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Malaria control can significantly benefit from a holistic and precise way of quantitatively
measuring the transmission intensity, which needs to incorporate spatiotemporally
varying risk factors. In this study, we conduct a systematic investigation to characterize
malaria transmission intensity by taking a spatiotemporal network perspective, where
nodes capture the local transmission intensities resulting from dominant vector species,
the population density, and land cover, and edges describe the cross-region human
mobility patterns. The inferred network enables us to accurately assess the transmission
intensity over time and space from available empirical observations. Our study focuses on
malaria-severe districts in Cambodia. The malaria transmission intensities determined
using our transmission network reveal both qualitatively and quantitatively their seasonal
and geographical characteristics: the risks increase in the rainy season and decrease in the
dry season; remote and sparsely populated areas generally show higher transmission in-
tensities than other areas. Our findings suggest that: the human mobility (e.g., in planting/
harvest seasons), environment (e.g., temperature), and contact risk (coexistences of human
and vector occurrence) contribute to malaria transmission in spatiotemporally varying
degrees; quantitative relationships between these influential factors and the resulting
malaria transmission risk can inform evidence-based tailor-made responses at the right
locations and times.
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1. Introduction

Malaria is one of the oldest yet life-threatening infectious diseases. The World Health Organization (WHO) reported in
2021 that malaria places nearly four billion people at risk and creates heavy public health burdens in over 80 countries,
especially low-income and undeveloped countries (World Health Organization, 2021b). Moreover, the emergence and
exacerbation of artemisinin resistance in parasites and resistance of mosquitoes to insecticides, which could reverse all efforts
to control and prevent malaria and lead to large-scale outbreaks and epidemics, necessitate the acceleration of malaria
elimination (Phyo & Nosten, 2018; World Health Organization, 2021a).

To effectively control and eliminate malaria, a comprehensive and accurate assessment of the malaria transmission in-
tensity is essential, as it can inform public health policies and decisions pertaining to the deployment of tailor-made inter-
vention strategies (Battle et al., 2019; Routledge et al., 2018; Weiss et al., 2019; World Health Organization, 2017). However, it
is difficult to accurately assess this intensity because it is spatiotemporally varying and influenced by heterogeneous risk
factors originating from vectors, humans, and the environment. For example, vector species and their population densities
vary in space and time due to their different preferences for survival conditions and habitats (Obsomer et al., 2013), resulting
in an uneven distribution of the malaria transmission intensity (Moyes et al., 2016; Suwonkerd et al., 2013). Furthermore,
human mobility, mainly driven by socioeconomic factors, leads to the risk of importing malaria from epidemic areas and re-
establishes outbreaks in malaria-free areas (Grietens et al., 2015; Guyant et al., 2015; World Health Organization & Regional
Office for South-East Asia, 2017). The environmental conditions in an area, such as temperature, rainfall, and land cover, also
greatly influence the malaria transmission potential by directly or indirectly impacting the biological features of mosquitoes
and parasites (Ceccato et al., 2012; Eikenberry& Gumel, 2018; Munga et al., 2006, 2009; Stefani et al., 2013) as well as human
activities (Kerkhof et al., 2016). These risk factors influence each other, making the precise measurement of the malaria
transmission intensity challenging.

