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Abstract: Analyzing trajectory data plays an important role in practical applications, and clustering
is one of the most widely used techniques for this task. The clustering approach based on information
bottleneck (IB) principle has shown its effectiveness for trajectory data, in which a predefined number
of the clusters and an explicit distance measure between trajectories are not required. However,
presenting directly the final results of IB clustering gives no clear idea of both trajectory data and
clustering process. Visual analytics actually provides a powerful methodology to address this issue.
In this paper, we present an interactive visual analytics prototype called IBVis to supply an expressive
investigation of IB-based trajectory clustering. IBVis provides various views to graphically present
the key components of IB and the current clustering results. Rich user interactions drive different
views work together, so as to monitor and steer the clustering procedure and to refine the results.
In this way, insights on how to make better use of IB for different featured trajectory data can be
gained for users, leading to better analyzing and understanding trajectory data. The applicability of
IBVis has been evidenced in usage scenarios. In addition, the conducted user study shows IBVis is
well designed and helpful for users.

Keywords: visual analytics; information bottleneck; trajectory clustering

1. Introduction

In general, a trajectory is the path generated by a moving object (for example, airplane, animal and
pedestrian) and is recorded as a sequence of sample points. Each sample point, happening at a certain
time, includes many possible attributes of the object, such as location, direction/angle, speed and so on.
Due to the rapid prevalence and development of sensor systems, large amounts of trajectory data are
collected in a lot of applications, for instance, intelligent transportation system [1], animals’ migratory
analysis [2] and network intrusion detection [3]. Undoubtedly, the analysis and understanding of these
data are very important.

Clustering is one of the most important techniques to help grasp the underlying nature of complex
trajectory data, and has become a hot topic [4]. Given a trajectory dataset, clustering algorithms aim to
partition the trajectories into different groups such that each trajectory is most similar to the others
within the same group, and that trajectories belonging to different groups are most dissimilar. For many
clustering algorithms proposed so far, it is necessary to specify a distance measure to calculate the
similarity between trajectories. However, as indicated by [5,6], the distance measures either result
in diverse accuracies with different data sizes or resort to parameters, which means that obtaining
a very general and good measure is non-trivial for dealing with various kinds of trajectory data.
In addition, the pre-determination for either the number of clusters or the termination threshold,

Entropy 2018, 20, 159; doi:10.3390/e20030159 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-5535-2420
https://orcid.org/0000-0002-8243-6670
https://orcid.org/0000-0003-2164-6858
http://dx.doi.org/10.3390/e20030159
http://www.mdpi.com/journal/entropy


Entropy 2018, 20, 159 2 of 15

and even for both, has to be done for most clustering algorithms, such as k-means [7] and hierarchical
clustering [8]. For the purpose of this paper, the information bottleneck (IB) based clustering, which has
been demonstrated as an effective approach to manage the issues mentioned above [9–11], is utilized
for trajectory data. Actually, the IB principle, which is an information theoretic approach, has been
applied in many fields [12], such as image segmentation, document clustering and so on.

In general, to show the performance of a clustering algorithm, only the final clusters and their
corresponding quantitative evaluations are presented. Obviously, simply checking and analyzing
the results from performing IB-based clustering on different trajectory datasets help demonstrate the
effectiveness of IB, but this gives little insight to thoroughly understanding the mechanism of IB on
how to work on trajectory data. To deal with this issue, we take advantage of the visual analytics
methodology, which has attracted increasing attention in the field of trajectory analysis [4]. A lot of
visual analytics approaches related to trajectory analysis have been proposed [13,14], although most of
them solely involve the visualization of trajectory attributes and analysis results. In this case, it is not
easy for users to understand the algorithmic procedure of the analysis method.

In this paper, we propose a visualization system, IBVis, providing users with rich interactions to
support the analysis of IB-based trajectory clustering. IBVis offers two major modules, Clusters Generation
and Results Comparison, which interact with each other and focus on the clustering procedure and
cluster results respectively. The module of Clusters Generation includes four views, namely, Dashboard,
Trajectory, Merging and Backtracking and Plot, comprehensively visualizing the clustering procedure.
The module of Results Comparison gives information of parameter setting and performance evaluation
for different clustering results. Users can choose their specified parameters to check and compare the
ranking of the corresponding outputs, which helps to construct ideas on how to make better use of IB
to obtain high quality clustering results. The main contributions of this paper are as follows:

1. IBVis, a novel visualization system, is designed to clearly interpret the IB-based clustering
procedure and to present its outcomes.

