.

Three-dimensional cell culture technologies provide physiologi-

cally relevant and, likely, more predictive strategies for organogene-

sis21 and tissue engineering,22 organs-on-a-chip,23 drug discovery and

testing,24,25 disease modeling,26 and developing cell-based assays and

animal-free models.27 Three-dimensional cellular systems, mimicking

the native tissue structures, have been a noticeable improvement over

two-dimensional (2D) monolayer cultures in terms of improved cell–

cell and cell–ECM interactions, high stability, and enhanced function-

ality (Figure 1).29,30 Cell behavior and function are more realistic in 3D

microenvironments, wherein an immense potential for predicting the

efficacy of drug candidates similar to in vivo conditions may be

found.31 An example of cells cultured in 2D and 3D systems are pre-

sented in Figure 1a–c, where a clear difference in morphology is

observed for HER2-overexpressing cell lines (HCC1954).28 The cells

aggregated and formed tightly packed spheroids in the 3D cell culture,

which is similar to their behavior in vivo.

FIGURE 1 (a) Scanning electron microscopy (SEM) micrographs of HER2-overexpressing cell lines (HCC1954) in 2D (scale bar is 20 μm) and

(b) 3D cell cultures (scale bar is 100 μm). (c) High magnification image of the same 3D cell culture as (b) with a scale bar of 20 μm. Adapted from
“The relevance of using 3D cell cultures, in addition to 2D monolayer cultures, when evaluating breast cancer drug sensitivity and resistance,” by
S. Breslin and O'Driscoll, 2016, Oncotarget, 7, pp. 45745–45756, with permission from Impact Journals.28 (d) 3D cell culture techniques and their
advantages
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To control the structure, morphology, and function of 3D cellular

models, several strategies have been developed, including rotary cell

cultures,32 microcarrier beads,33 gyratory shakers and roller tubes,34

spinner flask cultures,35 hanging drop method,36 liquid overlay

cultures,37 and spontaneous cell aggregation methods (Figure 1d).38

Another approach is to encapsulate or seed cells in/on biomaterial

scaffolds, providing a controllable microenvironment for the cells.

Here, we describe the physicochemical properties of gelatin and

polysaccharides as natural biomaterials. We then focus on different

combinations of gelatin and a variety of polysaccharides as scaffolds

for 3D cell culture and tissue engineering. Merging these two building

blocks may help design hybrid biomaterials that resemble the ECMs

while providing additional therapeutic properties.

2 | CHARACTERISTICS OF GELATIN AND
POLYSACCHARIDES AS NATURAL
BIOMATERIALS

Gelatin and polysaccharides are natural biopolymers that have exten-

sively been used for biomedical applications.39,40 For example, our

group has employed gelatin-based materials, mainly gelatin methacry-

loyl (GelMA), in different biomedical applications, such as tissue engi-

neering, bioprinting, and organs-on-a-chip platforms.41–48 Gelatin is a

protein obtained from the hydrolysis of collagen, one of the main

components of the ECM. As presented in Figure 2a, collagen may be

derived from various sources, including bovine, porcine, or fish

through various methods.50 Gelatin obtained from collagen via acid or

base treatment is called type A or B, respectively.51 Different gelatin

types acquire different characteristics, such as amino acid composi-

tion, gel strength (Bloom), isoelectric point (pI), and charge. For exam-

ple, gelatin type A has a higher gel strength and glycine and proline

contents. The pI for type A is between 8 and 9, exhibiting a positive

charge at neutral pH; whereas, type B has a pI value between 4.8 and

5.4, bearing negative charge at neutral pH.52,53

Polysaccharides may be sourced from crabs, lobsters, shrimps,

forests (biomass), and bacteria (Figure 2a).54 In this review, polysac-

charides such as cellulose, chitin, chitosan, alginate, and HA are

highlighted and their synergy with gelatin in 3D cellular engineering is

presented. The synergistic combination of gelatin and polysaccharides

may result in improved properties, as presented in Figure 2b.

The interactions between carbohydrates and proteins may be

engineered via two main chemical reactions leading to covalent bond-

ing, resembling the proteoglycans in the ECM.4 These prominent reac-

tions are Schiff base formation55 and Maillard reaction,49,54 leading to

hydrogel formation (Figure 2c). These reactions may explain why

some ingredients or foods, such as bread, change color to brown as a

result of carbohydrates–proteins interactions, setting a platform for

efficient food quality control.56 Moreover, through this understanding,

the formation of toxic products, such as heterocyclic amines and

acrylamide, as well as taste variation in foods have been discovered.57

Recent studies have revolved around using gelatin and polysaccha-

rides in biomedical applications, spanning from wound healing58 and

cell growth59 to the inhibition of bacterial growth60 and the delivery

of drugs, genes, siRNA, and peptides (Figure 2a).61

Gelatin–polysaccharide hydrogels may absorb a large amount of

water, typically more than 100 times their dry mass, providing in vitro

culture platforms to explore the behavior of mammalian cells in a matrix-

inspired environment for tissue engineering, favoring cell adhesion and

growth, infiltration, and tissue vascularization (Figure 2d).62,63 Polysac-

charides typically increase the stability of scaffolds, and gelatin enhances

the biological performance. Polysaccharides with various molecular

weights, structures (e.g., linear or branched), functionality (monofunc-

tional, containing only one type of functional group, for example,

hydroxyl groups, or polyfunctional, bearing hydroxyl, carboxyl, and amino

groups), and water affinity and solubility expand the library of ECM-

mimicking hybrid hydrogels. Furthermore, they induce gel formation

upon mixing with proteins through a broad range of chemical and physi-

cal interactions, including electrostatic, hydrophobic, and hydrogen

bonding. Additionally, certain applications of these two classes of bio-

polymers, for example, as toppings, are generally recognized as safe

(GRAS), which may accelerate their translation from bench to bedside.

