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The symbiosis (Sym) and pathogenesis (Pat) is a duality problem of microbial infection, including HIV/AIDS. Statistical analysis of
inequalities and duality in gene coexpression networks (GCNs) of HIV-1 infection may gain novel insights into AIDS. In this study,
we focused on analysis of GCNs of uninfected subjects and HIV-1-infected patients at three different stages of viral infection based
on data deposited in the GEO database of NCBI. The inequalities and duality in these GCNs were analyzed by the combination of
the double-connectivity (DC) approach and the Gini’s method. DC analysis reveals that there are significant differences between
positive and negative connectivity in HIV-1 stage-specific GCNs. The inequality measures of negative connectivity and edge weight
are changed more significantly than those of positive connectivity and edge weight in GCNs from the HIV-1 uninfected to the AIDS
stages. With the permutation test method, we identified a set of genes with significant changes in the inequality and duality measure
of edge weight. Functional analysis shows that these genes are highly enriched for the immune system, which plays an essential role
in the Sym-Pat duality (SPD) of microbial infections. Understanding of the SPD problems of HIV-1 infection may provide novel
intervention strategies for AIDS.

1. Introduction

Gene coexpression networks (GCNs), which provide a
system-level understanding of the functionality of genes,
have been used for the pathogenesis research of various
diseases, including Alzheimer’s disease [1, 2], cardiac hyper-
trophy and failure [3], obesity [4], and schizophrenia [5]. In
the GCN, each node represents a gene, and the edge links two
coexpressed genes. The edge weight is usually determined
with the similarity of gene expression profiles using the
Pearson correlation coefficient (PCC) method [6–8]. The
connectivity of a gene is typically defined as the number of
its corresponding edges and can be decomposed into two
components: positive and negative connectivity, according
to the algebraic sign of PCC value [6]. Statistical analysis of
the inequality and duality properties of GCNs is extremely
valuable for discovering novel biological insights [8–12].

Microbial infections, including HIV-1/AIDS, always
involve symbiosis (Sym) and pathogenesis (Pat), which are
the two sides of the same story [13]. The inequalities or
imbalance in the Sym-Pat duality may be the key problems
in microbial infection. HIV-1/AIDS is a very complex disease
affecting millions of individuals throughout the world.
Although substantial progress has been made in the fighting
against this disease since 1981, the mechanisms of HIV-
1 infection are still not fully understood [14–16]. In this
study, we propose to define the inequalities and duality in
gene expression patterns of HIV-1 infection using the Gini’s
method. Based on a previously published microarray dataset
[17], we analyzed GCNs of the uninfected subjects and HIV-
1-infected patients at the acute, the asymptomatic, and the
AIDS stages. With the Gini’s method, we quantified the
inequalities of connectivity and edge weight in these HIV-
1 stage-specific GCNs. The analysis results show that there
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are significant differences between positive and negative
coexpression links in these GCNs. With the proposed
permutation test method, we further considered the changes
of the Gini coefficient of positive and negative edge weight
(denoted as, ΔG+ and ΔG−, resp.) in two different GCNs. We
finally identify a set of genes with significant ΔG+ or ΔG−
among GCNs of the uninfected subjects and HIV-1 patients
at three different stages (i.e., the acute, the asymptomatic,
and the AIDS stages). These genes might be highly involved
in the pathogenesis of HIV-1 disease. More importantly,
several patterns of duality in inequalities in GCNs are also
revealed with the Gini’s method. Some duality patterns
might be related to the Sym-Pat duality (SPD) in HIV-1
infection [13].