2. IBVis offers comprehensive interactions for users to achieve a deep and complete understanding
of the mechanism of IB. For instance, users can backtrack the clustering procedure after finishing
all the iterations, and arrange a different merging in a certain iteration to fulfill a better clustering.

3. IBVis provides a friendly interface to guide users to walk through the system. This is especially
helpful for users which are unfamiliar with trajectory analysis.

4. Finally, we conduct experiments of the usage scenarios and a user study to explain and evaluate
the usefulness of IBVis.

The rest of this paper is organized as follows: Section 2 covers the related work; Section 3 explains
the IB-based trajectory clustering; Section 4 is a system overview of IBVis; The two major components
of IBVis, Clusters Generation and Results Comparison, are described clearly in Sections 5 and 6,
respectively. Section 7 gives the usage scenarios of IBVis; We conduct a user study on IBVis in Section 8;
Finally, concluding remarks and future work are given in Section 9.

2. Related Work

Clustering, as a typical analysis technique, has been extensively studied to discover massive
meaningful information from trajectory data [4]. For instance, k-means is one of the most widely used
algorithms due to its simplicity and computational efficiency [7,15]. To perform k-means, users need to
specify the number of clusters k, the initial k centers of clusters, and a distance measure to compute
the similarity between trajectories. In each iteration, the center of a cluster is selected to minimize
the summed distances between it and all the other trajectories in this cluster. After some iterations,
trajectories are grouped into k clusters until each trajectory has the smallest distance with the center of
its belonging cluster. For trajectory clustering, there exist many additional classical approaches applied
such as BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) [16] and DBSCAN
(Density-Based Spatial Clustering of Applications with Noise) [17], the state-of-the-art methods such
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as DPMM (Dirichlet process mixture model) [18,19] and partition-and-summarization framework [20].
However, most clustering techniques have the issues that they resort to some predefined parameters,
such as the number of clusters and the similarity threshold, in practice. In this paper, the information
bottleneck (IB) principle [21] is utilized in the proposed visual analytics prototype for trajectory
clustering, so that the issues aforementioned are managed.

The visual analytics methodology has been popularly developed in many fields to facilitate
experts and end-users to solve complex problems. For instance, WEKA [22] and RapidMiner [23]
are two comprehensive softwares which include a collection of machine learning algorithms and
visualization tools. Furthermore, these software platforms are well-suited for users to develop new
algorithms. Löwe et al. design a visual analytics framework [24] for the domain experts to make
a proper decision on the order selection criteria of an certain autoregressive process. The SmartAdP
system obtained by Liu et al. gives an optimal billboard location based on different views [25]. To know
more about visual analytics, please refer to recent relevant literatures [26–28].

Generally, in the field of trajectory clustering, most existing visualization tools mainly focus on
visualizing and interpreting the clustering outputs, and users cannot manipulate the clustering process
and its results. For example, Turkay et al. introduce two methods to vividly display the temporal
cluster structures [13]. Chen et al. make use of the widely accepted visual clustering method SOM
(self-organizing map) on bankruptcy trajectory data to mine their patterns for financial analysis [14],
however, the public gets little understanding of the methodology of SOM. Munaga et al. propose
a visualization tool named CAST (Clustering And visualization tool for Spatio-Temporal data) [29] for
effectively exploring the trajectory data. Another similar visualization tool named DenTrac (Density
based Trajectory Clustering and visualization tool for Spatio-Temporal data) [30] is designed to have
the same function with CAST, and the only difference between them is the clustering algorithm applied.
Andrienko et al. extend the concept of STC (Space-time cube) [31] with different transformations on
time [32], leading to a better display of the dynamics within clusters.