The gelatin–polysaccharide composites can be prepared by a plethora of

approaches, such as electrospinning, film casting, dip coating, physical

mixing, layer-by-layer assembly, ionotropic gel formation, colloidal

assembly, co-precipitation, in situ preparation, and covalent coupling.64

One of the challenges associated with mixing these two classes of

biomaterials is phase separation, which can have chemical and/or

structural origins. The mixture of biomaterials undergoes phase sepa-

ration when the timescale of gel formation is larger than that of the

phase separation. Favorable interactions between proteins and poly-

saccharides originated from attractive forces may promote complex

coacervation (association), and repulsive forces may lead to incompati-

bility (segregation).65,66 Some crystalline polysaccharides, for example,

certain cellulose, chitin, and chitosan often experience poor water sol-

ubility and phase separate upon mixing with gelatin.67 To overcome

the phase separation of these biomaterials, they have been chemically

modified to increase the water solubility and enhance their compati-

bility. In this regard, cellulose can be chemically modified to yield

polyelectrolytes, such as carboxymethyl cellulose (CMC) and methyl-

cellulose (MC), which are water soluble.68 However, despite the

improved solubility, phase separation may still occur,69 which can be

controlled by tuning temperature, ionic strength, and pH.70

3 | GELATIN–POLYSACCHARIDES
COMPOSITES IN CELL CULTURE AND TISSUE
REGENERATION

In this section, we review state-of-the-art hybrid hydrogels based on

gelatin and polysaccharides to provide green and natural platforms for

therapeutic cellular engineering. The polysaccharides mainly include

cellulose, chitin, chitosan, alginate, and HA. Important examples of the

hybrid hydrogels are discussed in terms of synthesis, fabrication, and

their applications in cell culture and tissue engineering.

3.1 | Gelatin–cellulose

Gelatin–cellulose scaffolds are less explored compared to other types

of gelatin–polysaccharide hybrid biomaterials. Cellulose is the most
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abundant natural polymer on the earth, which benefits from proper-

ties, such as biocompatibility, renewability, biodegradability, cost-

effectiveness, hydrophilicity, and mechanical resilience.71,72 Cellulose

is a polysaccharide consisting of a linear chain of several hundreds to

over 10,000 of β(1!4) linked D-glucose units (Figure 3a).75,76 Cellu-

lose can be derived from the forest (biomass), algae, tunicate, and bac-

teria and be processed to form colloidal or fibrous materials, classified

based on their size and morphology, which encompass macro-, micro-,

and nano-fibrillated or crystalline celluloses. The nano-sized celluloses

are mainly categorized as cellulose nanocrystals (CNCs), cellulose

nanofibrils (CNFs), and bacterial nanocellulose (BNC).77,78 CNCs are

obtained after the acid hydrolysis of cellulose fibrils, wherein the

amorphous regions are mostly hydrolyzed, yielding mainly the crystal-

line parts (Figure 3a).79,80

The amorphous cellulose chains of fibrils may be oxidized using

periodate and chlorite, yielding cellulose nanocrystals sandwiched

between two highly functionalized protruding cellulose chains, resem-

bling hairy cellulose nanocrystals.81,82 Biologically instigated CNCs

FIGURE 2 (a) An overview of the origin and significance of hydrogels prepared from gelatin and polysaccharides along with their biomedical

applications. (b) Main characteristics of gelatin–polysaccharide scaffolds for 3D cellular engineering. (c) Chemical reactions between
polysaccharides and proteins, encompassing Maillard reaction and Schiff base formation.49 In the first step, after an acid or base treatment, the
polysaccharide ring opens, forming a reactive aldehyde moiety that further reacts with the primary amines of protein. After β-elimination, the
Schiff base adduct is formed, and further rearrangement yields stable products. (d) Desired properties of hydrogels for in vitro cell culture and
tissue engineering
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and CNFs, derived from renewable biomass, are currently receiving

high attention due to their unique properties, such as high modulus

(e.g., 100–200 GPa for CNC), low thermal expansion (3–22 ppm K−1

for CNC), and high surface area (400–500 m2 g−1).83–86 In the context

of 3D cellular engineering, high surface area of a scaffold may facili-

tate cell attachment, and high modulus provides stable and robust

scaffolds for hard tissue/organ engineering.

Cellulose and its derivatives, such as cellulose acetate have been

used for 3D cellular engineering.87 Recently, they have been used for

the synthesis of cellulose nanoparticles, hydrogels, aerogels, and films

for a wide range of biomedical applications, summarized in

Figure 3a.88–91 There are several approaches for designing cellulose-

based hydrogels, including the partial modification of hydroxyl groups

by charged groups, promoting physical crosslinking.92–95 Figure 3b illus-

trates the schematic of carboxylic acid-modified cellulose in its dry form

and the formation of water-rich biopolymer networks after swelling.

The content of carboxylic acid groups on the modified celluloses is vital

for maintaining cell viability in the scaffolds. Carboxylated cellulose (oxi-

dized cellulose) with 2.1 wt% of carboxylic groups showed a good com-

patibility with cells. Interestingly, low stability of the material at high

acidity was observed (6.6 wt% of carboxylic groups), leading to

disintegration and degradation in cell culture media.96 Different strate-

gies can be adopted for designing carboxylated celluloses with a

decreased acidity, yielding more compatible substrates for cells,

e.g., through functionalization with arginine or the incorporation of chit-

osan to balance the acidity.96 High acidity prevents the adhesion of

cells and influences cell growth, which may be caused by attracting free

cations from cell culture media and increasing osmolality.97

Periodate-oxidized cellulose nanocrystals may be mixed with gel-

atin to form a porous, 3D printable ink for fibroblasts.98 Furthermore,

nanofibrillar cellulose has been combined with hyaluronan-gelatin

hydrogels for resembling the ECM.99 The composite biomaterial

provided a scaffold for undifferentiated HepaRG cells, promoting the

formation of spheroids with structural similarities to the liver tissue,

such as functional bile canaliculi-like structures and apicobasal

polarity.

CNF-based hydrogels for bone tissue engineering were doped

with gelatin and β-tricalcium phosphate as osteoconductive agents.

The main role of CNF in these scaffolds was to decelerate degrada-

tion, inducing sustained release of an osteoinductive biomolecule

(simvastatin). The scaffolds provided enhanced bone formation and

better collagen matrix deposition compared to the control.100 Besides

FIGURE 3 (a) Cellulose sources and classification based on size and structure; acid hydrolysis of the cellulose fibers, providing conventional

cellulose nanocrystals; the representative structure of cellulose, comprising β(1!4) linked D-glucose units, and its broad biomedical applications.
(b) Illustration of dry anionic cellulose, which swells and forms a 3D hydrogel network in water. (c) Confocal microscopy images of stained cells,
cultured in 3D cellulose scaffolds: (i) NIH/3T3, (ii) C2C12, and (iii) HeLa cells. Cellulose structure (red), mammalian cell membranes (green, stained
with phalloidin conjugated to Alexa Fluor 488), and nuclei (blue, stained with DAPI). Adapted from “Apple derived cellulose scaffolds for 3D
mammalian cell culture,” by D. J. Modulevsky et al., 2014, PLoS One, 9, p. e97835.73 Scale bars represent XY = 300 nm, ZY = 100 nm. (iv) DAPI/

