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Mycobacterium tuberculosis (Mtb) has complex and intricate interactions with

host immune cells. Mtb can survive, persist, and grow within macrophages and

thereby circumvent detection by the innate immune system. Recently, the field of

immunometabolism, which focuses on the link between metabolism and immune

function, has provided us with an improved understanding of the role of metabolism in

modulating immune function. For example, host immune cells can switch from oxidative

phosphorylation to glycolysis in response to infection, a phenomenon known as the

Warburg effect. In this state, immune cells are capable of amplifying production of both

antimicrobial pro-inflammatory mediators that are critical for the elimination of bacteria.

Also, cells undergoing the Warburg effect upregulate production of nitric oxide augment

the synthesis of bioactive lipids. In this review, we describe our current understanding

of the Warburg effect and discuss its role in promoting host immune responses to Mtb.

In most settings, immune cells utilize the Warburg effect to promote inflammation and

thereby eliminate invading bacteria; interestingly, Mtb exploits this effect to promote its

own survival. A better understanding of the dynamics of metabolism within immune cells

together with the specific features that contribute to the pathogenesis of tuberculosis

(TB) may suggest potential host-directed therapeutic targets for promoting clearance of

Mtb and limiting its survival in vivo.

Keywords: Mycobacterium tuberculosis, innate immunity, immunometabolism, host-directed therapy,

inflammation

INTRODUCTION

Tuberculosis (TB) is caused by the pathogenic species,Mycobacterium tuberculosis (Mtb); together
with human immunodeficiency virus (HIV/AIDS) infection, TB is among the most prevalent and
severe of the infectious diseases worldwide. In 2019, an estimated 10 million people developed
active tuberculosis in association with 1.6million deaths (1). Infection withMtb triggers an immune
response, howeverMtb can survive and grow by circumventing the host immune detection. One of
the pathological characteristics of the successful infection withMtb is the formation of granulome,
which are organized cellular structures that include a variety of innate and adaptive immune cells
that surround the Mtb-infected phagocytes (2–5). During the formation of granulome, intricate
host-Mtb interactions occur at the infectious site and this pathogen can escape various host immune
responses, which ultimately prevent Mtb elimination by these systems. Once Mtb enters the host,
its cell wall components and proteins are detected by Toll-like receptors (TLRs), primarily by TLR2
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and TLR4. Mtb is engulfed by professional phagocytic cells such
as a macrophage, dendritic cell (DC), or neutrophil, and becomes
incorporated into the subcellular organelle formed by the fusion
of the phagosome and lysosome to create the phagolysosome,
however Mtb is able to manipulate the endocytic pathway by
suppressing fusion of the phagosome containing the bacteria
with lysosomes. Infected macrophages synthesize and release
both inflammatory and antimicrobial genes and molecules,
including interleukin (IL)-1β, IL-6, IL-12, tumor necrosis factor
(TNF), inducible nitric oxide synthase/nitric oxide synthase 2
(iNOS/NOS2), and chemokines which activate both the innate
and adaptive immune systems. Activated immune cells secrete
protective molecules to the extracellular space to promote
recruitment of other immune cells to form a granuloma (4,
6). Interestingly, endogenous proteins expressed by Mtb serve
to perturb the formation of phagolysosome, the permitting its
survival and proliferation within macrophages. For preventing
excessive lung damage during Mtb infection, Mtb also elicits
the production of protective factors that promote its survival
including anti-inflammatory mediators such as IL-4, IL-10,
IL-13, and transforming growth factor β (TGF-β) (7–9) and
several human TB studies show that these factors has been
shown to be increased in the active TB patients (10, 11). These
immunosuppressive factors play key roles in limits effective the
immune defense toMtb (12, 13). Mtb will persist and exacerbate
pathophysiological manifestations within the granulome; this
will ultimately result in progression of disease and dissemination
to the other hosts (5, 14). As a major focus of this disease
process, mycobacterial granulome have been the subject of
intense scrutiny mainly focused on mechanisms of formation,
function, maintenance, and evolution.

Recently, there has been an increasing appreciation of the
important relationship that exists between essential metabolism
and immune cell function. Metabolic reprogramming in immune
cells, a phenomenon known as immunometabolism, focuses
on unique cellular functions that are essential for the immune
response. During TB infection, host cells undergo profound
metabolic change, which results in differential control of