2. Materials and Methods

2.1. Microarray Dataset. The microarray dataset used in
this study is a published HIV-1 microarray dataset (Gene
Expression Omnibus GEO GSE16363), which contains
Affymetrix gene expression profiles of human lymphatic
tissues from the uninfected (unin) subjects and infected
patients at the different stages of HIV-1 infection (the acute
(acut), the asymptomatic (asym), and the AIDS stages). In
total, this dataset consists of 52 samples measuring 54630
probe sets. Details about this dataset are available in the
original paper [17]. The differences in gene expression
between different settings were analyzed using the two-
sample t test and fold change methods. With the criteria
of P-value ≤ 0.05 and fold change ≥ 1.7, 962 probes
with significantly different expression have already been
picked up by Li and colleagues [17]. These probes were
further grouped into several functional categories with the
annotation information from the NetAffx Analysis Center
(http://www.affymetrix.com/analysis/index.affx), Ingenuity
Pathways Analysis (Ingenuity Systems, http://www.ingenui-
ty.com/), and literature examination. To avoid underestimate
inequalities in GCNs, we further removed the probes which
were not annotated with Entrez gene identifiers, or were
mapped to multiple Entrez gene identifiers. We finally
obtained 908 probes (704 genes) for the construction of
GCNs.

2.2. GCN Construction. With the log2-transformed gene
expression values of these 704 genes, we constructed four
GCNs (denoted as Nunin, Nacut, Nasym, and NAIDS) for the
uninfected subjects and three different stages (the acute,
asymptomatic and AIDS) of HIV-1-infected patients, respec-
tively. The PCC method is used to compute the similarity
of expression profiles between any pair of genes. Take the
gene expression from the uninfected subjects, for example,
the PCC value between genes A and B can be computed:

PCC =
∑

(ai − am)(bi − bm)
√∑

(ai − am)2∑ (bi − bm)2
, (1)

where ai represents the log2-transformed gene expression
of gene A in the ith subject, whereas bi is the log2-
transformed gene expression of gene B in the ith subject.

am represents the mean of log2-transformed gene expres-
sion of gene A, and bm represents the mean of log2-
transformed gene expression of gene B. The significance
level of PCC value is estimated with the statistic result of
t = PCC

√
(n− 2)/(1− PCC · PCC) under the Student’s t-

distribution with df = n − 2 (n is the sample number). The
PCC value is assigned as the edge weight of these two genes.
For genes with multiple probes, only the highest absolute
value of PCC is chosen for the edge weight.

2.3. Inequality Measurements. The inequalities in GCNs are
measured with the Gini’s method, which has been commonly
used in the economics and social science [18–20]. One of the
basic measures of the Gini’s method is the Gini coefficient
(also known as Gini index), which has been well defined for
quantifying variable inequalities in a population. For a given
variable X , the Gini coefficient can be computed with the
formula [21]

G =
∑n

i=1(2i− n− 1)X(i)

(n− 1)
∑n

i=1 X(i)
, (2)

where n (n ≥ 2) is the number of considered variable
in the population, and X(i) is the ith value of considered
variable sorted in increasing order, 0 ≤ X(1) ≤ X(2) ≤
· · · ≤ X(n). The Gini coefficient can be ranged from 0.0
(complete equality) to 1.0 (complete or absolute inequality).
We assigned the Gini coefficient to be 0.0 if n is one. In this
study, the Gini coefficient was used to measure several kinds
of inequalities in GCNs, such as the positive and negative
edge weight inequality of each gene in the GCN, the positive
and negative connectivity inequality of the whole GCN. For
the positive edge weight inequality, the variable X is the
positive edge weight of the analyzed gene in the GCN. While
for the negative edge weight inequality, the variable X should
be the absolute value of negative edge weight. For the positive
(or negative) connectivity inequality, the variable X is the
positive (or negative) connectivity of the analyzed genes.

As referred in the previous section, the connectivity in
the GCN includes two components: the positive connectivity
and the negative connectivity. The contribution of the posi-
tive and the negative connectivity to the overall inequality in
the GCN can be quantified with the Gini correlation [22]. Let
(Pi,Ni) represent the positive and the negative connectivity
of the ith gene in a given GCN. The Gini correlation of
the positive connectivity (Rp) can be calculated with the
following formula [23]

Rp =
∑k

i=1(2i− k − 1)P[i]
∑k

i=1(2i− k − 1)P(i)

, (3)

where k is the number of analyzed genes, P(i) and P[i]

are obtained by two different ways. For P(i), the positive
connectivities of analyzed genes are firstly sorted in an
ascending order, then the P(i) is used to represent the
ith positive connectivity sorted in this order. Whereas for
P[i], the connectivities of analyzed genes are firstly sorted
in an increasing order, then the P[i] is used to represent
the concomitant positive connectivity of ith connectivity.

http://www.affymetrix.com/analysis/index.affx
http://www.ingenuity.com/
http://www.ingenuity.com/
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Figure 1: The dual positive-negative connectivity of genes in GCNS of the uninfected subjects (a), and infected patients at the acute (b), the
asymptomatic (c), and the AIDS (d) stages. Each dot represents a gene in the GCN.