F-actin merged images of stained NIH/3T3 cells after 7 days of incubation in a medium containing bacterial cellulose and (v) in microporous
bacterial cellulose-gelatin scaffolds. The scale bar represents 10 μm. Adapted from “Three-dimensionally microporous and highly biocompatible
bacterial cellulose–gelatin composite scaffolds for tissue engineering applications,” by S. Khan et al., 2016, RSC Adv, 6, pp. 110840–110849, with
permission from Royal Society of Chemistry.74 (d) Chitin derived from the crab shell and its representative structure containing repeating units of
disaccharide acetylglucosamine; N-deacetylation of chitin results in chitosan, a polysaccharide made up of repeating units of randomly distributed
β-(1 ! 4) linked D-glucosamine and N-acetyl-D-glucosamine; the properties of chitin and chitosan
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the biological benefits, cellulose nanofibers have imparted printability

to gelatin-based hydrogels, wherein CNFs enhanced the structural

integrity and increased the mechanical stability of the composites.101

Bacterial cellulose–gelatin composite hydrogels have been used as

versatile 3D scaffolds for culturing breast cancer cells to provide

in vitro models of tumor microenvironments.102 Significant function

of human breast cancer cell line (MDA-MD-231) in these scaffolds

was reported.

The pore size and distribution play an important role in promoting

cell proliferation, adhesion, and infiltration in scaffolds, where large

pores permit nutrients to diffuse deep into the scaffolds while small

pores promote cell differentiation and signaling.103 Infrared laser

micromachining has been used to introduce macropores to bacterial

cellulose scaffolds. Interestingly, a large number of pseudopodia were

obtained with the scaffold, attesting to the strong adhesion of cancer

cells to the scaffold, permitting multilayered cell formation.104 Biomi-

metic 3D cellulose sponge scaffolds may be prepared through electro-

spinning followed by sodium borohydride reduction to improve the

mineralization capacity through nucleating calcium phosphate crystals.

These sponges provide a temporary support for cell growth and

migration,105 particularly in bone tissue regeneration, where biomi-

metic mineralization is essential. Laser-patterned BC scaffolds modi-

fied with gelatin and hydroxyapatite have also been used for bone

tissue engineering. These scaffolds were engineered to attain parallel

pores, supporting the attachment, viability, and proliferation of chon-

drogenic rat cells.106 Chemical modifications, particularly TEMPO-

mediated oxidation, have been able to convert bacterial cellulose to a

dispersant agent, enhancing the aqueous dispersion of hydroxyapatite

nanoparticles. Adding gelatin to these dispersions, followed by cross-

linking with glutaraldehyde provided a porous scaffold, supporting

Calvarial osteoblasts for bone tissue engineering.107

Modulevsky et al. used apple-derived cellulose for the 3D cultur-

ing of mammalian cells.73 The cellulose scaffolds were prepared by

decellularizing apple hypanthium tissue (the edible part of an apple)

using a detergent (sodium dodecyl sulfate) and used as 3D scaffolds

for different cell types, such as NIH/3T3 fibroblasts, mouse C2C12

muscle myoblasts, and human HeLa epithelial cells. These mammalian

cell types proliferated, migrated, and were viable for up to 12 weeks,

wherein 98% of the cells remained viable in the culture (Figure 3c). In

general, HeLa and C2C12 cells proliferated at higher rates than

NIH/3T3 cells, and all the cells showed 3- to 4-fold increase in num-

ber over the 12-week culture.

Highly porous and 3D cell environments may be constructed

using composite scaffolds comprising bacterial cellulose and gelatin.74

The porous nature of the composites favors water and nutrient infil-

tration into the scaffold, resulting in the improved growth and prolif-

eration of cells. Bacterial cellulose and gelatin composite scaffolds

have been fabricated using casting and particulate leaching

approaches.108 The fabrication method permitted the preparation of

porous scaffolds by dissolving the polymer in an organic solvent, fol-

lowed by casting into a mold in the presence of porogen particles

(e.g., salts). Subsequently, the solvent was evaporated, leaving the

porogen-containing scaffold. The polymer was then separated from

the solid porogen at a high pressure, and after washing with water,

the porous scaffold was yielded. The advantages of this method

include the control of porosity; however, the drawbacks encompass

limitations associated with mechanical properties and the incomplete

removal of solvents and porogen additives.109 The incorporation of

gelatin into bacterial cellulose-based scaffolds resulted in improved

biocompatibility, proliferation, and cell growth for NIH/3T3 fibroblasts

(Figure 3c, iv,v).

Cellulose derivatives, such as CMC and MC, ethyl cellulose, acetyl

cellulose, and hydroxypropyl cellulose have frequently been used to

formulate hydrogels,110 nanoparticles (e.g., nanowhiskers),111 and

nanofibers.112 Moreover, in combination with other synthetic and nat-

ural polymers, such as proteins,113 in particular gelatin,114–119 a wide

range of applications120–126 have been demonstrated for these com-

posite materials as scaffolds for 3D cellular engineering.127,128 Glycos-

aminoglycans (GAGs) in the ECM may be mimicked by electrospinning

partially sulfated cellulose with gelatin, yielding functional fibrous

structures. These scaffolds supported cell growth while electrostati-

cally sequestered growth factors as a result of their charge originated

from the spatial distribution of sulfate groups.114 Cellulose scaffolds

containing the highest concentration of sulfate groups (5%) enhanced

the mesenchymal stem cell (MSC) chondrogenesis, which was con-

firmed by a pronounced collagen type II production as a result of

cartilage-specific gene activation, attesting to the potential of partially-

sulfated cellulose in cartilage engineering.129

3.2 | Gelatin–chitin

Chitin is an animal-originated biopolymer, mostly obtained from inver-

tebrates. It is available on the appendages as a structural component

of arthropod animals in the cuticle region, e.g., exoskeleton of insects,

spiders, and other crustaceans, namely crabs, lobsters, and

shrimps.130–132 Chitin is a glucose derivative, homopolysaccharide

made up of repeating chains of sugar molecules, explicitly N-acetyl

glucosamine moieties linked by a glycosidic bond (Figure 3d). Chitin

has distinct biochemical properties that can regulate several biological

activities, such as immune response and antibacterial actions. These

properties have rendered chitin a favorable biomaterial in a wide

range of applications, from scaffolds for 3D cell culture and tissue

engineering133 to the treatment of medical conditions, such as

inflammation,134,135 and promoting wound healing.136–139

Composite films of chitin nanofibers and gelatin have been pre-

pared by casting and freeze-drying highly viscous precursor solu-

tions.140 The water content of chitin nanofiber-gelatin biomaterials

may be precisely engineered by tailoring the gelatin content.140

Increasing the gelatin concentration increased the swelling ratio. The

nanofiber-gelatin films did not induce inflammation and strongly pro-

moted fibroblast proliferation, indicating high biocompatibility and

bioactivity. In another work, chitin nanofibers-GelMA nanocomposites

were prepared via a self-assembly approach, yielding ultra-strong and

flexible hydrogels.141 Compared to GelMA, the elastic modulus of

these hydrogels was increased by ~1,000 folds, and the composite gel

was 100 and 200% more extensible than chitin or GelMA, respec-

tively. These hydrogels were used as scaffolds for human umbilical

vein endothelial cells (HUVECs) cocultured with human mesenchymal

stem cells (HMSCs), which provided enhanced cellular differentiation
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and vascular network formation due to the increased flexibility and