Abbreviations: Mtb, Mycobacterium tuberculosis; TB, Tuberculosis; HDT, Host-
directed target; TLRs, Toll-like receptors; DC, Dendritic cell; IL, Interleukin;
TNF, Tumor necrosis factor; iNOS/NOS2, inducible nitric oxide synthase/nitric
oxide synthase 2; TGF-β, Transforming growth factor β; OXPHOS, Oxidative
phosphorylation; DM, Diabetes mellitus; MDR-TB, Multidrug-resistant TB; XDR-
TB, Extensively drug-resistance TB; NO, Nitric oxide; ROS, Reactive oxygen
species; HIF-1, Hypoxia-induced factor 1; NF-κB, Nuclear factor-κB; CypD,
Cyclophililn D; PHD, Prolyl hydrolases; FIH, Factor inhibiting HIF; PFKFB3,
6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3; F-2,6-BP, Fructose-2,6-
diphosphate; SDH, Succinate dehydrogenase; LPS, Lipopolysaccharide; ACOD1,
Aconitate decarboxylase 1; Irg1, Immune-responsive gene1; PKM2, Pyruvate
kinase M2; ARG, Arginase; PPARs, Peroxisome proliferator-activated receptors;
LXR, Liver X receptor; SREBPs, Sterol regulatory element-binding proteins;
LD, Lipid droplet; FASN, Fatty acid synthase; DGAT, Diacylglycerol O-
acyltransferase; ACAT, Acyl-CoA:cholesterol O- acyltransferase; Plin, Perilipin;
TFEB, Transcription factor EB; mTOR, Mammal target of rapamycin; AMPK,
AMP-activated protein kinase; 2-DG, 2-deoxyglucose; PPARGC1, Peroxisome
proliferator-activated receptor gamma, coactivator 1; AICAR, 5-aminoimidazole-
4-carboxamide-1-β-D-ribofuranoside; UCP2, Mitochondrial uncoupling protein
2; SIRTs, Sirtuins; PGC-1α, Peroxisome proliferator-activated receptor gamma
coactivator 1-alpha.

various cytokines and chemokines associated with inflammation,
clearance, inhibition, and progression of Mtb infection (15, 16).
Specifically, a shift in the use of pathways promoting glucose
and lipid metabolism can be an important feature for directing
host cell function to promote mycobacterial survival with the
granulome (17). At homeostasis, cells in “resting” condition
utilize oxidative phosphorylation (OXPHOS) to produce ATP
from NADH and FADH2 by facilitating transfer of protons and
electrons. Cells typically switch from OXPHOS to glycolysis
in order to generate ATP under oxygen-depleted or hypoxic
conditions (18). Similarly, glycolysis is main form of metabolism
in immune cells that promote the inflammatory response in
the immune system. This observation–that immune cells utilize
glycolysis even in the presence of adequate concentrations of
oxygen (i.e., aerobic glycolysis)– is known as the “Warburg
effect.” To date, the Warburg effect has been explored primarily
with respect to cancer metabolism. Although aerobic glycolysis
generates fewer ATP molecules per cycle than does OXPHOS,
this pathway is capable of rapid generation of ATP required by
immune cells. Additionally, aerobic glycolysis requires a number
of specific precursors, including nucleotides, amino acids, and
lipids (19). Because metabolic reprogramming is essential for
immune cell function, studies that explore this phenomenon
in also provide new insight into the relationship between host
immune cells and infection withMtb. Furthermore, predisposing
factors for TB, including diabetes, and HIV also related to
immunometabolism against TB pathogenicity. Diabetes mellitus
(DM) is a mainly risky factor for occurring active TB (20–22).
In DM, innate immune cells undergo activation for releasing
cytokines, recruiting neutrophils, upregulate T cell activation and
antigen recognition (23, 24). Metabolism of DM is characterized
by increasing glucose production and impairing glucose uptake.
Expression of glucose transporter and glycolytic enzymes is
elevated in DM (25). In DM, High glucose level increased
IL-10 production, impaired macrophage phagocytic ability for
promoting better milieu for survival and proliferation of TB
(26, 27). Additionally, HIV is also other pathogen to be associated
with pathogenicity of TB (28–30). In HIV-1-infected primary
CD4+ T cells, glycolytic metabolism is induced with high
pro-inflammatory response and increased production of virus
(31, 32). Interestingly, glycolytic metabolism is regulated by
HIV-1 infection in macrophage alleviated Warburg effects (33).
These factors promote the activation of TB by reprogramming
the metabolism.

A variety of antibiotics have been introduced for promoting
eradication of Mtb infection, including 6–9 months courses
of isoniazid, rifampicin, ethambutol, and pyrazinamide.
However, the emergence of multidrug-resistant TB (MDR-
TB) or extensively drug-resistant TB (XDR-TB) has become
a major challenge toward designing effective treatments
and for eradication of this disease (34, 35). Among the
approaches to this challenge, host-directed therapy (HDT)
has been introduced as a means to potentiate and to amplify
the effectiveness of current treatments used for TB (36). A
clear understanding of the molecular interactions between
host cell metabolism and accommodations made to Mtb may
provide new strategies to combat infection. Here we review the
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current understanding of the metabolic relationship between
the host and the Mtb pathogen. We also suggest several new
strategies that may enhance host metabolic pathways and thereby
promote protective antimicrobial functions in the setting of
TB infection.