Interactive manipulations on the procedure of clustering algorithm, together with (graphical)
presentations on the relevant clustering results, contribute a lot to the deep analytics and understanding
of the algorithm. Chang et al. present multi-granularity views of the clustering results by allowing
users to set the density of clusters [33]. By observing results in different levels of granularities, users can
obtain both the overview and detailed knowledge of large trajectory data. However, due to the lack of
quantitative performance evaluations, it is difficult to know whether the clusterings based on various
cluster densities works well or not. WEKA [22] has implemented the sequential IB clustering, which is
different from the agglomerative IB used in IBVis. Both the agglomerative IB and the sequential
IB are derived from the IB principle [12] but have different strategies to perform the clustering.
The agglomerative IB adopts a bottom-up and iterative strategy to obtain the clusters. Taking trajectory
clustering as an example, each trajectory initially is assigned to a singleton cluster, and then two
similar clusters are combined in each iteration. The sequential IB takes a “sequential k-means like”
strategy. Initially all the trajectories are assigned into a certain number of clusters. Then at each step,
every trajectory is visited and re-assigned to a proper cluster. Fan et al. have recently attempted to
design a 3D visualization tool for agglomerative IB clustering [34], which has shown its potential
in helping users study and understand IB. However, this visualization tool pays much attention
to depict the conditional probabilities used for performing the clustering, but fails to present the
running iterations of IB. Our proposed IBVis is well designed to cope with the issues mentioned above.
Through different views, users can understand on trajectory data and IB very well. In particular,
the iteration procedure can be monitored and steered to gain insight on how to improve IB.

3. Trajectory Clustering Based on IB

In this section, we briefly review the information bottleneck (IB) principle for the clustering of
trajectory data, for more details please refer to [9].
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The information bottleneck principle was proposed by Tishby et al. in 1999 [21], aiming at
partitioning a dataset into several clusters by using a corresponding feature set. Given a trajectory
dataset X and its feature set Y, a set of trajectory clusters X̃ can be achieved by maximizing the shared
information between X̃ and Y,

Lmax =
{

I
(
X̃; Y

)}
, (1)

where I
(
X̃; Y

)
is the mutual information defined in the information theory tools [21]. Here trajectory

attributes, such as location, shape, speed of the moving object and so on, can be used for Y. Practically,
a simple but effective clustering, called agglomerative information bottleneck [12,35], is organized
in a bottom-up and iterative manner to merge elements in X to get the final clusters. Initially X is
copied as the initial X̃

(
X̃0
)
, here each trajectory xi ∈ X, corresponding to a single cluster, behaves

as an element in X̃0, X̃0 = {{xi}}. In each iteration, two elements of the current hierarchy X̃
(
X̃h
)

are merged to obtain the next hierarchical X̃
(
X̃h+1

)
, meeting the minimization of the loss of mutual

information ∆Lmax = Lb
max − La

max, where Lb
max = I

(
X̃h; Y

)
and La

max = I
(
X̃h+1; Y

)
respectively

represent the mutual information before and after the merging. Notice that the merging procedure
fulfills the maximization of Equation (1) in an iterative manner.

The computation of agglomerative information bottleneck [12,35] is detailed as follows.
Suppose x̃1 and x̃2 are the two candidate clusters for merging in a certain iteration, x̃∗ is the new
cluster produced by this merge, and the loss of mutual information caused is deduced as [35]

∆Lmax (x̃1, x̃2) = p (x̃∗) JSD
(

p(x̃1)
p(x̃∗) , p(x̃2)

p(x̃∗) ; p (Y|x̃1) , p (Y|x̃2)
)

. (2)

Here JSD indicates the Jensen-Shannon divergence [36], which is a basic metric for the difference
between two probabilities P1 and P2 with two positive weights w1 and w2