elastic modulus.141

Embedding nanohydroxyapatite in β-chitin–gelatin composites

has enabled 3D cell culture for bone repair and regeneration.142 The

cytocompatibility study of these scaffolds in mouse preosteoblast

cells suggested that the cell behavior inside the microenvironment

was regulated by the ions released from the hydroxyapatite particles.

An increase in cell proliferation inside the nanocomposites resulted

when phosphate and calcium ions were at their optimum concentra-

tions, which would otherwise be toxic, leading to cell death. Gradual

interfacial formation of calcium phosphate on chitin–gelatin mem-

branes incubated in the simulated body fluid promoted facile attach-

ment of human MG-63 osteoblast-like cells within 48 h. These cells

reached full confluency on the bioactive membrane surface,143 which

may provide implantable bone tissue engineering grafts.

α-chitin and β-chitin have been used to prepare regenerated and

swelling hydrogels, respectively, in combination with gelatin and N-

acetyl-D-(+)-glucosamine as a crosslinker at 120�C.144 While both

types of hydrogels provided decent support for NIH/3T3 fibroblasts,

the swelling ratio of β-chitin-based composites was higher than the

regenerated hydrogels. Interestingly, the regenerated composite

hydrogels underwent faster degradation than the swelling hydro-

gels.144 Accordingly, essential properties of gelatin hydrogels for tis-

sue engineering, such as swelling, degradation, and mechanics may be

readily tailored by tuning the chitin source and material processing

method.

3.3 | Gelatin–polycationic chitosan

Chitosan is a polycationic marine biopolymer obtained by N-

deacetylation of chitin, which has a broad spectrum of biological appli-

cations (Figure 3d).145 Important biological properties of chitosan are

antitumor, antimicrobial, and antioxidant activities. The cationic nature

of chitosan provides antibacterial properties and leverages electro-

static complex formation with negatively-charged polymers.146 Never-

theless, the low solubility of chitosan in neutral or alkaline solutions is

a major drawback, requiring further modification to improve its solu-

bility. This can be improved by combining chitosan with gelatin either

through the formation of a polyelectrolyte complex147 or by

crosslinking.148

Chitosan–gelatin complexes exhibit structural similarities to both

GAG and collagen in the ECM, providing favorable physicochemical

and biological properties for cell culture. Hence, such complexes serve

as a platform for tissue engineering and creating favorable environ-

ments for cell survival in vitro.149–152 Chitosan imparts nonadhesive-

ness and a temperature-tunable behavior to the complexes.153

Combining chitosan and gelatin at optimal ratios followed by cross-

linking can tailor properties, such as mechanics, pore size, and cell via-

bility.154 Chitosan and gelatin can be chemically conjugated to form

hybrid biomaterials. Chemical crosslinking of chitosan and gelatin can

be performed using 2,5-dimethoxy-2,5-dihydrofuran (DHF), wherein

DHF is activated with temperature in acidic media, forming dialde-

hyde groups that resemble the chemistry of glutaraldehyde crosslink-

ing, followed by undergoing a Schiff base formation via the reaction

with primary amines in chitosan and gelatin.155 Hybrid hydrogels

prepared this way attain compressive moduli within the range of

0.284–1.167 MPa for uncrosslinked materials and 0.416–2.216 MPa

for crosslinked ones, and pore size of ~220–260 μm (uncrosslinked

chitosan–gelatin with volumetric ratio ~1) and 160–200 μm (cross-

linked with volumetric ratio ~1 and crosslinking degree ~1). Tailoring

gelatin content and crosslinking degree, the pore size, void space dis-

tribution, pore morphology, mechanics, and in vitro lysozyme-

mediated biodegradation have been engineered to support human

keratinocyte cell (HaCaT) adhesion without any detectable

genotoxicity.154

Miranda et al. employed a chitosan–gelatin composite as a scaf-

fold for 3D bone marrow mesenchymal stem cell (BMMSC) culture.156

The porous biocomposite was prepared using glutaraldehyde cross-

linking approach, which promoted cell adhesion, spreading, and viabil-

ity. The scaffold showed good biocompatibility and slow degradation

in vivo when implanted in the tooth sockets of a rat model. The

implant stayed in place until the bone healing process was completed

in 35 days.156 The crosslinked chitosan–gelatin composites benefit

from interconnected pores, resulting in a decreased pore size com-

pared to the uncrosslinked gel. The optimal gelatin concentration to

obtain the highest cell viability (up to 90%) was about 25% beyond

which (e.g., 50 and 100%) cell viability decreased (<40%). Importantly,

the crosslinking procedure enhanced the cell viability as a result of the

improved chemical stability, slow degradation, and the increased

mechanical strength of composite scaffolds.

