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Abstract: Three supramolecular bromostannates(IV) with “trapped” diiodine molecules, Cat2{[SnBr6](I2)}
(Cat = Me4N+ (1), 1-MePy+ (2) and 4-MePyH (3)), were synthesized. In all cases, I2 linkers are con-
nected with bromide ligands via halogen···halogen non-covalent interactions. Articles 1–3 were
studied using Raman spectroscopy, thermogravimetric analysis, and diffuse reflectance spectroscopy.
The latter indicates that 1–3 are narrow band gap semiconductors.
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1. Introduction

Metal halide complexes, or halometalates, represent the class of coordination com-
pounds which, apart from fundamental interest (in particular, related to structural chem-
istry), attracts attention due to numerous areas of materials science where they can be
applied. Those include design of ferroelectric and ferroelastic materials [1–5], photocataly-
sis [6–8], luminescence [9–15], photochromism [16,17], etc. However, the most prominent
area is photovoltaics. Since it was discovered that 3D perovskite-type iodoplumbates(II) can
be used as light absorbers in solar cells, this area has experienced very rapid growth [18–27]
(according to Scopus data, the number of papers on this topic dramatically increases an-
nually). In the last few years, there appear many works about the use of iodometalates
of p-block metals other than lead (this is driven mostly by environmental considera-
tions). Among the elements considered for this purpose, there are bismuth, tin, antimony,
etc. [28]. Yet, performance of solar cells based thereupon is significantly lower than for
iodoplumbate(II) derivatives but, at the same time, it was found that iodometalates(III)
(M = Sb, Bi) can serve as a component of highly efficient photodetectors [29–34]. This fact
strongly inspires further research in this field.

It is commonly assumed that the main disadvantage of halometalates other than
Pb(II) and Sn(II) derivatives in the course of photovoltaic applications is their stereochem-
istry. While iodoplumbates(II) and –stannates(II) can form isotropic, covalently-bonded
3D structures (perovskite-type), this is impossible for Sb(III) and Bi(III), which usually
form discrete, 1D or, rarely, 2D anions [35]. For M(IV) halide complexes, it is even more
challenging since they most commonly appear as mononuclear [MX6]2− anions. A possible
strategy to overcome this problem is the use of supramolecular approaches (increasing of
dimensionality via non-covalent interactions in a solid state). One of such ideas presented
recently is the use of supramolecular polyhalogen-halometalate hybrids. Incorporation of
di- or polyiodide units into a structure commonly yields a narrower optical band gap of
resulting compounds [36,37] and the assembly of 1D, 2D, or even 3D associates via halogen
bond [38]. Recent examples of diiodo-bromoantimonates(III) and –bromotellurates(IV)
demonstrate [39,40] that such hybrids indeed can serve as components of photodetectors.
Therefore, a search of new compounds belonging to this family is well justified.

Although tin(IV) halide complexes feature stereochemistry almost identical to Te(IV),
corresponding polyiodo-halometalates have yet been unknown. In this work, we present
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the first examples of this class: Cat2{[SnBr6](I2)} (cat = Me4N+ (1), 1-MePy+ (2) and
4-MePyH+ (3). In addition to the structural studies, we hereby report their thermal stability,
optical properties, and Raman spectra.

2. Experimental Part

All reagents were obtained from commercial sources and used and purchased.
1-methylpyridinium iodide (1-MePyI) was prepared by reaction of pyridine and 1.1× excess
of methyl iodide. Elemental analysis was performed on a Euro NA 3000 Elemental analyzer
(EuroVector, Pavia, Italy). In all cases, concentrated aqueous HBr was used.

2.1. Synthesis of 1

An amount of 60 mg (0.22 mmol) of SnBr2 was dissolved in 3 mL of HBr at 70 ◦C.
Then, 100 mg (0.43 mmol) of I2 were added. After 15 min, a solution of Me4Br in 2 mL
of HBr was added. The hot mixture was filtered, slowly cooled to r.t., and then to 5 ◦C.
Within 6 h, dark cherry-red crystals of 1 were formed. The yield was 65%. Element analysis
calculated for C8H24N2SnBr6I2: C 9.64; H 2.43; N 2.81. Found: C 9.74; H 2.51; N 2.90.

2.2. Synthesis of 2

An amount of 192 mg (0.87 mmol) of 1-MePyI was dissolved in 4 mL of water and
mixed with a stoichiometric amount of AgNO3 with stirring. After filtering off the formed
AgI, the resulting solution was evaporated and the precipitate was dissolved in 4 mL of
HBr. The mixture was heated to 70 ◦C. After that, 120 mg (0.43 mmol) SnBr2 and 220 mg
(0.87 mmol) of I2 were added. After cooling the solution, it was kept at 5 ◦C for one day,
resulting in dark cherry-red crystals of 2. Yield: 67%. Element analysis calculated for
C12H16N2SnBr6I2: C 13.91; H 1.56; N 2.70. Found: C 14.00; H 1.61; N 2.78.