JSDw1,w2 (P1, P2) = H

(
∑

i=1,2
wiPi

)
− ∑

i=1,2
wi H (Pi) , (3)

where H(P) = ∑
pi∈P

pi log pi is the Shannon entropy of a probability distribution P. Notice that the

introduction of JSD eases the calculation of the loss of mutual information needed in the clustering.
The prior and conditional probabilities of x̃∗ are obtained by

p (x̃∗) = p (x̃1) + p (x̃2) (4)

and

p
(
yj|x̃∗

)
=

p (x̃1)

p (x̃∗)
p
(
yj|x̃1

)
+

p (x̃2)

p (x̃∗)
p
(
yj|x̃2

)
, (5)

in practice Y = {yj} and p (Y|x) = {p
(
yj|x

)
} (j = 1, 2, . . . , n) are respectively a discrete feature

set and a discrete probability distribution function (PDF) obtained by the kernel density estimation
(KDE) modeling, and n is the number of discrete probability bins [9]. In the beginning of clustering,
p (x̃1) = p (x̃2) =

1
|X| , and here x̃1 and x̃2 correspond to two single trajectories in X.

IB-based trajectory clustering algorithm tries to find a number of clusters which group the similar
trajectories together, and at the same time, to preserve the information related to the feature set. Thus,
the ratio of mutual information between the clustering result and feature set to the one between the

original data and feature set, δMI =
I(X̃;Y)
I(X;Y) , can be used to adaptively terminate the iterative process.

IB performs good outputs with δMI ≥ 95%.
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4. An Overview of IBVis

In this section, we present our interactive visualization prototype, IBVis, which is effective
to graphically present and help understand the IB-based trajectory clustering. Figure 1 shows an
overview of IBVis.
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Figure 1. An overview of IBVis. The CROSS (see Section 7) dataset is used. (1) Interface of
Clusters Generation (upper), (a) Dashboard View, (b) Trajectory View, (c) Plot View, (d) Merging and
Backtracking View; (2) Interface of Results Comparison (bottom), (e) Clusters View, (f) Ranking View.

IBVis includes two modules, Clusters Generation and Results Comparison. The module Clusters
Generation is elaborately designed to deeply comprehend and analyze IB, and this module is divided
into four views, namely, Dashboard View, Trajectory View, Merging and Backtracking View and Plot
View. The Dashboard View acts as an interface to enable users to adjust the parameters for clustering
to navigate its procedure. All the trajectories are rendered in the Trajectory View, and each of them is
represented by a series of 2D spatial coordinates (locations) of the sample points. The trajectory being
handled is highlighted by color (red, for example). The Merging and Backtracking View allows users
to backtrack the iterative procedure. For a certain iteration, this view gives a detailed information of
the clusters, facilitating users to specify the clusters for merging. While either the PDF of the trajectory
is being modeled or the mutual information loss is being resulted from merging, the corresponding
display keeps updating in the Plot View. The module Results Comparison, which makes users know
the clustering outputs generated with different settings of parameters, involves Clusters View and
Ranking View. Based on the combination of the visual examination of different clustering results shown
in Clusters View and the quantitative comparison of the corresponding performance evaluations listed
in Ranking View, users can easily recognize good parameters for obtaining satisfactory clustering
results and in this case, to propose possible strategies for the improvement of IB.
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All the components of IBVis are developed using QT GUI framework (version: 5.8.0). The built-in
KDE modeling used by IBVis is implemented based on the powerful KDE toolbox in Matlab
(version: R2013a). All the IBVis relevant results in this paper are obtained on a Windows machine with
Intel Core i7 2.40 GHZ CPU and 8 GB RAM.

5. The Module of Clusters Generation

The window of this module, involving four views, supplies rich graphical representations and
interactive manipulations, and helps users understand well the IB-based clustering algorithm. The four
embedded views are described in detail below.

5.1. Dashboard View

The Dashboard View provides a set of interactive manipulations. Considering that users could be
not familiar with the knowledge of IB-based clustering, this view simply gives an intuitive guidance
for them to run the algorithm.

Basically, this view supplies three menu items corresponding respectively to the steps of the
IB-based clustering algorithm, namely, Load Data, KDE Modeling and Clustering. By clicking on an
item, the layout of its functionalities and the relevant descriptions appear. Once a step of the algorithm
has been finished, its corresponding layout is hidden. This obviously helps users concentrate on the
algorithmic step being performed. Notice that, as shown in Figure 2, the description texts for each
step, containing the highlighted keywords, are helpful for users to gain the knowledge of the trajectory
clustering based on IB.