Gelatin concentration is a crucial parameter to tailor the mechani-

cal stiffness of composite chitosan–gelatin biomaterials.157 For

instance, the stiffness of hydrated chitosan (e.g., 1,660 kPa as a 2D

substrate and 1.57 kPa as a 3D scaffold) and gelatin (90 kPa as a 2D

substrate) was engineered by mixing them at a 1:3 chitosan:gelatin

weight ratio, yielding 2D or 3D scaffolds with stiffness ~420 and

3.4 kPa, respectively. At a 3:1 chitosan:gelatin ratio, an increase in the

stiffness for the 2D composite substrates (2,090 kPa) and a decrease

for the 3D scaffold (1.15 kPa) were observed.157

The mechanical strength of gelatin–chitosan scaffolds can also be

improved by the addition of β-tricalcium phosphate, followed by

freeze-drying158 to yield porous scaffolds with interconnected pores

for bone tissue engineering.159 Furthermore, microporous biomate-

rials based on chitosan and gelatin have provided promising scaffold

platforms for the 3D culture of HepG2 cells.160 Large specific area

with pore sizes ~100–200 μm have improved the viability, cell func-

tion, and proliferation. A well-defined internal morphology of

chitosan–gelatin scaffolds, wherein the microstructures were precisely

controlled by micromanufacturing, mimicked the network configura-

tion of hepatic chambers and portal and central veins. These engi-

neered scaffolds promoted the hepatocyte cell function, characterized

by large colony formation in the predefined chambers within 1 week,

which secreted albumin and urea more effectively than highly porous

materials.161–163 These scaffolds were prepared through the combina-

tion of solid freeform fabrication (SFF),164 microreplication,165 and

freeze-drying approaches.166 The fabrication process is described in

Figure 4a. Initially, the desired shape was programmed using a

computer-aided design (CAD) software from which a resin mold, typi-

cally from polydimethylsiloxane (PDMS), was prepared. Subsequently,

the chitosan–gelatin solutions were added to the patterned PDMS
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molds and freeze-dried, providing a well-defined porous scaffold. The

3D scaffolds were prepared by stacking single-layer structures. This

fabrication technology enabled the design of microenvironments com-

parable to the highly organized liver structure as presented in

Figure 4b.

Other biopolymers have also been added to chitosan–gelatin

composites to improve their functionality. For example, chondroitin

sulfate was mixed with them to establish 3D porous scaffolds that

support and enhance the differentiation of MSCs to osteoblasts for

bone defect repair.167 The addition of HA and heparan sulfate to

chitosan–gelatin promoted neural stem and progenitor cell adhesion,

growth, and differentiation in 3D environments.168 Moreover, electro-

spun PCL, chitosan, and gelatin nanofibers with tunable mechanical

properties have been used for skin tissue engineering.169,170

The addition of glycerol phosphate to chitosan and gelatin

resulted in a hydrogel with tunable gel formation time, which was

used as a 3D scaffold for nucleus pulposus regeneration.171 For the

application in bone tissue engineering, gelatin-chitosan composites

demonstrated a similar strength to natural bones with compressive

strength ~2–12 MPa and Young's modulus ~50–500 MPa (for cancel-

lous bone).172 These requirements were provided by the combination

of chitosan-gelatin composites with hydroxyapatite173,174 or nano-

bioglass.175 The mechanical properties of these composites were

significantly enhanced by the addition of bioglass (30%), yielding com-

pressive strength ~2.2 MPa and elastic modulus ~111 MPa. In this

example, the compressive and elastic moduli of gelatin were 0.8 and

5.23 MPa, respectively. The addition of hydroxyapatite was also able

to increase the compressive strength (3.17 MPa) and Young's modulus

FIGURE 4 (a) Fabrication of chitosan-gelatin scaffolds with well-defined pore sizes. The designed model in CAD is used for the (i) preparation of

resins by SFF technique, yielding (ii) the molds which are further used to prepare (iii) PDMS molds by the microreplication technique, followed by
using (iv) the PDMS negative mold (v) to template the chitosan–gelatin solution, (vi) pre-freeze-drying the composite, (vii) drying the chitosan–
gelatin scaffolds, and obtaining (viii) single-layer scaffolds from which stacked scaffolds may be prepared. (b) Scaffolds with specific external
shape and predefined internal morphology: (i) the CAD model, (ii) the resin mold, and (iii) the porous chitosan–gelatin scaffold. The SEM images of
(iv) the predefined internal morphology and (v) the microstructure in longitudinal and (vi) transverse directions. Adapted from “Fabrication and
characterization of chitosan/gelatin porous scaffolds with predefined internal microstructures,” by H. Jiankang et al., 2007, Polymer, 48, pp.
4578–4588, with permission from Elsevier161
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(310 MPa) compared to the gelatin–chitosan composites (1.33 and

120 MPa, respectively).

3.4 | Gelatin–crosslinkable alginate

Alginate is a biopolymer extracted from seaweeds, such as brown

algae, Ascophyllum, Durvillaea, Ecklonia, Laminaria, Lessonia, Macrocys-

tis, and Sargassum spp.176 Alginate is a polyelectrolyte with two molec-

ular building blocks, which regulate its structural properties and

promote its mild crosslinking in the presence of divalent cations, lead-

ing to the formation of strong and structured hydrogels.177–179 The

building blocks of alginate are guluronic acid (G-block) and mannuro-

nic acid (M-block), permitting the formation of a hydrogel in the pres-

ence of divalent cations, such as calcium (Ca2+), which act as a

physical crosslinker (Figure 5a).182

Alginate properties include biocompatibility, nontoxicity, nonim-

munogenicity, and biodegradability.183,184 These desirable properties

support the development of biomaterials for tissue engineering with

therapeutic values.185 Properties of alginate hydrogels can be tailored

through the modification of free hydroxyl and carboxyl groups to reg-

ulate solubility, hydrophobicity, and biological characteristics pertinent

to cell adhesion and survival.186,187 Several efforts have been devoted

to develop chemical strategies for the modification of alginate,

encompassing oxidation, sulfurylation, esterification, and amidation to

impart additional properties to the biopolymer.188 For example, the

anticoagulant, anti-inflammatory, and antitumor activities of alginate

can be engineered through sulfurylation.189,190 The alginate degrada-

tion can be improved by partial oxidation,191 and through esterifica-

tion, a more hydrophobic biomaterial with improved gel strength can

be prepared.192

Furthermore, alginate has widely been used as a hydrogel for the

construction of artificial 3D ECM and models for drug testing.193–195

Optimal concentration and viscosity of alginate hydrogels are funda-

mental for developing a suitable cell culture model. For example, algi-

nate hydrogels were used as scaffolds for Hepatic Huh-7-cell line,

providing tissue models for the in vitro study of Hepatitis C virus

infection.196 Low viscosity alginate (e.g., 200 mPa s, 1%) yielded a

material with low stability, whereas the medium viscosity alginate

(2,000 mPa s, 2%) resulted in a stiff material, which prevented the cell

proliferation. Decreasing the alginate concentration to 1.5% provided

an optimal microenvironment for the cells, reflected in the albumin

production and CYP1A activity.