METABOLIC REPROGRAMMING IN TB

Warburg Effect in Immune Cells
Immune cells provide critical protection and maintain
homeostasis in the mammalian host. There are currently
many studies that suggest that the functions of immune cells
are largely reliant on specific aspects of host metabolism.
These studies, which have generated a field known as
immunometabolism, have provided us for a new focus for
understanding how and why immune cells exist or persist
in a specific metabolic state in order to support or direct
functional changes. Several recent reports suggest that different
metabolic signatures have a direct impact on specific effector
functions characteristic of the innate and adaptive immune
systems (37). As such, among the primary functions of immune
cells, there are those that generate an inflammatory response,
actions typically undertaken by M1-polarized macrophages,
DCs, neutrophils, and effector T cells, and those that promote
an anti- inflammatory response, which include M2-polarized
macrophages, as well as regulatory and memory T cells. The
basic metabolic profiles of these cells differ significantly from
one another. Inflammatory immune cells generate energy
in the form of ATP mainly via glycolytic metabolism; by
contrast, immune cells that promote anti- inflammatory
activities generate ATP via oxidative phosphorylation and fatty
acid oxidation (38–43). These observations have been best
characterized for polarized macrophages. The predominant
phenotypes of macrophages are known as M1 and M2 (44, 45).
M1 macrophages, activated by lipopolysaccharide (LPS) and
IFN-γ, promote pro-inflammatory and antibacterial functions in
immune system, and they produce nitric oxide (NO) and reactive
oxygen species (ROS) which are fundamental components of
the pathways used to eradicate bacteria. The main metabolic
pathway used by these cells is glycolysis, which results in
rapid production of ATP via inhibition of the trichloroacetic
acid (TCA) cycle and OXPHOS in mitochondria; this is a
critical factor due to the fact that M1 macrophages require
rapid generation of ATP to activate inflammation. By contrast,
M2 macrophages promote anti-inflammatory responses and
tissue repair; these cells mainly utilize OXPHOS and fatty acid
oxidation in order to generate ATP; this takes place via efficient
pathways localized in the mitochondria (46–51). In T cells,
metabolic state is reprogrammed according to T cell subsets.
Naïve T cells mainly use OXPHOS for generating energy.
Upon TCR stimulation, glycolytic metabolism is upregulated
for differentiating into activated T cell. Th1, TH2, and Th17
effector cells mainly depend on aerobic glycolysis. While,
regulatory and memory T cells use fatty acid oxidation and
OXPHOS for differentiation and functions (52, 53). Mammalian
target of rapamycin (mTOR) and AKT signaling is essential
for regulating metabolism of T cells and cytokine responses

(54). Recently, cyclophililn D (CypD) related to necrosis is
a factor for regulating metabolic state and functions in T
cells (55).

Pro-inflammatory immune cells generate ATP in high
concentrations via glycolysis even when functioning in aerobic
conditions; the phenomenon of aerobic glycolysis is also known
as the “Warburg effect” (56). Hypoxia and inflammation are
inherently linked to one another; upon activation, immune
cells undergo considerable metabolic reprogramming to sustain
energy needs and thus switch to predominantly aerobic
glycolysis. Hypoxia-induced factor 1 (HIF-1), the main mediator
of the Warburg effect, is expressed in response to hypoxia and
controls expression of numerous glycolytic enzymes. HIF-1 has
two subunits, α and β; regulation of HIF-1 is dependent on the
α subunit. Post-translational regulation of HIF- 1 is modulated
via the expression and stability of HIF-1α (56–58). Members
of the nuclear factor-κB (NF-κB) family of transcription factors
comprise the signaling pathway that is most closely involved
in Hif-1α/HIF-1A expression (59, 60). Under conditions of
physiologic oxygenation, prolyl hydrolases (PHD) degrade HIF-
1α and target it for proteasome-mediated degradation. Inhibiting
HIF (FIH) is an aspariginyl hydroxylase that also determines
the level of active HIF-1α. Overall, hypoxia-inducible genes
encode proteins involved in a myriad of cellular pathways that
mediate cell survival, apoptosis, erythropoiesis, angiogenesis,
glucose metabolism, and that regulate acid-base balance (61).
HIF-1α is expressed in primary innate immune cells, including
macrophages, DCs, neutrophils, and Th17 cells. Additional
roles for HIF-1α in promoting macrophage differentiation and
function have also been demonstrated. Most notably, HIF-1α-
mediated metabolic reprogramming plays a significant role in
modulating macrophage polarization toward the M1 or M2
phenotype (62).