(a) (b) (c)

Figure 2. Interface of Dashboard View. (a–c) show the design and description of three panels,
“Load Data”, “KDE Modeling” and “Clustering”, respectively. (a) Panel of step 1; (b) Panel of step 2;
(c) Panel of step 3.

The button “Go to Results Comparison” at the bottom of this view enables users to go to the
module Results Comparison.

5.2. Trajectory View

All the loaded trajectories are displayed here by using the locations of their sample points.
When clicking on a single trajectory, its sample points animate in a same speed, giving an intuitive
demonstration of this trajectory (see an example in the upper right corner of Figure 3).

In the procedure of KDE modeling, the trajectory being processed is visualized in red color, and all
the trajectories that have been modeled are visualized in green color. Via clicking on the trajectory
when its modeling has been finished, the PDF of this trajectory is displayed in Plot View.

In the procedure of IB-based clustering, the two trajectory clusters being merged are displayed
in red and blue colors respectively. After the clustering procedure has been finished, all the final
trajectory clusters are visualized in different colors. In the meantime, the checkboxes corresponding to
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the final clusters are used to show either all or part of these clusters to avoid the possible clutter of
complex clustering.

Figure 3. The sample points (in blue color) animate to demonstrate a single trajectory under selection
(in red color). The X and Y-Axis represent the horizontal and vertical positions, respectively.

5.3. Plot View

This view includes two kinds of plots for the displaying of PDF and mutual information loss,
respectively.

The plot of PDF can be represented as a 1D continuous functional curve (Figure 4a) when KDE
modeling is based on the shape attribute of a trajectory, here the tangent angles happened at sample
points characterize this attribute. If the location attribute is considered for the modeling of a trajectory,
the plot of PDF can be depicted vividly in a 2D manner on the ground plane (Figure 4b). That is,
the plane is segmented into a gird of a number of spatial cells, and the color of each cell is set according
to the corresponding PDF value.

0.55
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0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

(a) Attribute: angle (b) Attribute: location

Figure 4. PDFs based on the trajectory attributes. (a) KDE modeling based on angle; (b) KDE modeling
based on location.

The plot of mutual information loss (Figure 1) keeps updating in the procedure of IB-based
clustering, showing the loss value for each iteration. Considering that many iterations could happen
due to a large size of the trajectory dataset and that the values of mutual information loss could have
a high dynamic range, the zooming in and out is supported for this plot, by the use of mouse, to enable
a better understanding of the clustering from both detailed and global perspectives. Furthermore,
users can be moved to a specified iteration by the click of its number on the plot, this will be detailed
in Section 5.4 and Figure 5.
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Figure 5. Four ways to locate to a certain iteration. In this example, the 619th iteration is located.

5.4. Merging and Backtracking View

As discussed in our previous work [9], the agglomerative IB, which obtains, for each iteration,
a new merged cluster based on the two clusters giving rise to the minimization of the mutual
information loss happened in this iteration, may not get a global optimum for the whole clustering.
This view is developed as an interactive visual interface to “backtrack” the whole iterative procedure
of the clustering, that is, to examine the behavior of any IB iteration and if necessary, to remerge two
clusters that are different from before for a certain iteration, alleviating the local optimization issue as
much as possible.

This view, as presented in Figure 5, basically supplies, for each iteration, the plot of a number,
n, of the least mutual information loss caused by pairs of clusters. In the current implementation,
n = 20 works well for all the trajectory datasets we have tested. As an example in the bottom left part
of Figure 5, for iteration number 619, the merging of the 11th pair of clusters (the clusters numbers
451 and 452) results in the mutual information loss 0.002233. Other widgets at the bottom of this view
move users to a certain iteration, helping achieve both the behavior examination on this iteration and
also the possible remerging operation.