Chemical composition of alginate hydrogels, regulated by the

ratio of the G-block to M-block, is another important factor that

impacts the mechanical properties. Dominant G-block (G-type algi-

nate, 1.2%) yielded a rigid and elastic gel with viscosity η = 262 mPa s

and storage modulus G0 ~ 31.1 kPa, while the linear M-block (M-type

alginate, 1.2%) provided a more viscous and less elastic material

(η = 440 mPa s, G0 ~ 9.9 kPa, Figure 5a).197 The M-type gels have

been suitable for cardiac patches and the gels with dominant G-block

are promising candidates for cardiac implants.197 Cell-laden hydrogels

made up of alginate and gelatin have numerous advantages, including

controlled pore size and distribution as well as cell protection against

external physical and chemical stimuli.198,199 Alginate is a nonporous

biomaterial; therefore, the porosity of composite alginate–gelatin

hydrogels can be controlled by tuning the gelatin content.200 The

porosity of the composites may be engineered through the addition

of gelatin beads with various sizes (150–300 μm) physically cross-

linked at low temperature (4�C), followed by heat-mediated dissolu-

tion inside alginate scaffolds.200 These hydrogels benefited from 2 to

3 orders of magnitude increased permeability; however, their com-

pression modulus decreased.

Recently, 3D printing technology has received attention in thera-

peutic and clinical applications.201 Capability to construct personalized

3D structures introduces a wide range of possibilities to address clini-

cal challenges, such as the design of optimal prosthetics or implants

compatible with the host tissue. In this context, the choice of proper

biomaterial combinations that resemble the ECM structure and permit

the manufacturing of cell-laden constructs is vital.202,203 Recent 3D

bioprinting technologies can help generate engineered blood

vessels,204 artificial skin,205 cartilage,206 and a wide range of tissue

constructs.207 The combination of gelatin and alginate has provided a

platform to preserve cell function and survival within printed con-

structs, promoting the repair of lesions.208

Alginate–gelatin bioinks have recently stimulated the field of 3D

printing209,210 and bioprinting, leveraging robust, cell-friendly, and fac-

ile fabrication of cell-laden hydrogel constructs.211,212 Alginate–

gelatin composites, wherein gelatin functions as a stabilizer, have been

used for the 3D bioprinting of osteosarcoma (Saos-2) cell-laden scaf-

folds; however, the printed scaffolds did not promote cell prolifera-

tion.213 Nevertheless, incubating the printed constructs with agarose

and calcium polyphosphate enhanced the cell proliferation and

increased the Young's modulus from 13–14 kPa to 22 kPa. Bone mor-

phogenetic protein-2 (BMP-2)-loaded gelatin microparticles were

embedded in bioprinted alginate to induce osteogenicity in rodent

(mice and rats) models.214 The bioink included biphasic calcium phos-

phate and goat multipotent stromal cells (gMSCs), which provided sus-

tained BMP-2 release for 3 weeks, promoting osteogenic

differentiation and bone formation.

Degradation rate of alginate-based bioprinted scaffolds can be

tailored by tuning the ratio of sodium citrate to sodium alginate.

Human corneal epithelial cells (HCECs) were bioprinted in collagen–

gelatin–alginate composite hydrogels, and the scaffolds were exposed

to sodium citrate, yielding controlled degradation, which in turn

resulted in high cell viability (>90%), proliferation, and cytokeratin

3 (CK3) expression.215 Alginate–gelatin bioinks can also be engineered

by tailoring the ionic strength.216 The storage and loss moduli of bio-

printed constructs decreased using 1× (165 mM) and 2× (328 mM)

phosphate-buffered saline (PBS), resulting in mechanically weak, fast-

swelling, and unstable scaffolds, incapable of hosting epidermal stem

cells. Similarly, without PBS, the cells remained isolated from each

other and were not able to proliferate. The optimum concentration of

PBS (82 mM, 0.5×) resulted in improved cell function in terms of via-

bility, proliferation, glandular morphology, and differentiation to epi-

thelium and sweat glands, while providing a decent printability of

epidermal stem cell-laden constructs, setting the stage for the regen-

eration of sweat glands.216

Developing clinically relevant models of tumors has been a

prime impetus for emerging 3D culture systems.217,218 A bioink con-

sisting of gelatin, alginate, and fibrinogen hydrogels combined with
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HeLa cells was used to 3D print cervical tumor models and investi-

gate disease pathogenesis and drug resistance.219 In the 3D bio-

printed model, HeLa cells expressed high levels of matrix

metalloproteinases (MMPs) and high chemoresistance, resembling an

in vivo tumor. These composite hydrogels overcome the poor degra-

dation of printed cell-laden alginate constructs, which would other-

wise negatively impact cell proliferation. Metabolic activity of

tumors under chemotherapy has been modeled using alginate-based

cancer cell-laden 3D scaffolds. Encapsulated human hepatoma

(HepG2) liver cells in alginate hydrogels were exposed to a coumarin

pro-drug, resembling the in vivo drug metabolism.220 These models

have helped minimize the necessity of animal models and may better

reflect the outcome in human trials.

3.5 | Gelatin–hyaluronic acid

Hyaluronic acid is a GAG, an ECM component in many parts of the body,

such as vitreous body,221,222 gums,223 connective tissue,224 skin,225 and

joint,226 which promotes cell motility and connects tissues. Due to its

abundance in the body, it is used as a suitable biomaterial to treat

wounds227,228 and medical conditions such as hypertension,229 bone

defects,230 osteoarthritis,231 and neurological disorders.232 Furthermore,

HA plays a key role in developing tissue culture scaffolds180 and cosmetic

materials.233 Originally, HA was discovered in the vitreous humor of the

eye and realized to bemade up of twomonomers, namely glucuronic acid

and N-acetyl-D-glucosamine polymerized into large macromolecules of

over 30,000 repeating units (Figure 5b).234

FIGURE 5 (a) The source of alginate and its representative structure composed of guluronic acid (G-block) and mannuronic acid (M-block) units,

which may form three kinds of polymers in the presence of divalent ions, such as calcium. (b) The presence of HA in different parts of the body,
its representative structure180 comprising glucuronic acid and N-acetyl-D-glucosamine, and main properties. (c) Horseradish peroxidase (HRP)-
catalyzed hydrogel formation by reacting low molecular weight HA (LWHA) with gelatin181
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Features of HA, such as biocompatibility, hygroscopicity,

viscoelasticity,235 bacteriostatic and antioxidant effects,236

nonantigenicity,237 antiedematous238 and anti-inflammatory proper-

ties239 render it extremely attractive in various therapeutic technolo-

gies for body repair.240,241 The combination of HA and gelatin has

been employed as a semi-permanent dermal filler, wherein HA pro-

vided the structural integrity, and gelatin promoted host tissues inte-

gration.242 The two components were crosslinked using 1-ethyl-

3-(3-dimethylaminopropyl)carbodiimide.243 The in vivo experiments

were performed by subcutaneously injecting the gel in the back of

rats, resulting in tissue ingrowth after 4 weeks, which indicated that

the material promoted cell infiltration and new tissue formation with

no cytotoxicity.