The Gini correlation can be ranged from −1.0 to 1.0.
If the Gini correlation is higher than zero, the positive
connectivity increases the overall inequality of connectivity
in GCNs. Otherwise if the Gini correlation is lower than
zero, the positive connectivity decreases the overall inequality
of connectivity in GCNs. The Gini correlation of negative
connectivity (RN ) can also be calculated similarly with the
formula (3).

2.4. Estimation of Significance Levels of ΔG+ and ΔG−. For a
given gene i in two GCNs (N1 and N2), the ΔG+ and ΔG− can
be, respectively, computed with the following formulas:

ΔG+

(
N2

N1
, i
)

= G+(N2, i)−G+(N1, i),

ΔG−
(
N2

N1
, i
)

= G−(N2, i)−G−(N1, i),

(4)

where G+(Nj , i) and G−(Nj , i) represent the Gini coefficients
of positive and negative edge weight in the Nj ( j = 1 or 2),
respectively. In this study, N1 is the Nunin, and N2 could be
Nacut, Nasym, or NAIDS.

Genes with significant ΔG+ or ΔG− might play important
roles in the pathogenesis of HIV-1 infection. Here we
utilized a formal permutation test method to determine the
statistical significance of ΔG+ and ΔG−. Take the Nunin and

Nacut for example, we firstly generated 2000 randomized
GCNs for the uninfected (unin) subjects and the HIV-1-
infected patients at the acute stage (acut), respectively. The
expression values of genes in randomized Nunin (or Nacut)
were randomly selected from all the gene expression values
of the uninfected subjects (or the patients at the acute
stage) on the chip. We then, respectively, obtained 2 001
000 (2000∗(2000 + 1)/2) permutations of ΔG+(Nacut/Nunin)
and ΔG−(Nacut/Nunin). We considered the ΔG+ (or ΔG−)
significantly changed if the observed value above 0.5% (or
below 99.5%) of permutations (two-sided P-value < 0.01).
The significance level of ΔG+ and ΔG− for genes changing
from Nunin to Nasym (or NAIDS) can also be similarly estimated
with this formal permutation test method.

3. Results

3.1. Dual Positive and Negative Connectivity in GCNs of HIV-
1 Infection. The dual positive and negative connectivity of
genes in GCNs of HIV-1 infection are shown in Figure 1.
It can be seen from Figure 1 that the positive connectivity
is different from negative connectivity in GCNs for the
uninfected subjects and HIV-1-infected patients at the acute,
the asymptomatic, and the AIDS stages. From Nunin to NAIDS,
there are, respectively, 81%, 96%, 98%, and 67% genes
with higher positive connectivity. This result indicates that
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Figure 2: The Gini coefficients and Gini correlations of positive and
negative connectivity in GCNs of the uninfected subjects and HIV-1
patients at three different stages (acute, asymptomatic, and AIDS).

statistical analysis of the positive and negative connectivity
in these GCNs would be helpful for further understanding
the pathogenic mechanisms of HIV-1 infection.