Glycolysis Metabolism in TB
When the host is infected by bacteria, immune cells are activated;
the characteristic immune response occur concomitant with
a switch to glycolytic metabolism (Figure 1). Several recent
studies that have focused on transcriptome data from mouse
and rabbit lung as well as granulome from the lungs of TB
patients suggest that the metabolic state of the TB-infected host
includes modulation of glucose metabolism (63–66). The general
metabolic characteristics in TB infection included enhanced
expression of genes related to the Warburg effect including HIF-
1α, glycolytic enzymes, the pentose phosphate pathway, and H+-
ATPase. Additionally, 1H-NMR-based metabolomics profiled
the increased accumulation of lactate due to the increased
levels of glycolysis in the lungs of Mtb-infected mice (67).
Likewise, host immune cells responded to Mtb infection with
increased expression of pro- inflammatory and antimicrobial-
related genes associated with the Warburg effect. These results
highlighted the importance of metabolic reprogramming due
to glycolysis and its relationship to protection against Mtb
infection. Furthermore, analysis of the transcriptomes of bone
marrow-derived macrophages (BMDM) infected with one of
two clinical strains of Mtb (the immunogenic strain CDC1551
or the hypervirulent strain HN878) included elevated levels
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FIGURE 1 | Metabolic reprogramming in Mtb-infected immune cells. Mtb infection in host is accompanied by upregulation of glycolysis and lactate production.

Increased HIF-1α-induced Warburg effect enhance gene of glycolytic metabolism. In contrast, TCA cycle and oxidative phosphorylation (OXPHOS) is downregulated.

Dysregulation of TCA cycle accumulates several intermediates in TCA cycle such as succinate and itaconate. Additionally, breakdown of OXPHOS increases NO and

ROS level. Blue, increased expression/level; Red, decreased expression/level.

of expression of genes associated with the Warburg effect.
Given that these two clinical strains are known for differential
activation of immune responses during the course of BMDM
infection, different metabolic responses were anticipated (64).
Interestingly, BMDMs infected with each strain promoted
upregulation of genes encoding enzymes associated with the
Warburg effect together with HIF-1α-associated signaling,
although specific differences were observed. Of note, at
6 h post-infection, the induction of the gene encoding 6-
phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3)
a member of the of phosphofructokinase (PFK)-2 family, was
more prominent in CDC1551-infected BMDMs (65). Pfkfb3
has the highest activity among the PFK-2 members, and
fructose-2,6-diphosphate (F-2,6-BP), which is the product of
Pfkfb3-mediated phosphorylation, is an essential component
promoting regulation of glycolysis (68). CDC1551-infected
BMDMs in a state of elevated glycolysis respond with a
vigorous early pro-inflammatory response. By contrast, relatively

limited activation of the Warburg effect together with high
levels of glucose uptake were observed in response to Mtb.
Furthermore, HN878-infection of BMDMs may result in
dysregulated host cell lipid metabolism. Specifically, one study
compared gene expression in response to Mtb H37Ra or H37Rv
infection of human alveolar macrophage revealed strain-specific
differences. Gene expression associated with inflammation,
general metabolism, and lipid metabolism was downregulated in
H37Rv infected macrophages (69). As suggested by the responses
to infection with HN878, a virulent strain can have an impact
on host metabolism gene by downregulating inflammatory
responses that results in diminished the inflammation and
prolonged Mtb survival. Another study compared the metabolic
states elicited by macrophage challenge with Mtb, with the
vaccine strain M. bovis BCG or with killed Mtb. Each strain
promoted a unique pattern of energy modulation, as determined
by XF (extracellular flux) analysis. Total metabolism in response
to challenge with live Mtb including glucose utilization and
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FIGURE 2 | Process of the Immune response and metabolic reprogramming in Mtb- infected immune cells. After Mtb infection, inflammatory signaling is activated by

TLR2 or 4. Also, Metabolism is switch to aerobic glycolysis mediated by HIF-1α which upregulates glycolytic enzymes. Increased glycolysis related to upregulate

pro-inflammatory cytokines and anti-microbial effectors. PPARγ upregulates lipid synthetic gene for formation of lipid droplet which is exploited by Mtb for survival and

growth. Blue, increased expression/level.

OXPHOS is lower than that observed in response to BCG or
dead Mtb (70). Also, CD8+ T cell showed similar results in
Mtb or BCG infection. Through RNA-seq, glycolytic metabolism
is upregulated by challenging Mtb in early and late phase.
Surprisingly, Mtb triggered mitochondrial dysfunction, which
downregulates OXPHOS metabolism, while upregulates mtROS,
but metabolism is recovered against BCG (71). Thus, infection
with live, virulent Mtb decelerated the shift to glycolytic and
OXPHOS bioenergetics, and thereby limited the development of
inflammatory effector functions.