2.3. Synthesis of 3

An amount of 120 mg (0.43 mmol) of SnBr2 was dissolved in 4 mL of HBr. The solution
was heated to 70 ◦C; 220 mg (0.87 mmol) of I2 was added and the mixture was stirred for
30 min. After that, 85 µL (0.87 mmol) of 4-MePy were added. The mixture was cooled to
r.t., then to 5 ◦C. After 7 h, dark cherry-red crystals of 3 formed. The estimated yield was
63%. Element analysis calculated for C12H16N2SnBr6: C 18.43; H 2.06; N 3.58. Found: C
18.38; H 2.13; N 3.57.

2.4. X-ray Diffractometry

Crystallographic data and refinement details for 1–3 are given in Table S1 (SI). The
diffraction data were collected on a New Xcalibur (Agilent Technologies, Santa Clara,
CA, USA) diffractometer with MoKα radiation (λ = 0.71073) by doing ϕ scans of nar-
row (0.5◦) frames at 150 K. Absorption correction was done empirically using SCALE3
ABSPACK (CrysAlisPro, Agilent Technologies, Version 1.171.37.35 (release 13-08-2014
CrysAlis171.NET) (compiled 13 August 2014, 18:06:01)).

Structures were solved by SHELXT [41] and refined by full-matrix least-squares treat-
ment against |F|2 in anisotropic approximation with SHELX 2014/7 [42] in ShelXle pro-
gram [43]. H-atoms were refined in the geometrically calculated positions. The main
geometrical parameters are summarized in Table S2.

The structure of 1 was refined in I41cd as an inversion twin with BASF 0.48. PLATON
did not suggest any symmetry change. Attempts to solve the structure in I41/acd or P42nm
space groups did not give any improvements. One position of highly disordered CH3 group
around N3 was not refined due to the absence of q-peaks with right geometry. Splitting and
refinement of C-atoms generated based on found positions were unstable. The occupancy
of N3 was 100%. The refinement composition was C7.75H23.25Br6I2N2Sn. The elemental
analysis data confirmed the complex composition as C8H24Br6I2N2Sn. According to the
electron density distribution, the second position of [SnBr6]2− octahedral unit with ≈8%
occupancy has been found (see SI for details).
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The crystallographic data have been deposed in the Cambridge Crystallographic Data
Centre under the deposition codes CCDC 2170497-2170499.

2.5. Raman Spectroscopy

Raman spectra were collected using a LabRAM HR Evolution (Horiba) spectrometer
with the excitation by the 633 nm line of the He-Ne laser. The spectra at room temperatures
were obtained in the backscattering geometry with a Raman microscope. The laser beam
was focused to a diameter of 2 µm using a LMPlan FL 50×/0.50 Olympus objective. The
spectral resolution was 0.7 cm−1. The laser power on the sample surface was about 0.03 mW.

2.6. Diffuse Reflectance Spectroscopy

Diffuse reflectance spectra were measured on a setup which consisted of a Kolibri-2
spectrometer (VMK Optoelektronica, Novosibirsk, Russia), fiber optic cable QR-400-7
(Ocean Optics, Rochester, NY, USA), and deuterium–tungsten lamp AvaLight-DHS (Avantes,
Apeldoorn, The Netherlands). The reference of 100% reflectance was BaSO4 powder. The
spectra were recorded five times in the wavelength interval of 300–1000 nm and then
averaged to reduce the random error.

2.7. Thermogravimetric Analysis (TGA)

TGA were carried out on a TG 209 F1 Iris thermobalance (NETZSCH, Selb, Germany).
The measurements were made in a helium flow in the temperature range of 30–450 ◦C using
the heating rate of 10 ◦C min−1, the gas flow rate of 60 mL min−1, and open Al crucibles.

2.8. Powder X-ray Diffractometry (PXRD)

XRD analysis of polycrystals was performed on a Shimadzu XRD-7000 diffractometer
(CuK-alpha radiation, Ni—filter, linear One Sight detector, 5–50◦ 2θ range, 0.0143◦ 2θ step,
2 s per step). Plotting of PXRD patterns and data treatment was performed using X’Pert
Plus software (see SI).

3. Results and Discussion

Synthesizing complexes 1–3, we used the same “straightforward” approach [39,40] as
we extensively applied earlier for Bi(III), Sb(V), and Te(IV) complexes: a solution containing
anionic bromometalate complex anions was mixed with I2 and then with the salt of the
organic cation. The choice of the latter is known to play the most important role in
halometalate chemistry since the nature of the cation has a very strong influence on the
system of non-covalent interactions in solid state and, therefore, it affects the assembly of
polynuclear anions. However, very little is known about rational principles of precursor
selection—in other words, screening is yet the most common strategy in halometalate
chemistry. On this reason, we chose highly available cations which we already used in our
earlier works on polyhalogen-halometalates.

