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Abstract 

Objectives:  Mycolicibacterium peregrinum, a rapidly growing mycobacterial species, can opportunistically infect 
humans and other animals. Although M. peregrinum infections in animals have been reported, the infection sources 
are unknown, as is information on its virulence and drug resistant genes, which limits our current understanding of 
this bacterium. To address this knowledge gap, we obtained draft genome sequences for two M. peregrinum isolates; 
one from a case of pig lymphadenitis and one from the pig farm’s soil.

Data description:  We report here the draft genome sequences of M. peregrinum isolates 131_1 and 138 (6,451,733-
bp and 6,479,047-bp). They were isolated from a pig with mesenteric lymph node lymphadenitis and from soil on 
the Japanese farm where the pig was reared. A sequence alignment identity score of 100% was obtained by in 
silico DNA–DNA hybridization of the two isolates, while 98.28% (isolate 131_1) and 98.27% (isolate 138) scores were 
recorded for hybridization with a human isolate. Both isolates carry arr-1, AAC​(2′)-Ib, RbpA, mtrA and tap drug-resist-
ance genes. Isolates 131_1 and 138 carry 234 and 236 putative virulence genes, respectively. Therefore, environment 
M. peregrinum is potentially drug resistant and can cause swine lymphadenitis. Our data provides valuable new infor-
mation for future studies on nontuberculous mycobacteria.
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Objective
Mycolicibacterium peregrinum (basonym: Mycobac-
terium peregrinum), a known pathogenic and rapidly 
growing mycobacterium (RGM), has been isolated from 
clinical samples from pigs, cattle and a person [1–3]. Sev-
eral cases of M. peregrinum infection have been reported 
in aquatic animals [4, 5], wild animals [6–8] and livestock 
[1, 2, 9], including one porcine case [1]. Nontuberculous 
mycobacteria (NTM) such as M. peregrinum generally 

reside in water and soil, and these environmental NTM 
are believed to occasionally infect humans and other spe-
cies, opportunistically [10]. However, the transmission 
sources for M. peregrinum in humans and other animals 
are not clear in each case. Classification of the Myco-
bacteria genus currently positions the Mycobacterium 
fortuitum group, including M. peregrinum, as Mycolici-
bacterium [11].

Few studies on M. peregrinum virulence genes have 
been conducted [12], but the medical fields have reported 
on multidrug resistance in this bacterium [13]. It has also 
been reported that M. peregrinum is more susceptible to 
some antimicrobial agents than other mycobacteria spe-
cies [14]. Other studies have reported that some RGM 
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carry antibiotic resistance genes, such as erythromy-
cin ribosomal methylase (erm) [15], LfrA and tap [16]. 
Although the tap gene is present in M. peregrinum, a 
comprehensive analysis of its antibiotic resistance genes 
has not been done. Therefore, to obtain better under-
standing of the potential risk posed by antibiotic resist-
ance in M. peregrinum, an analysis at the draft genome 
level is necessary. Such information would be useful to 
veterinary medicine as there is no genome information 
on isolates from non-human animals. To aid future inves-
tigations into the sources of M. peregrinum infection and 
to provide information on virulence and drug resistance 
genes, we present here the draft M. peregrinum genome 
sequences for isolates 131_1 and 138 from a case of swine 
lymphadenitis and from soil on the same Japanese farm, 
respectively.

Data description
Mycolicibacterium peregrinum isolate 131_1 was iso-
lated from the mesenteric lymph nodes of a pig with 
lymphadenitis and isolate 138 was isolated from soil on 
the same pig farm (Tokai area of Japan), as described 
previously [17]. Both samples were individually decon-
taminated with an equal volume of 2% NaOH and then 
inoculated onto 2% Ogawa medium (Kyokuto Pharma-
ceutical, Tokyo, Japan). Both isolates were species identi-
fied by sequencing the 16S rRNA, hsp65 and rpoB genes 
[18, 19]. Genomic DNA was extracted using the Pure-
Link genomic DNA extraction kit (Invitrogen, Carlsbad, 
CA, USA) according to the manufacturer’s instructions, 
and paired-end libraries with an average insert size of 
350-bp were prepared. Sequencing (2× 150-bp) was 
conducted on the HiSeq X Ten sequencing platform 
(Illumina, San Diego, CA, USA) at the Beijing Genom-
ics Institute (Shenzhen, China). Draft genome sequences 
were obtained from the reads according to the method 
reported previously (Table  1) [17]. In brief, the reads 
were trimmed by TrimGalore! (https​://githu​b.com/Felix​
Krueg​er/TrimG​alore​) and mismatched reads were cor-
rected, assembled and polished using SPAdes [20], Pilon 
[21] and Unicycler [22]. Genome completeness was esti-
mated using CheckM [23]. Taxonomic classification 
was conducted using Kaiju [24] and Anvi’o [25]. Draft 
genomes were annotated using the NCBI Prokaryotic 
Genome Annotation Pipeline (PGAP) [26]. Virulence 

and drug resistant genes were identified by VFanalyser 
(http://www.mgc.ac.cn/VFs/main.htm) and RGI (https​
://card.mcmas​ter.ca/analy​ze/rgi). In silico DNA–DNA 
hybridization was conducted by the MUMmer program 
with JspiecesWS [27].