The switch to glycolytic metabolism resulted in the
accumulation of several TCA intermediates that themselves
function as a metabolic signal to link metabolism and immunity
(Figure 2). Succinate, a prominent TCA intermediate, drives
IL-1β production, inhibits the production of anti-inflammatory
cytokines, and enhances HIF-1α activity by inhibiting HIF-1α
prolyl hydrolases (72–74). The succinate-induced pro-
inflammatory response is directly dependent on the activity
of succinate dehydrogenase (SDH). Inhibition of SDH activity
via hydrolysis of dimethyl malonate to produce malonate, results
in an attenuation of the activity of LPS-induced IL-1β, and
likewise a boost in IL-10 production in BMDMs generated

from C57BL/6 mice (75). In Mtb-infected murine macrophages,
Sdh expression is downregulated; this leads to the induction of
HIF-1α, the Warburg effect, and characteristic pro-inflammatory
responses (76). Itaconate, a metabolite derived from the TCA
cycle intermediate cis-aconitate, also regulates SDH activity in
C57BL/6 BMDMs (77, 78). Breakdown of TCA cycle results
in downregulation of mitochondrial isocitrate dehydrogenase
(Idh)2 immediately following formation of itaconate. Aconitate
decarboxylase 1 (ACOD1), is also known as immune-responsive
gene (Irg)1; production of this mediator is related to generation
of itaconate. ACOD1 is upregulated in Mtb-infected murine
macrophages and lung tissue. Itaconate has antimicrobial
functions via its capacity to inhibit isocitrate lyase, the essential
enzyme in the glyoxylate shunt that is critical for bacterial
growth. Itaconate inhibits SDH activity which results in the
accumulation of succinate. Additionally, itaconate modulates
pro- inflammatory responses in macrophage; Irg1−/− BMDMs
from C57BL/6 mice maintain higher HIF-1α mRNA and protein
levels, and produce more pro-inflammatory cytokines and
antimicrobial factors including IL-6, IL-12, IL-1β, and NO
in response to lipopolysaccharide (LPS)-mediated activation
(79). Thus, itaconate may be a critical link between the
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Warburg effect induced by Mtb infection, and the generation of
anti-inflammatory responses to prevent damage to host cells.

Upregulated expression of HIF-1α, the enhanced Warburg
effect, and the antimicrobial response to Mtb infection of host
immune cells are all linked to the actions of the glycolytic
regulatory protein, pyruvate kinase M2 (PKM2). Expression of
PKM2, one of the two Pkm/PKM gene products, is upregulated
in response to macrophage activation. In the cytoplasm, PKM2
maintains an enzymatically inactive state via its phosphorylation;
the PKM2 dimer is transferred into the nucleus where it interacts
with HIF-1α to activate target genes, including those encoding
glycolytic enzymes and IL- 1β. In LPS-activated macrophages,
small molecules such as TEPP-46 modulate PKM2 activation by
preventing PKM2 translocation into the nucleus; consequently,
results in a diminished Warburg effect and limited production
of IL-1β. Inhibition of PKM2 translocation also promotes
production of IL-10 and a decreased antimicrobial response
in an S. typhimurinum infection model (80). In transcriptome
analysis studies, upregulation of Pkm2/PKM2 was detected
in Mtb- infected murine macrophages and in mouse lung
tissue (65). These results suggest that, similar to itaconate,
PKM2 promotes the HIF-1α-mediated Warburg effect and the
associated antimicrobial response during Mtb infection. CypD,
mitochondrial matrix protein, is regulator of metabolism in Mtb
infection via upregulating mtROS in T cells. CypD-deficient T
cells showed higher OXPHOS than wild-type T cells and more
susceptible toMtb (55).

In summary, metabolism inMtb-infected host cells undergoes
a switch from OXPHOS to glycolysis and generates a Warburg
effect. The HIF-1α induced Warburg effect in the setting of
TB infection plays an essential role in promoting upregulation
of pro-inflammatory cytokine and antimicrobial effector gene
expression, both factors underlying the acute immune response.
However, host immune responses were different depending on
the virulence or avirulence of the Mtb-infecting strain. How and
why immune responses are modulated by different strains ofMtb
are not fully understood.

Arginine Metabolism in TB
Arginine, the key substrate for production of NO and other
reactive nitrogen species, and also serves as a substrate for
arginase. Arginine plays a distinct role in the host immune
response. iNOS promotes one pathway that results in the
generation of NO; the other pathway is via the arginase-
mediated production of ornithine (16). iNOS is one of three
NO synthase enzymes and the major isoform involved in
immune cell functions. iNOS is inducible in immune cells, and
is a prominent antimicrobial effector molecule produced by
activated macrophages (81). The balance of arginine metabolism
between the two competing pathways constitutes an important
regulatory mechanism that modulates the polarization states of
M1 and M2 macrophages. In M1 macrophages, arginine is in
demand for protein synthesis, for production of NO, and for its
antimicrobial roles; by contrast, in M2 macrophages, arginine
is used for production of polyamines and proline. The iNOS
pathway is in direct competition with the arginase pathway
(82, 83). Two arginase isoforms exist in the cells. Cytosolic