3.2. Connectivity Inequality in GCNs of HIV-1 Infection. In
this study, we statistically analyzed the inequalities of the
positive and negative connectivity with the Gini coefficient
measure. According to the results shown in Figure 2(a), we
find that the there are also remarkable differences between
the Gini coefficients of positive and negative connectivity
in Nacut and Nasym. Furthermore, the dynamic changes in
the negative connectivity inequalities are different from
those in the positive connectivity inequalities during HIV-
1 infection. From the Nunin to NAIDS, the Gini coefficient of
negative connectivity is firstly increased from 0.39 to 0.70,
and then decreased to 0.33 while the Gini coefficient of
positive connectivity is firstly decreased from 0.34 to 0.19,
and then increased to 0.31 (Figure 2(a)). The differences
in the dynamic changes in the Gini coefficients of positive
and negative connectivity are also observed for genes with
different functions (Supplementary material is available
online at doi:10.1155/2011/926407 (Figure S1)).

With the Gini correlation measure, we further quantified
the contribution of positive and negative connectivity to
the overall inequality of connectivity in GCNs (Figure 2(b)).
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negative and positive edge weights, respectively.
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Figure 4: The number of genes with significant ΔG+ or ΔG−
among GCNs of the uninfected subjects and HIV-1 patients at three
different stages (acute, asymptomatic, and AIDS). “Positive” and
“Negative” indicate the Gini coefficients of positive and negative
edge weight, respectively.

From the uninfected to the different stages of HIV-1
infection, the Gini correlation of negative connectivity is
changed more significantly than that of positive connectivity.
The similar results are also observed for genes with different
functions (Supplementary Figure S2). These results indicate
that positive and negative coexpression links might play
different roles in the pathogenesis of HIV-1 infection.

3.3. Edge Weight Inequality in GCNs of HIV-1 Infection. The
differences between positive and negative coexpression links
are also revealed by analyzing the edge weight inequality with
the Gini’s method (Figure 3). With the proposed permuta-
tion test method, we further identified a set of genes with
significant ΔG+ or ΔG− between GCNs of the uninfected
subjects and infected patients at different stages (Figure 4).
Compared with the number of gene with significant ΔG+,
the number of genes with significant ΔG− is relatively large,
also indicating the differences in inequality between positive
and negative coexpression links.

Further investigating the function information of genes
with significant ΔG+ or ΔG−, we find that they are enriched
with the immune genes (Figure 5). Among these immune
genes, 5 immune activation genes (e.g., WDHD1, CDC45L,
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Figure 5: Functional categories of genes with significant ΔG+ or ΔG− between GCNs of the uninfected subjects and HIV-1 patients at three
different stages (acute, asymptomatic, and AIDS).

FOXP1, ING5 and FBXO5) and 4 immune defense genes
(e.g., CD244, IFI35, PNPT1, and C1QBP) are statistically
significant between GCNs of the uninfected subjects and all
the infected patients at three different stages. The important
roles of CD244 (2B4) and C1QBP (p32) in HIV-1 infection
have already been demonstrated in previous studies [24, 25],
indicating that these selected genes might be highly involved
in HIV-1 infection.

4. Discussion

This is the first report on the analysis of the inequalities of
dual connectivity and edge weight in GCNs of HIV-1 infec-
tion using the PCC-based double-connectivity approach
[6] and Gini’s method [21, 22]. We not only found the
differences between the uninfected subjects and patients
at different stages of HIV-1 infection at a system level,
but also identified a set of genes which might be highly
involved in HIV-1 infection. These results also demonstrate
the importance of the inequalities in GCNs for the analysis
of HIV-1 disease. Furthermore, most importantly, changes
in duality patterns are revealed in this study (Figures 1–4),
suggesting that the inequalities or imbalance in SPD may
contribute to the pathogenesis of HIV-1/AIDS.

The SPD, which is extending along the dynamic contin-
uum from antagonism to cooperation, is the most common
fundamental feature of microbial infections [13]. When the
Sym is much more dominant than Pat, the relationship
between host and microbial community is cooperative.
When the Pat is much more dominant than Sym, the
relationship is antagonistic. Therefore, the Sym and Pat are