Users can be moved to a certain iteration based on one of the following four kinds of interactions,
described as follows. First, the use of the slider (see region 1 in Figure 5) is straightforward, but somewhat
arbitrary. Second, the iteration number can be input directly in the textbox (see region 2 in Figure 5).
Third, a trajectory is specified either by picking it up in Trajectory View (see region 3.1 in Figure 5) or by
filling in its ID number (see region 3.2 in Figure 5), and the relevant iterations in which this trajectory is
involved for being merged are identified. For example, the trajectory with ID = 51 is specified and
the numbers of its relevant iterations, {397, 432, 492, 541, 592, 619, 628, 638}, are recognized (Figure 5).
Notice that in this case, if a specified trajectory is found being incorrectly clustered, then the iteration
in which a wrong merging of clusters happens can be easily located. Here the PDF of the specified
trajectory is also displayed in Plot View, as a “highlight” on this trajectory. Fourth, an iteration can
be addressed by clicking on the plot of the least mutual information loss (see region 4 in Figure 5).
Note that, given a certain iteration, all the information corresponding to the four kinds of interactions
mentioned above is synchronized.

By the manipulation on the plot of the least mutual information loss for a certain iteration,
users can investigate the candidate pairs of clusters to determine whether they are acceptable to
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be merged. The trajectories belonging to two candidate clusters are highlighted in Trajectory View.
By the use of button “Preview”, the clustering results due to before and after “manual” merging are
visualized in Clusters View, and the corresponding quantitative performance results are given in
Ranking View (see the examples in Figure 6; Clusters View and Ranking View will be discussed in
Sections 6.1 and 6.2 respectively).

0.000120

0.000115

0.000110

0.000105

0.000100

(a) Clustering results are same

0.014

0.012

0.010

0.008

0.006

0.004

0.002

(b) Clustering results are different

Figure 6. Examples of changing the merging in one iteration. In different iterations, choosing the
merging clusters results in same (a) or different (b) clusterings.

6. The Module of Results Comparison

The window of this module provides two views to present all the clustering results by IB under
different settings in graphical and descriptive manners respectively, as shown in Figure 1.

6.1. Clusters View

This view simply presents visually a straightforward comparison between different clustering
results. Different clusters are visualized in varied colors. It is noted that the contents of this view
respond synchronically to interactions, such as deleting (“Delete”), operated in Ranking view.

6.2. Ranking View

This view is organized as a table, for the IB clustering, to analyze and understand the relationship
between its parameter settings and the corresponding performance results. Each row of the table
gives a concise information on a trial of IB clustering. Currently, the parameters (number of discrete
probability bins and trajectory attributes) used in KDE modeling and the performance evaluations
(precision, recall and runtime) on the clustering are concerned as the information items. Quantitative
values and additionally the color bar are used for presenting precision and recall metrics. The higher
the metric value is, the more color levels from light to dark present. Each trial of clustering is named
by its sequence index, for instance, IB-1 means the first trial. The checkbox offers a way to determine
whether a certain trial is involved or not, for the sake of being investigated. All the involved IB trials
can be sorted according to which kind of information users specify, performed by clicking on the
corresponding item. “Delete” is to remove an IB trial.
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7. Usage Scenarios

In this section, we take a public trajectory dataset, CROSS [6,37], to demonstrate how IBVis works
on interactive analysis of trajectories. We choose 650 training trajectories with the number of sample
points ranging from 6 to 19, happening at a four-way cross road intersection. The IB algorithm divides
the trajectories into 12 clusters, and each of which delivers a representative pattern of traffic flow,
such as straight moving and turning, as shown in Figure 6a. Since this dataset has a ground-truth, it is
easy to know whether the results by IBVis are one hundred percent correct or not.