arginase ARG1 and mitochondrial arginase ARG2 are encoded
by different genes and have different subcellular distributions (84,
85). ARG1 is mainly detected in murine myeloid cells, DCs, and
granulocytes. ARG1 inhibits NO production from iNOS/NOS2
which is among the mechanisms used by Mtb for immune
evasion. Mtb-infected Arg1 conditional gene-deleted mice were
characterized with a diminished bacterial burden; Arg1-deficient
macrophages were more capable of killingMtb compared to their
wild-type counterparts (86). ARG1 and iNOS are distributed in
distinct patterns in human TB-associated granulome; expression
of iNOS was highest in the central region, and ARG1 was more
prominent at the periphery (87). The role of ARG1 in mediating
immune cell function is directly dependent on the stage of
Mtb infection. At initial stages of infection, the Mtb pathogen
takes advantage of ARG1 activity by limiting macrophage
immunity via competition with iNOS/NOS2. During the late
stages of infection, ARG1 contributes to control of prolonged
hyperinflammation; ARG1 also plays a role in regulating the
progression of lung immunopathology in Mtb-infected, Nos2-
deficient mice (87).

Lipid Metabolism in TB
Once glycolytic metabolism has been activated, the genes
encoding pro- inflammatory mediators are synthesized, together
with the synthesis of fatty acids and phospholipids. The TCA
cycle and OXPHOS are inhibited, and several intermediates
of the TCA cycle accumulate in situ (88). Similar to what
has been observed for glucose metabolism, including the TCA
cycle and OXPHOS, host lipid metabolism is also regulated
in Mtb infection (Figure 2). There are master regulators that
mediate lipid metabolism including the peroxisome proliferator-
activated receptors (PPARs), liver X receptor (LXR), sterol
regulatory element binding proteins (SREBPs) and HIF (89–93).
These factors work together to regulate processes including fatty
acid uptake, lipid synthesis, the activities of lipolytic enzymes,
and lipid droplet (LD) biogenesis (94). The activation of TLR
signaling upregulates expression of several enzymes that promote
synthesis of triglycerides and/or cholesterol ester, including fatty
acid synthase (FASN), diacylglycerol O- acyltransferases (DGAT-
1 and DGAT-2), and acyl-CoA:cholesterol O-acyltransferases
(ACAT1 and ACAT2) (95–97). During lipid accumulation,
increased expression of lipid uptake and transport-related genes
is observed, and expression of genes involved in lipolysis is
decreased. Perilipin-2 (Plin2) and Perilipin-3 (Plin3) are the
main structural proteins of LDs that serve to promote lipid
accumulation (96, 98, 99). These proteins are essential for the
biogenesis and assembly of LDs (100).

PPARs are members of the ligand-activated transcription
factor family (101). PPARs can have a direct impact on LD
formation via the regulation of Plin2 expression. PPARs also
regulate proteins associated with de novo lipogenesis, including
fatty acid synthase and gene regulatory factors LXR and SREBPs
(94). PPAR-γ is important for regulating lipid and glucose
metabolism and other cellular process including inflammation
(102). Host immune cells which are infected by Mtb exhibit
increased PPAR-γ gene expression; this results in downregulation
of NF-κB signaling and increases in production of prostaglandin
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(PG) E2; overall, this results in suppression of pro- inflammatory
cytokines and Th1 responses (103, 104). Increased PPAR-γ
expression in Mtb-infected macrophages is also associated with
LD formation (105). Formation of LDs is critical for bacterial
survival; the accumulated lipids in these infected cells provide
nutrients and promote bacterial growth in host. Additionally,
infection with M. bovis BCG results in upregulated expression
and activation of PPAR-γ and the induction of lipid-loaded
macrophages. In BCG-infected TLR2-deficient mice, production
of TNF-α undergoes significant downregulation (104, 106).
Taken together, these findings suggest that PPAR-γ accelerates
intracellular lipid accumulation by modulating the expression
of genes that modulate lipid absorption as well as those that
promote fatty acid synthesis in response toMtb infection.

PPAR-α is another isoform of the PPAR family. It is a
transcription factor that modulates the expression of several
genes involved in lipid oxidation and glucose metabolism
(107). PPAR-α enhances fatty acid oxidation and ketogenesis
while inhibiting fatty acid synthesis and glycolysis (108). As
such, activation of PPAR-α may prevent lipid accumulation
in Mtb-infected cells. PPAR-α activation also results in the
upregulation of transcription factor EB (TFEB) and promotes
host innate immunity and autophagy against Mtb infection.
The induction of TFEB also promotes lipid catabolism which
inhibited intracellular growth of Mtb growth in bone marrow-
derived macrophages (109).

METABOLIC HDT IN TB

In recent years many researchers have demonstrated that
changes in dynamic immunometabolism take place in response
to infection with microbes; as such, studies focused on
immunometabolism are important so as to provide a larger
understanding of their role in promoting pathogenesis in host
(110). Current clinical trials have limitations with respect to
the elimination of Mtb infection, including the need for long-
term use, severe side effects, and the emergence of drug-resistant
strains (111). As noted above, Mtb infection can induce a
Warburg effect in host immune cells, similar to that described
in tumor tissue (65). Mtb exploits host metabolism in order to
escape immune surveillance and modulates various responses
to subvert their activities toward promoting its survival and
longevity. We expect HDT to be a clinically-feasible approach
toward readjusting uncontrolled immune responses in patients
with infectious disorders. We discuss HDT drugs currently in use
or under development that target host metabolism. We will also
suggest novel candidate HDT pathways and agents that might be
effective toward eradicatingMtb (Table 1).