Gelatin–HA-based biomaterials have also been used for wound

dressing. To this end, it is important that the material provides a warm

and moist environment to facilitate wound healing.244 Optimal mois-

ture condition (2,000–2,500 g m−2 day−1)245 was targeted by altering

the composition of these gels (gelatin:HA ~ 8:2, 5:5, and 2:8 wt%:wt

%). It has been demonstrated that 8:2 gelatin:HA provided the fastest

wound healing in vivo (95% wound healing on day 10 in a mouse full-

thickness wound model compared to 78% for the control) with an

optimal water vapor transmission rate ~2,670 g m−2 day−1.

Several chemical modifications have been performed on HA to

tailor its properties and facilitate crosslinking for hydrogel forma-

tion.246 A common modification strategy is to functionalize HA with

thiol groups, yielding a biocompatible hydrogel with therapeutic prop-

erties. Thiolated HA (3,3-dithiobis-[propanoic dihydrazide]) or thiol-

carboxymethyl HA can be crosslinked to form a hydrogel by the addi-

tion of PEG diacrylate. These composites have been used as injectable

scar-free 3D cell scaffolds for wound healing or as 3D cell culture

scaffolds.247–249 Cyto-adhesiveness of the material can be increased

by co-crosslinking with gelatin, modified with thiol groups, yielding a

gel with tripeptide Arg-Gly-Asp (RGD) motifs for binding integrins on

cell surfaces.250 Moreover, HA can be chemically modified to acquire

hydrophobic properties, which may be homogeneously mixed with

gelatin to form hydrophobic–hydrophilic mixed gels used as 3D scaf-

folds for the chondrogenic differentiation of MSCs.251 An optimal bal-

ance of hydrophobic and hydrophilic properties of these hydrogels

may have a noticeable impact on their performance.252 The hydropho-

bic nature of the material plays an important role in the mechanical

strength, and additionally, allows the cells to adhere to the material

surface rather than infiltrating within. These hydrogels, however,

inhibit cell encapsulation by impairing the diffusion of water, nutrients,

and wastes to and from cells.253

Combining low molecular weight HA and gelatin through the

peroxidase-catalyzed hydrogel formation was examined to encapsu-

late endothelial cells.181 Initially, HA and gelatin were covalently func-

tionalized with 4-hydroxyphenyl groups for the enzymatic crosslinking

and hydrogel formation (Figure 5c). These 3D biomaterial scaffolds

had high compatibility and motility for HUVECs. In another work,

Singh et al. designed a 3D macroporous material based on HA, gelatin,

and alginate, which was crosslinked using calcium chloride.254 The

component selection was based on the unique properties that each

biopolymers provided: gelatin was chosen to promote cell adhesion

and cell–cell interactions, alginate to provide good encapsulation

properties and inertness towards cells, and HA to enhance stem cell

migration and differentiation and promote osteogenesis. The compos-

ite hydrogel promoted the osteogenic differentiation of stem cells for

bone tissue engineering in vivo. The scaffold had the ability to recruit

cells, prominently promoting effective integration with the host tissue

within 1 week without any significant immune reaction.

HA has also been combined with GelMA, providing a robust and

decent candidate for 3D cell culture due to its ability to form a com-

posite network after a mild photocrosslinking.41 The combination of

GelMA and methacrylated HA improved the mechanical properties of

the composite hydrogels.255–257 Furthermore, the physical and biolog-

ical properties of the combined gels were tunable via changing the

composition. Interestingly, in the absence of GelMA, the HUVECs did

not show any spreading in the 3D hydrogels, highlighting the impor-

tance of the synergistic action in polysaccharide–gelatin biomaterials.

3.6 | Gelatin combined with other polysaccharides

Polysaccharides have proven to be good supplementary biomaterials

for gelatin, improving its applicability and properties (Figure 2b).258,259

Besides the polysaccharides discussed so far, which have widely been

combined with gelatin, in this section, less-explored polysaccharides

for 3D cellular engineering and therapeutic applications will be

highlighted. Table 1 presents these polysaccharides with their struc-

ture and applications.260–269

Here, we provide examples wherein gelatin and agarose have

been merged for 3D cellular engineering.270 Agarose is a ubiquitous

polysaccharide obtained from agar.271 Different concentrations of

agarose with gelatin (agarose:gelatin ~ 100:0, 75:25, 50:50, and 25:75

wt%:wt%) have been investigated for tuning chemical, mechanical,

and biological properties. The samples with 50 wt% agarose formed

gels at the body temperature and exhibited high stability and mechan-

ical resilience, in which case ~95% of the gels stayed intact and main-

tained their shape. The stability of the gels was evaluated by the shear

force rupture assay.272 This concentration of agarose provided the

best cell attachment and a decent structural integrity. Interestingly,

increasing the agarose concentration to 100 wt% resulted in a weak

mechanical stability due to the formation of a more fragile gel (only

80% of the gel remained intact). Bhat and Kumar used agarose in com-

bination with chitosan and gelatin to form a cryogel as a potential 3D

scaffold for skin and cardiac tissue engineering.273 The cryogel pro-

moted cardiac and fibroblast cell growth and proliferation; however,

the cells underwent fast initial proliferation within 24 hr due to the

rapid contact with the matrix in 2D cell culture compared to the 3D

scaffold. After 3 days, the 2D system induced cell death as a result of

limited nutrients and interfacial attachment sites; whereas, in the 3D

scaffold, despite a slow initial proliferation as a result of large surface

area (demanding more time to establish cell–cell interactions), the cells

proliferated for a longer period. Once adhered to the 3D scaffold, the

cells had more space to proliferate and benefited from large pore sizes

that facilitated the diffusion of oxygen and nutrients and prolonged

proliferation, which was otherwise implausible in the 2D cultures.

Gellan gum, a polysaccharide produced by microbial fermentation

of Sphingomonas paucimobilis microorganism,274,275 has been com-

bined with GelMA as a bioink for 3D cartilage bioprinting.276 The
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addition of gellan gum had a significant impact on the printability of

the material by increasing the yield stress (0.13 Pa for 10 wt% GelMA

and 48.2 Pa for GelMA:gellan gum ~ 10:0.5 wt%:wt%) and stiffness

(Young's modulus ~ 24.1 kPa for 10 wt% GelMA and 77.8 kPa for

GelMA:gellan gum ~ 10:1 wt%:wt%). The printed constructs promoted

the generation of a support matrix by scaffold-embedded

chondrocytes. High concentrations (≥9 wt%) of gellan gum led to the

formation of a rigid solid, hampering cell encapsulation, and on the

contrary, low concentrations (0.20 wt% gellan gum and 15–20 wt%

GelMA) resulted in a liquid-like, unprintable material. The optimal con-

centration for decent printability and cartilage tissue formations was

~10 wt% GelMA and 0.5 wt% gellan gum.