The XRD data indicate that, like in halotellurates(IV), all isolated complexes are
built out of mononuclear [SnBr6]2− anions. The Sn-Br bond lengths are 2.587–2.645 Å
in 1, 2.563–2.627 Å in 2, and 2.563–2.684 Å in 3, respectively. The composition of the
polyhalogeno-anionic part in all cases is identical: {[SnBr6](I2)}. The I···I bonds in 1–3 are
2.692–2.695, 2.703, and 2.686 Å, respectively.

In 1, the I2 units are disordered over two positions with 0.985:0.015 occupancies. The
[SnBr6]2− units form non-covalent interactions with I2 (for most populated I2 positions,
corresponding Br···I are 3.201–3.203 Å which is less than the sum of corresponding Bondi’s
van der Waals radii (3.81 Å [44,45]). The I-I-Br angles are 170.57–173.88◦. The superposition
of {[SnBr6](I2)} chains can be considered as a pseudo-2D substructure (Figure 1). The
positional disorder of [SnBr6]2− over two closed positions (0.92/0.08 occupancies) was
found in the crystal structure of 1 (Figure S3, SI). Such complex anions interact with
I2 molecules, producing layers where both components follow 44 plane net topology
(Figure S4). Such layers stack together in ABABA . . . manner (Figure S5) with shifting in a
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[110] crystal direction. Both [SnBr6]2− and I2 centers of gravity follow bcc sublattices. TMA
cations occupy voids between the above-mentioned layers (Figure S6). There are three
types of TMA cations in the unit cell (Figure S7): the first and second types occupy special
positions and the third type occupies common positions. Cations of the latter type have
non-linear periodicity.
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In both 2 and 3, I2 and [SnBr6]2− structural units form linear supramolecular chains
(Figure 2). The I···Br distances in 2 and 3 are 3.219 and 3.412–3.432 Å, the Sn-Br-I and Br-I-I
angles are 143.46 and 173.03 in 2, 160.00–167.09 and 162.67–170.18◦, respectively.
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In 2, there are two types of above-mentioned 1D chains running perpendicular to each
other along [b− a] and [b + a] directions, respectively (Figure S7, SI). In the crystal, packing
such 1D structures can be combined into pseudo layers located in the [110] crystal direction.
These layers stack together with AABBAA . . . topology. 1-methylpyridinium cations are
located in the space between the above-mentioned 1D associates. In 3, [SnBr6]2− and I2
form chains running along [010] the crystal direction. In the crystal packing (Figure S8),
such associates can be combined into pseudo layers located in [110] the crystal direction.
These layers stack together, producing ABABA . . . topology. 4-methylpyridinium cations
are located in the space between the above-mentioned 1D structures. Hence, changing of
the Me-group position strongly affects the crystal packing topology of isolated compounds.

Complex 3 demonstrates poor stability while being isolated from I2-containing mother
liquor. It decomposes within a few dozen minutes, losing incorporated I2 (elemental
analysis for the residue corresponds to “diiodine-free” (4-MePyH)2[SnBr6]). Both 1 and
2 are stable and they were isolated as single phases, as follows from PXRD data (see SI,
Figures S1 and S2). Nevertheless, we succeeded in recording of Raman spectra for the whole
series of samples. Results are presented on Figure 3. It can be noticed that in each case,
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there are two bands within the 180–200 cm−1 region where I2 has a highly characteristic
band in diiodo-halometalates [46]. Most likely, the bands at 196–200 cm−1 are related to
I2 while those at 182–184 correspond to [SnBr6]2− vibrations [47] (as well as all bands at
wavelengths < 150 cm−1; these data agree well with our previous work [48]).
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As follows from TGA data, 1 and 2 demonstrate different thermal stability—decomposition
corresponding to continuous loss of diiodine occurs at >110 and >90 ◦C, respectively
(Figures 4 and 5). These results agree well with our observations made for diiodo-
bromotellurates(IV) [40]: depending on the nature of the organic cation and, therefore,
on the system of EH···X interactions it forms in solid state with halide ligands and poly-
halogeno units, stability can be dramatically diverse.
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Diffuse reflectance spectra of 1 and 2 are presented in Figures 6 and 7. The optical
band gaps for these two complexes are 1.68 and 1.69 eV, respectively, which is more than for
similar diiodo-bromotellurates described by us earlier (1.41–1.74, with average 1.55 eV [40]).
The overall features of these spectra are quite common for p-block halometalates [49,50].
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4. Conclusions

This work demonstrates that the general strategy utilized in preparation of
polyhalogen-halometalates, designed and widely applied by us for synthesis of Bi(III), Te(IV),
and Sb(V) complexes, as well as dichloro-chlorostannates(IV) and –plumbates(IV) [51], works
very well for diiodo-bromostannates(IV). We assume the existence of such hybrids of other
metals commonly forming mononuclear halometalate anions [MX6]2−, such as Zr, Hf, Ir,
etc. Corresponding experiments are underway in our group.
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