HDT in Glucose Metabolism
In TB infection, metabolism switches to glycolysis in order
to protect the host against early-phase Mtb responses. HIF-
1-dependent glycolysis promotes various immune effector
functions including production and release of pro-inflammatory
cytokines and NO. As noted earlier, virulent Mtb perturbs
the glycolytic metabolism and thereby inhibits antimicrobial
functions. These results suggest metabolic reprogramming to

aerobic glycolysis is essential component of the anti-TB response.
On the other hand, persistent inflammation can result in
hyperinflammation and ultimately damage host cells and tissues.
Among the featured mechanisms of HDT in TB, there is a
focus on inhibition of glycolysis as well as modulation of
mTOR and AMP-activated protein kinase (AMPK) pathways.
For example, 2-deoxyglucose (2-DG) and 3-bromopyruvate
suppress activity of hexokinase which is a critical enzyme that
catalyzes the first step of glycolysis (113). In LPS-activated
macrophages, 2-DG suppresses the production of IL-1β and
results in the accumulation of succinate (73). Additionally,
LPS-induced acute lung injury is reduced by 2-DG-dependent
inhibition of glycolysis (112). Among others under consideration
is the HIV-protease inhibitor, ritonavir, which is an antagonist
of glucose transporters (114), dichloroacetate, an inhibitor of
pyruvate dehydrogenase kinase (115), and FX11, a specific
inhibitor of lactate dehydrogenase. In LPS-activated RAW
264.7 mouse macrophages, FX11-mediated inhibition of lactate
dehydrogenase resulted in the downregulation of cytokine and
iNOS production (116). Likewise, TEPP46 is small molecule
that inhibits the activity of pyruvate kinase M2; this inhibitor
attenuates activation of PKM2 in LPS-induced macrophage in
vivo and results in suppression of IL-1β production (80).

Induction of autophagy can be potential defense strategy used
by cells to eradicate Mtb infection. The enzyme, mTOR kinase,
negatively regulates autophagy; as such, mTOR kinase inhibitors
may be potent candidates for HDT for the elimination of Mtb
infection. Other mTOR inhibitors including rapamycin and torin
serve to limit the increased levels of lactate detected in Mtb-
infected macrophages (54). Rapamycin-mediated activation of
autophagy results in acidification of mycobacterial phagosomes
and thus decreased survival of BCG (117). Loperamide
induces mTOR-independent autophagy and likewise controls
intracellular Mtb burden in lung macrophages (119). However,
the use of these inhibitors has several limitations. For example,
rapamycin-induced autophagy resulted in enhanced intracellular
bacterial replication in HIV/H37Rv co-infected cells (118).
Therefore, pharmacological induction of autophagy should be
carefully evaluated among the candidate drugs to be used
for HDT.

HDT in Lipid Metabolism
Mtb exploits host lipid or fatty acid metabolism to promote its
own survival and growth. Foamy macrophages are recruited to
granulome where and are included in the barrier that forms
around Mtb-infected phagocytic cells to which they provide
support and nutrition. Toward this end, infection with Mtb
induces the synthesis of LDs and fatty acids in host cell.
Targeting the lipid synthesis may be a good strategy for
initial HDT with the goal of eliminating Mtb. 5’ AMPK is
a highly conserved master regulator which can restore the
energy balance by shifting cellular metabolism from one that
consumes ATP to a catabolic mechanism that generates ATP
(129). AMPK and other metabolic energy sensors are critical
in maintaining various functions of Mtb-infected host immune
cells, including autophagy, fatty acid β- oxidation, and metabolic
reprogramming; the AMPK pathway also plays multi-faceted
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TABLE 1 | Host-directed therapies that regulate host metabolism in TB.

HDT in glucose metabolism

Name Target Result References

2-deoxyglucose Hexokinase Inhibition of glycolysis Suppression of IL-1β (73, 112)

3-bromopyruvate Hexokinase Inhibition of glycolysis (113)

Ritonavir Glucose transporter Inhibition of glycolysis (114)

Dichloroacetate Pyruvate dehydrogenase kinase Inhibition of glycolysis (115)

FX11 Lactate dehydrogenase Inhibition of glycolysis

Downregulation of cytokines and iNOS

(116)

TEPP46 Pyruvate kinase M2 Inhibition of HIF-1α Suppression of IL-1β (80)

Rapamycin mTOR Inhibition of glycolysis Upregulation of antimicrobial effect (117, 118)

Loperamide mTOR Inhibition of glycolysis

Upregulation of antimicrobial effect

(119)