TABLE 1 Less-explored polysaccharides that have been used in combination with gelatin-based biomaterials, their structures, and applications

Polysaccharide Chemical structure Applications

Agarose Separation of biomolecules
Scaffolds for tissue engineering
Carriers for drug delivery

Gellan gum Drug delivery vehicles
Injectable hydrogels
Cell delivery materials

Dextran Tissue adhesive materials
Drug delivery
Tissue repair

Starch Application in food industry
Plastic polymer production
Filler material as nanoparticles

Chondroitin sulfate Tissue engineering
Osteoarthritis management
Anti-inflammatory agents
Wound healing
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Dextran in combination with gelatin can provide a suitable 3D

scaffold with potential applications in 3D cellular engineering.277 In

order to prepare a composite hydrogel, dextran and gelatin can be

separately modified to undergo crosslinking. To this end, two main

approaches have been reported: (a) dextran was oxidized to its corre-

sponding dialdehyde using sodium periodate, and in parallel, gelatin

was modified by a reaction with ethylenediamine to increase amino

groups. These biomaterials rapidly formed a Schiff base upon mixing,

providing a hydrogel without requiring any catalyst278; (b) dextran

was modified with methacrylate groups and lysin, and gelatin was

methacrylated (GelMA), providing a UV light crosslinkable pregel solu-

tion.279 The mechanical properties of these hydrogels were controlled

by tuning the degree of functionalization, yielding hydrogels with stor-

age moduli ~ 900–6,100 Pa. The designed hydrogels were used as 3D

scaffolds for synovium-derived MSCs, promoting their differentiation

into chondrocytes, which were injected subcutaneously in nude

mice.280 The in vivo experiments showed that the cell-laden hydrogels

promoted the formation of new cartilage after 8 weeks without any

significant evidence of inflammation.

Another interesting polysaccharide that has been studied in com-

bination with gelatin for cellular engineering is starch. This combina-

tion has been a promising scaffold for promoting the adhesion and

proliferation of adipose tissue-derived stem cells due to a similar

chemical structure to the ECM.281,282 However, it is necessary to

optimize the biomaterial composition because starch can cause cell

detachment. Therefore, a wide range of concentrations (gelatin: starch

~20–58 wt%:wt%) was evaluated, and at low gelatin concentrations,

partial cell detachment was observed.

Chondroitin sulfate, one of the major components of cartilage

ECM, has important therapeutic properties, such as anti-inflammatory

effects while promoting wound healing by increasing cellular adhesion

and proliferation during the healing process.283 To benefit from these

properties, chondroitin sulfate has been combined with gelatin and

HA for developing 3D scaffolds for cartilage tissue engineering284 and

skin substitutes.285 Addition of chondroitin sulfate to gelatin improved

the resistance against collagenase-induced degradation, preserving

the storage modulus and porosity of gelatin, while HA promoted the

integration of engineered cartilage with the host tissue and improved

the scaffold strength.

4 | CHALLENGES AND FUTURE
DIRECTIONS

There remain some limitations and challenges to overcome in order to

devise ideal biomaterials for advanced 3D cell culture and tissue engi-

neering applications based on the composites of gelatin and polysaccha-

rides. Design of hybrid biomaterials with desired physical, chemical, and

biological properties at physiological conditions based on facile prepara-

tion and sterilization technologies requires precise and scalable

manufacturing processes. Moreover, developing hybrid biomaterials

with tunable degradation in biological environments is pivotal for bio-

medical applications. While gelatin is readily biodegraded in vivo by sev-

eral enzymes, such as collagenase, polysaccharide degradation may be

more challenging. For instance, cellulose, alginate, and agarose cannot be

enzymatically degraded in the human body due to the lack of cellulose-

degrading enzyme cellulase, alginate-degrading enzymes alginate

lyases,286 and agarose-degrading enzyme agarase; however, several

strategies can be adopted to promote the in vivo biodegradation of poly-

saccharides. For example, through chemical modifications, such as the

oxidation of regenerated cellulose,287 and the incorporation of relevant

enzymes into the scaffold have facilitated the degradation of polysaccha-

rides.288,289 For alginate and agarose, similar strategies can be employed.

Interestingly, it has been demonstrated that these polysaccharides can

be degraded (fermented) in the gastric intestinal tract by gut micro-

biota.290,291 Other polysaccharides can also be degraded by enzymes292:

chitosan or chitin (using lysozyme), hyaluronic acid (hyaluronidase, β-D-

glucuronidase and β-N-acetyl-D-hexosaminidase), starch (α-amylase),

chondroitin sulfate (β-glucuronidase, β-N-acetylgalactosaminidase and

chondroitinase),269,293 dextran,294 and guar gum (degradable by the

enzymes produced by a bacterium in the human colon).295

Even though polysaccharides are typically biocompatible and

nontoxic, cares must be taken to thoroughly understand the

biocompatibility of their degradation byproducts. For example, the

production of immunogenic substances during the degradation of cel-

lulose296 must carefully be assessed in vivo before translating the

hybrid hydrogels for clinical applications. Future research should

endeavor to expand the applications of gelatin–polysaccharide hybrid

biomaterials for mimicking the role, associated molecular pathways,

and chemistry of glycoproteins in the ECM.

5 | CONCLUSIONS

Natural biomaterials have leveraged the cell behavior and function,

enabling the advancement of tissue engineering for therapeutic appli-

cations. To better mimic the physiological, biochemical, and physical

cues of native tissues, natural hybrid 3D scaffolds have extensively

been explored. The success of 3D cellular structures is contingent on

the development of functional biomaterials that are endowed to heal,

repair, or regenerate injured or diseased tissues and organs. We have

reviewed hybrid gelatin–polysaccharide biomaterials as naturally

derived therapeutic scaffolds that can overcome some of the limita-

tions of synthetic polymeric materials and mimic the building blocks of

ECMs. Polysaccharides, such as cellulose, chitosan, chitin, HA, and

alginate with their superior properties complement the missing capa-

bilities of gelatin. These composite biomaterials may leverage the field

of therapeutics by providing cues that would otherwise be impossible

to obtain from the individual components. We believe that the

synergistic potentials of this class of composites will pave the way for

developing superior precision therapeutics based on natural and cost-

effective biomaterials with well-defined characteristics.
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