The draft genome sequence of M. peregrinum isolate 
131_1 (Data file 1) comprised 33 contigs with a total 
length of 6,451,733  bp, a G+C content of 66.41%, and 
an N50 size of 292,445  bp. The M. peregrinum 138 iso-
late’s draft genome sequence (Data file 2) comprised 46 
contigs with a total length of 6,479,047 bp, a G+C con-
tent of 66.41%, and an N50 size of 324,444 bp. The cod-
ing sequences, rRNAs and tRNAs in both isolates were 
estimated at 6169, 3, and 55 (isolate 131_1) and 6180, 
3, and 55 (isolate 138), respectively. Both isolates con-
tained large numbers of putative virulence genes and 
genes involved in metabolism (e.g., amino acid, purine, 
lipid and fatty acid genes), anaerobic respiration, anti-
apoptosis, catabolism, metal uptake, cell surface compo-
nents, mammalian cell entry operons, phagosome arrest, 
proteases, regulation, secreted proteins, secretion sys-
tem, stress adaptation and toxins. Both isolates contain 
five drug resistance-related genes: arr-1, AAC​(2′)-Ib, 
RbpA, mtrA and tap. In silico DNA–DNA hybridization 
revealed that the aligned nucleotide sequences from M. 
peregrinum isolates 131_1 and 138 share 98.28% and 
98.27% identity with the human M. peregrinum isolate 
[3], respectively, 88.46% sequence identity with M. for-
tuitum subsp. fortuitum [28], 85.18% sequence identity 
with Mycobacteroides abscessus [29], 84.60% and 84.61% 
identity with M. mucogenicum [30], respectively, 84.50% 
sequence identity with Mycobacteroides chelonae [31], 
and 84.21% sequence identity with M. neoaurum [32]. 
An aligned sequence identity score of both isolates was 
100%, suggesting that M. peregrinum exists in the farm 
soil and both isolates might possibly be the same origin. 
Sequencing revealed that both isolates may be resistant 
to rifampin and macrolide antibiotics. These results pro-
vide useful information for future NTM studies and for 
clinical antibiotic use.

Limitations
The present data are based on the genome sequences of 
M. peregrinum isolates 131_1 and 138 at the draft level. 
Therefore, the exact lengths of these sequences, numbers 

Table 1  Overview of data files

Label Name of data file/data set File types (file extension) Data repository and identifier (DOI or accession number)

Data file 1 M. peregrinum 131_1 FASTA file (.fasta) GenBank
RWJZ00000000 (https​://www.ncbi.nlm.nih.gov/nucco​re/RWJZ0​00000​00)

Data file 2 M. peregrinum 138 FASTA file (.fasta) GenBank
RWKA00000000 (https​://www.ncbi.nlm.nih.gov/nucco​re/RWKA0​00000​00)

https://github.com/FelixKrueger/TrimGalore
https://github.com/FelixKrueger/TrimGalore
http://www.mgc.ac.cn/VFs/main.htm
https://card.mcmaster.ca/analyze/rgi
https://card.mcmaster.ca/analyze/rgi
https://www.ncbi.nlm.nih.gov/nuccore/RWJZ00000000
https://www.ncbi.nlm.nih.gov/nuccore/RWKA00000000
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of coding sequences, rRNAs, tRNAs and repetitive ele-
ments cannot be predicted with certainty. The existence 
of plasmid/s or extra-chromosomal DNAs also cannot be 
predicted with certainty.

Abbreviations
LfrA: the membrane efflux pump gene for quinolones (confers resistance to 
macrolides); erm: ribosomal RNA methyltransferase gene; tap: major facilitator 
superfamily (MFS) antibiotic efflux pump gene (confers resistance to tetracy-
clines); arr-1: rifampin ADP-ribosyltransferase (Arr) gene; AAC​(2′)-Ib: chromo-
somal-encoded aminoglycoside acetyltransferase gene (confers resistance 
to aminoglycosides); RbpA: RNA-polymerase binding protein gene (confers 
resistance to rifampin); mtrA: transcriptional activator gene of the MtrCDE 
multidrug efflux pump (confers resistance to penam, a macrolide antibiotic).
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