HDT in lipid metabolism

Metformin AMP kinase Increased fatty acid oxidation. Inhibition antibacterial activity

Reduced gene of inflammation

(120, 121)

AICAR AMP kinase Increased antibacterial activity

Induced mitochondrial biogenesis and energy metabolism

Inhibition of lipid synthesis

(122)

C75 Fatty acid synthase Inhibition of fatty acid synthesis Reduced the inflammation

and oxidative stress

Switch M2 to M1 Downregulation of NLRP3 inflammasom

(123–125)

Cerulenin Fatty acid synthase Inhibition of fatty acid synthesis Downregulation of NLRP3

inflammasome

(125)

GW9662 PPARγ Modulation of lipid metabolism, inflammation and

pathogenesis of bacteria

(95)

Sirtuins PGC-1α Inhibition of NF-κB signaling and proinflammatory response

Upregulation of fatty acid oxidation and anti-inflammation

(76, 126–128)

HDT in glucose metabolism HDT in lipid metabolism.

roles in promoting host defense against viral and bacterial
infection. As such, molecules that are targeted by AMPK-
targeted are considered to be effective adjuvant agents used to
combat Mtb infection (130, 131). Metformin, a drug that is
clinically-approved for the treatment of type 2 diabetes functions
by activating the AMPK-mediated signaling pathway (121).
Treatment with metformin can limit intracellularMtb growth in
macrophages via induction mitochondrial ROS and can thereby
reduce activation of inflammatory-related gene expression.
Also, metformin shows some synergy with conventional anti-
TB drugs, including isoniazid or ethionamide when evaluated
in Mtb-infected mice. Metformin treatment also decreases
the incidence of latent TB (120). AICAR (5-aminoimidazole-
4-carboxamide-1-β-D-ribofuranoside) is another agent that
activates AMPK; AICAR activates autophagy pathways in
macrophages and thus promotes antibacterial activity against
Mtb. AICAR-mediated AMPK-activation also results in the
activation of the PPARGC1 (peroxisome proliferator-activated
receptor gamma, coactivator 1) pathway; this latter pathway
regulates mitochondrial biogenesis and energy metabolism in
macrophages and in Drosophila melanogaster infected with M.
marinum (122).

Factors that suppress lipid synthesis can limit inflammation
and balance the inflammatory state of the host. Among several

candidate molecules, C75 and cerulenin inhibit fatty acid
synthase. C75 effectively lowers free fatty acid accumulation
in mice with sepsis and limits inflammation and oxidative
stress (123). Additionally, C75-mediated inhibition of lipid-
derived droplet formation results in a switch from M2 to M1
macrophage polarization, resulting in enhanced production of
both ROS and NO generation (124). Additionally, inhibition of
fatty acid synthase by C75 and cerulenin results in downregulated
uncoupling protein (UCP2)- mediated NLRP3 inflammasome
activation (125). GW9662, an antagonist of PPARγ, acts as
a key modulator of lipid metabolism, inflammation, and
pathogenesis in BCG-infected macrophages; this result suggests
that regulation of lipid metabolism may be a strong potential
host target for novel TB therapy (91). Likewise, sirtuins
(SIRTs) have been recognized as potential targets for anti-
TB therapeutics. Sirtuins are enzymes with deacetylase activity
that modulate cellular process by inhibiting NF-κB signaling;
this results in a downregulation of the pro-inflammatory
response and upregulation of fatty acid oxidation and anti-
inflammatory response by targeting Peroxisome proliferator-
activated receptor gamma coactivator 1-alpha (PGC-1α) (126,
127). SIRT1 expression is diminished in Mtb-infected THP-1
macrophages and in whole mouse lung tissue. SIRT1 promotes
inflammatory resolution by downregulating the expression of
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the RelA/p65 unit of NF-κB (128). SIRT6 also suppress pro-
inflammatory and antimicrobial responses at the early stages of
Mtb infection (76).

CONCLUSION

Immunometabolism is among the critical features that define
the intimate relationship between host and the Mtb pathogen;
a clear understanding of these interactions will be essential for
limiting the progression of the TB. Metabolic reprogramming
from OXPHOS to glycolysis in Mtb infection results in the
upregulated expression of numerous pro-inflammatory cytokines
and antimicrobial effector molecules. Further investigation will
be needed in order to understand more fully the relationship
between Mtb and host metabolism. How and when Mtb
exploit the host metabolism is not clearly understood at
this time; clarification will be critical in order to identify
the most appropriate candidates for HDT. Among those
currently under consideration is Mtb-mediated modulation of
glucose and/or lipid metabolism. Glucose metabolism might be
targeted at the early stage, which would ultimately provide a
boost to the Warburg effect. Thus, more efficient elimination
of Mtb bacteria; by contrast, targeting glucose metabolism

at a later stage may result in a much needed- alleviation
of hyperinflammation. A better understanding of metabolic
reprogramming in TB will provide further insights toward novel
therapeutic strategies.
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