To provide scientifically grounded guidance for effective malaria control, we need to answer a critical question: How canwe
accurately assess the spatiotemporal malaria transmission intensity by comprehensively incorporating heterogeneous risk-
related factors for mapping custom-designed intervention strategies at different locations and time periods? Some popular
indicators have already been developed to assess the intensity or risk of malaria transmission based on domain knowledge. As a
standard indicator, annual parasite incidence (API), which denotes the number of confirmed malaria cases in a specific year, is
officially used by the WHO malaria elimination framework to classify malaria transmission intensity for strategizing national
malaria elimination plans (World Health Organization, 2017). Although the API can describe the malaria risk based on available
observational malaria cases, the variability of intensity (e.g., seasonal differences) is not well captured; and it cannot indicate the
future trends of the epidemic (e.g., persistence, outbreak, or die-out) under different transmission and intervention conditions
(Cohen et al., 2017). To provide more information of disease propagation, other theoretical metrics have been introduced to
quantify the malaria transmission intensity with respect to different risk-related factors from two perspectives: the local
transmission risk (i.e., inherent potential for transmittingmalaria) and the imported risk (World Health Organization, 2017). For
local transmission risk, the vectorial capacity (VCAP, i.e., the expected number of infectious bites from mosquitoes per day
brought by a single infectious case), the entomological inoculation rate (EIR, i.e., the expected number of infectious bites from
mosquitoes per day per human), and the basic reproduction number (R0, i.e., the expected number of infected cases which is
brought by a single infectious case) are widely adopted to evaluate the transmission potential and guide intervention planning
(Brady et al., 2016; Routledge et al., 2018; Smith & McKenzie, 2004). However, these metrics do not fully consider the het-
erogeneity of vectors and environments (Ceccato et al., 2012; Shi et al., 2020), such as the distributions of the dominant vector
species and different types of land covers (Munga et al., 2006, 2009; Mushinzimana et al., 2006). When measuring imported
risks, there has been a focus on identifying the characteristics of mobile andmigrant populations (MMPs) and assessing the risk
level of MMPs (Grietens et al., 2015;World Health Organization& Regional Office for South-East Asia, 2017). However, such risk
level does not quantitatively consider spatiotemporal variations in human mobility and thus could only provide qualitative
information for the transmission intensity at an approximate level, which is insufficient for accurate and timely policymaking.

In addition to the aforementioned indicators and metrics of malaria transmission intensity, many studies have assessed
the transmission intensity and predicted malaria risk from a computational modeling perspective. Existing work of
computational modeling could be divided into two categories: mechanism-based models and data-driven models.
Mechanism-based models, also known as compartmental models, are designed based on the understanding of malaria
transmission mechanisms (Chitnis et al., 2010; Mandal et al., 2011). They usually depict the biological transmission process
between humans and vectors by a set of ordinary differential equations or difference equations, such as the most classical
Ross-Macdonald model (Macdonald, 1957) and its variants that further consider other transmission-related characteristics,
e.g., the human immunity level (Yang, 2000), non-linear forces of infection between humans and vectors (Olaniyi & Obabiyi,
2013), etc. In addition to the sophisticated compartmental models that describe the temporal dynamics of the whole pop-
ulation, many variants of the traditional compartmental models further incorporate transmission heterogeneity into the
disease modeling. For instance, spatial heterogeneity can be introduced by modeling human and vector mobility (Cosner
et al., 2009; Gao & Ruan, 2014; Prosper et al., 2012; Ruktanonchai et al., 2016); the heterogeneity of acquired immunity
level can be reflected by the age structure (Filipe et al., 2007). The mechanism-based models can predict epidemic trends by
simulation with the interpretable model structures and parameters with ideal assumptions. However, these models
unavoidably simplify the real processes of infectious disease transmission; moreover, due to the predefinedmechanisms, they
are less flexible in incorporating other risk-related information when the domain knowledge is lacking. As a result,
254



M. Liu, Y. Liu, L. Po et al. Infectious Disease Modelling 8 (2023) 253e269
mechanism-based models are limited in fully utilizing the risk-related observations for accurate predictions of disease
transmission risks in real-world scenarios.