the two sides of the same coin in the microbial infections,
which reflect the relationships between microorganisms and
hosts. About 1% of the total HIV-1-infected people in
the world (long-term nonprogressors) remain high CD4+
and CD8+ T-cell counts without progressing to AIDS
[26]. Natural infection of Simian immunodeficiency viruses
(SIVs) of African nonhuman primates also does not progress
to AIDS [27]. The benign nature of HIV infection in the
long-term nonprogressors and SIV infection in the natural
hosts suggests that there is a good tethering connection
between Sym and Pat. The immune system plays an essential
role in the modulation of SPD [13]. The immune system
has a double-sided function. On one hand, it protects
the host against the invasion of microbial pathogens. But,
on the other hand, the immune system imbalance may
cause tissue damage and disturbance of microbiota. The gut
microbial translocation and persistent immune activation
leading to a progressive depletion of Th17+ and CD4+
cells are the key contributing factors to drive HIV-1 disease
progression [28, 29]. We, therefore, further considered the
correlation between expression values of immune genes and
the CD4+ T cell count. The average PCC values of immune
activation and immune defense genes at HIV-1 infection
stages are shown in Figure 6. For immune activation genes,
the average PCC values of the HIV-1 infected patients at
different stages are higher than those of uninfected subjects,
and higher than zero (Figures 6(a) and 6(c)). While for
immune defense genes, the average PCC values at HIV-
1 infected stages (except the average PCC value of genes
with significant ΔG+ at the AIDS stage) are lower than
zero (Figures 6(b) and 6(d)). Most interestingly, the duality



6 Journal of Biomedicine and Biotechnology

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Acute Asymptomatic AIDS

A
ve

ra
ge

Pe
ar

so
n

co
rr

el
at

io
n

be
tw

ee
n

ge
n

e
ex

pr
es

si
on

an
d

C
D

4+
T

ce
ll

co
u

n
t Immune activation genes with significant ΔG−

(a)

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Acute Asymptomatic AIDS

A
ve

ra
ge

Pe
ar

so
n

co
rr

el
at

io
n

be
tw

ee
n

ge
n

e
ex

pr
es

si
on

an
d

C
D

4+
T

ce
ll

co
u

n
t Immune defense genes with significant ΔG−

(b)

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Acute Asymptomatic AIDS

A
ve

ra
ge

Pe
ar

so
n

co
rr

el
at

io
n

be
tw

ee
n

HIV-1 infected stage
Control

ge
n

e
ex

pr
es

si
on

an
d

C
D

4+
T

ce
ll

co
u

n
t Immune activation genes with significant ΔG+

(c)

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Acute Asymptomatic AIDS

A
ve

ra
ge

Pe
ar

so
n

co
rr

el
at

io
n

be
tw

ee
n

HIV-1 infected stage
Control

ge
n

e
ex

pr
es

si
on

an
d

C
D

4+
T

ce
ll

co
u

n
t Immune defense genes with significant ΔG+

(d)

Figure 6: Average Pearson correlation between gene expression and CD4+ T cell count. “HIV-1 infected stage” indicates immune activation
(or defense) genes at the HIV-1 infected stages (i.e., the acute, the asymptomatic and the AIDS stage). “Control” represents the corresponding
immune genes in the HIV-1-uninfected subjects.

patterns of the changes in immune genes are opposite or
significantly different between the patients at the acute and
AIDS stages. Immune activation genes with significant ΔG+

and ΔG− show a highly positive correlation with CD4 cell
counts at the acute and AIDS stages, respectively. However,
immune defense genes with significant ΔG+ exhibit an
opposite correlation with CD4 cell counts at the acute
(negative) and AIDS (positive) stages, respectively. These
findings suggest that these immune activation and defense
genes may play important roles in the pathogenesis of HIV-
1/AIDS. Concurring with the current report, some of those
genes, including C1QBP (p32), CD28, CD44, APOBEC3F
(A3F), and ISG15, have been known to contribute to the
pathogenesis of this disease [25, 30–33]. Further studies of
those genes should be enabled to gain more insights into the
HIV/AIDS problems.

5. Conclusion

This study provides a novel view of coexpression net-
work characteristics in HIV-1 infection. The selected

genes might be highly involved in the pathogenesis of
HIV-1 infection. Our results also indicate that there
might be a duality in the HIV infection. These results
also show the effectiveness of GCN analysis and the
Gini’s method in investigating the mechanisms of HIV
infection.
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