7.1. Investigating the Mechanism of IB

Our focus is, based on IBVis, to probe the behavior of IB clustering in each iteration, attempting to
gain insight to improve IB. Here, as for the parameters used by KDE modeling, we set the number of
bins as 32 and utilize the location attribute as suggested by the designers [37]. In practical applications
of IB clustering, the execution efficiency and quality of clustering are important for the sake of
handling complex trajectory dataset, and the use of IBVis helps to solve these issues. Generally, in each
merging iteration, only two candidate trajectory clusters are combined. However, more than two
candidates could be merged to speed up the clustering process. An example of the utilization of
IBVis, shown in Figure 6a, indicates that the 14th pair of clusters (the clusters numbers 12 and 16)
are interactively and manually merged by using the view “Merging and Backtracking”, for the
539th iteration, to obtain the same final clustering results due to the direct performing of the original
IB algorithm. Moreover, the first pair of clusters (the clusters numbers 616 and 627), which are taken
for merging by the original IB, in the end fall into the clustering group also containing the 14th pair of
clusters. This implies that more than one pairs of clusters in an iteration could be merged, decreasing
the computational burden of the IB clustering process, as has been discovered in our previous work [10].
For another example of using IBVis, as illustrated in Figure 6b, the interactive analytics methodology
provided by “Merging and Backtracking” reveals that, by the merging of the 18th pair of clusters
(the clusters numbers 452 and 501) for the iteration number 624, the final clustering performance is
reduced to 0.9938 and 0.9867 for precision and recall measures respectively, which are all lower than
100 percent achieved by the original IB. This clearly points out that the quality control on the selection
of the pair of clusters for merging is important. In addition, this also hints that one of the possible
ways for the improvement of IB-based clustering is to make use of a term relevant to the clustering
quality in the objective function of IB principle.

The use of “Merging and Backtracking” also helps, in the procedure of IB clustering, to debug
a possible clustering error due to the outliers in the trajectory dataset. It is widely known that outliers
make the clustering difficult and usually outlier detection is done before the clustering [38]. Indeed,
the use of effective distance metrics, such as robust Mahalanobis distance [39], could probably help to
detect outliers in trajectory data. In this paper, we attempt an alternative way, namely the visualization
methodology, for this issue, as described in the following example. Considering the trajectories covered
by the “ground-truth” clusters 2, 11 and 12 in Figure 7a, only one trajectory of the cluster 12 is kept as
an outlier (the red one in upper part of Figure 7c), and the IB clustering is performed to output the
results shown in Figure 7b. The outlier and the trajectories belonging to the previous cluster 11 are
incorrectly grouped to give the (new) cluster 12. Besides, the original cluster 2 is wrongly divided into
the (new) clusters 2 and 3. The precision and recall for this unsatisfactory clustering are 99.60% and
91.67%, respectively, which can be obtained by checking the corresponding interface. Here, by simply
picking up the outlier trajectory in Trajectory View (as illustrated by the region 3.1 in Figure 5), the ID of
this trajectory (number 551) and also the iterations take this outlier for merging are all easily identified
on the interface. Obviously, with the participation of users, the iteration number 573, in which the
outlier is firstly included for merging, can be tracked, as demonstrated in the lower part of Figure 7c.
Then users can manually choose another suitable pair of clusters for merging for this iteration, finally
leading to a correct clustering result. The manageable handling of outliers for IB-based clustering
offered by IBVis implies that outlier detection can be done explicitly in the procedure of clustering,
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this can be fulfilled by adding an item on quality control and/or by directly carrying out outlier
detection in each iteration, as have been proposed in our former papers [9,11].

(a)

(b)

0.012

0.010

0.008

0.006

0.004

0.002

(c)

Figure 7. Result of IB dealing with outlier. The clustering result is worse with outlier (b) than with
outlier (a); (c) Via IBVis, users can obtain the iteration information of the outlier. (a) Clustering result
without outlier; (b) Clustering result with outlier; (c)Iteration information of the outlier.

IBVis, as discussed above, provides an interactive manipulation upon a certain iteration to correct
the IB-based clustering. In addition, the essence embedded in interactive operation suggests possible
approaches to the improvement of IB clustering.

7.2. Exploring the Trajectory Data

Based on discovering the relationship between parameter settings and the corresponding
clustering results, the trajectory data is explored and understood by the use of IBVis.

The different attributes taken for KDE modeling and then for IB-based clustering essentially play
an important role for observing the trajectory data from diverse perspectives. As a matter of fact, to select
which kind of attribute for trajectory data should be closely relevant to their application backgrounds.
For example, the angle attribute is used for trajectory shape analysis [40]. As for the CROSS dataset
used here, we believe that location is the most critical attribute, because all the trajectories of this dataset
happen at a cross road intersection and behave according to the required traffic rules based on location.
This is verified by the better performance evaluations resulted from the use of location compared with
those from the use of angle: an example organization by Ranking View lists trials of IB clustering with
different precision and recall values due to different attributes used (Figure 8).

The number of discrete probability bins, as evidenced in [9], is an important parameter for
IB-based clustering, given a certain attribute used in KDE modeling. According to Equation (2),
the mutual information loss of merging two clusters needs to compute the Jensen-Shannon divergence
between two weighted PDFs. Thus, in theory, if the number of bins is large then the runtime of IB
clustering becomes long, and this is obviously exemplified by the Ranking View demonstrated in
Figure 8. As for the practical mastering of trajectory data, the clustering performance is of course critical.
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The clear presentation, by the Ranking View, on the balance between the clustering performance,
the number of bins and the runtime of the algorithm undoubtedly gives an advice to understand well
the trajectory data.

To sum up, IBVis benefits the exploration of trajectory dataset, based on the trials of IB clustering
in different parameter settings.

Figure 8. The clustering results with various parameter settings.

8. User Study

We conducted a preliminary user study that gathered the feedback from users. Twenty participants
were given simple description of IBVis and asked to provide a score from 0 (bad) to 10 (excellent) for
each designed questions. They bear no relationship with this research and none of them had known
information bottleneck (IB) principle. The 5 questions focus on different aspects of our work:

1. Interface design. How do you feel about IBVis, such as the interface layout, system architecture,
colors, widgets and so on?

2. User interactions. Do you think that the interactions, such as highlight, backtracking, editing,
ranking and so on, are very easy and clear to get started?

3. Stability. Can you operate IBVis smoothly? Does IBVis occur system breakdown, sudden termination
or other unexpected cases?

4. Utility. Do you think IBVis is very useful and necessary to assist the understanding of IB and
explore trajectory data?

5. Knowledge acquisition. How much information about the mechanism of IB do you receive from
IBVis? Are you clear about how IB works for trajectory clustering now?

The marks are shown in Table 1. Most participants gave positive responses, and on average all
the scores are bigger than 8. According to this preliminary user study, IBVis is acceptable.

Table 1. User evaluation of IBVis.

User 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg.

Interface 8 8 7 8 10 7 8 9 9 8 10 7 9 8 9 7 8 8 9 8 8.25design

User 9 10 8 9 9 9 10 9 8 10 7 8 9 8 9 9 9 8 9 10 8.85interaction

Stability 10 8 9 7 9 8 8 9 9 9 8 9 9 7 7 9 9 8 8 9 8.45

Utility 9 8 9 9 8 8 9 8 8 9 9 7 8 9 8 7 8 8 10 8 8.55

Knowledge 7 8 8 8 9 9 8 8 8 8 7 9 7 9 8 8 7 8 8 9 8.05acquisition
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9. Conclusions

Information bottleneck (IB) is good at obtaining an adaptive number of clusters, without the use
of a termination threshold and distance measure. This paper has proposed and presented a simple but
effective prototype, IBVis, to fulfill the visual analytics on IB-based trajectory clustering, leading to
understanding and improving the iterative merging mechanism of IB and to exploring the trajectory
data. The usage scenarios introduced here have shown the effectiveness of IBVis. Additionally,
the user study conducted has demonstrated that IBVis is well designed, and that the rich interactive
manipulations provided offer a good use experience.

In the near future, IBVis can be built as an extension on some software platforms which
include a collection of machine learning algorithms and visualization tools, such as WEKA and
RapidMiner, for the sake of performance comparison. Also, some powerful similarity metrics such
as the so-called spatio-temporal convolution kernels [41] will be implemented in the framework of
general agglomerative clustering to improve the applicability and impact of our IBVis. The divergence
estimation techniques [42] could be used to directly obtain the difference between probability
distributions of clusters, for the purpose of simplifying the procedure of IB-based clustering.
As indicated in Section 7.1, the strategy for the iterative merging could be attempted to improve
the clustering performance. In addition, we will improve IBVis to have more intuitive guidance for the
new users, such as the relevant description of each function, recommend action and so on.
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