For data-driven models, we further divide them into two categories. The first category is classical statistical models. In this
category, awealth of studies focus on investigating the statistical relationships between themalaria risk (e.g., parasite prevalence,
API, and EIR) and the available observations, which are generally the survey data collected from the field studies (e.g., malario-
metric surveys, cross-sectional studies, longitudinal studies, or entomological monitoring) (Cano et al., 2004; Kamya et al., 2015;
Munga et al., 2009; Onori,1967), and thenmapping the risk in areas without the available survey data. Representative statistical
models include discriminant analysis (Omumboet al., 2002, 2005),multinomial regressionmodel (G. J. Yanget al., 2010),multiple
logistic regression (DeOliveira et al., 2013), Bayesiangeostatisticalmodels (Amoahet al., 2021; Bennettet al., 2013;Gemperli et al.,
2006; Gething et al., 2012), and geostatistical zero inflated binomial and negative binomial models (Amek et al., 2012; Rumisha
et al., 2014). These works usually provide malaria risk maps with high spatial resolution and low temporal resolution for un-
derstanding themalaria situation ina certainareaandperiod.However, thesemodels rarelyconsider the factorofhumanmobility
across different locations during different seasons, which is of great importance in assessing the spatiotemporal malaria trans-
mission intensity. The second categoryof data-drivenmodels is representativemachine learning (including state-of-the-art deep
learning) models, which treat malaria risk prediction as a time-series prediction problem. These models generally predict the
future disease dynamics of specific regionsbymodeling the spatiotemporal patterns ofmalaria transmission (local and imported)
using historical case data and/or risk-related data. Many models in this category, however, are not designed for specific diseases
and thus do not fully integrate disease-specific domain knowledge (Pei et al., 2018, 2022; Tan et al., 2021;Wu et al., 2018; Zhang
et al., 2015). As a result, the impactof various risk-related factors on thedisease transmission intensityor risk cannot bequantified
inapreciseway; and it ishard toprovideclear guidance fordecision-makers to implement time/location/factor-specificmeasures
in response to potential risks or outbreaks according to the modeling results. Recent studies have started to incorporate some
domainknowledge, suchas theordinarydifferential equations (Kargaset al., 2021;Wanget al., 2021)or themetrics (e.g., theVCAP
andEIR) (Shi et al., 2017, 2020;B. Yanget al., 2014) that characterize thedisease transmissionprocess, into thedata-drivenmodels.
However, many important vectorial and environmental factors impacting malaria transmission, such as the dominant vector
species and the distribution of different land cover types, are not well incorporated into the existing data-driven models.

To address the above challenges, we present a computational model for accurately assessing the malaria transmission
intensity and its spatiotemporal variations by representing the seasonal and geographical heterogeneities of vectorial, human,
and environmental factors via a spatiotemporal transmission network. To validate the effectiveness of the proposed model,
we conduct a case study on 15 malaria-severe districts in Cambodia, one of the most malaria-endemic countries in the
Western Pacific Region (World Health Organization, 2021b). Although the number of malaria cases decreases greatly in recent
decades in Cambodia (Ministry of Health Kingdom of Cambodia, 2021), i.e., the number of indigenous cases decreases from
around 107,000 in 2001 to around 10,000 in 2020, the artemisinin resistance (Phyo & Nosten, 2018), the suitable climate and
environment for mosquito breeding (Kar et al., 2014; Kerkhof et al., 2016; Suwonkerd et al., 2013), the hard-to-trace imported
cases (Guyant et al., 2015), and the limited surveillance resources (Ministry of Health Kingdom of Cambodia, 2021) make
malaria elimination in this region very challenging and necessitate better targeted control of malaria risk.

The case study demonstrates the effectiveness of the proposed model in terms of the accuracy of risk assessment and
hotspot identification. More importantly, our quantitative and qualitative analyses of the time-varying transmission patterns
among various districts show the potential of our model for identifying and stratifying local and cross-location malaria
transmission risks attributed to various underlying factors, thereby providing quantifiable evidence to guide the development
of tailor-made responses at targeted locations and times.

2. Material and methods

We present a model to assess the spatiotemporal malaria transmission intensity by constructing a dynamic malaria
transmission network. The transmission network consists of two parts: the local intensity at each node (e.g., at each location)
and the cross-location transmission intensity in the network. First, we introduce data sources and data preprocessing
methods. Then, we present the representation of the vector density, which integrates human density, vector species, and land
cover distributions, to provide a comprehensive characterization of the heterogeneity of local malaria transmission. There-
after, we mathematically formulate the local malaria transmission process at each location and further extend the formu-
lation to the situation of cross-location malaria transmission by incorporating a human mobility network. Finally, we
integrate the local transmission intensity and the cross-location transmission intensity through a next-generation matrix and
obtain the desired transmission network.

2.1. Data collection and preprocessing

Weuse thedata from15districtswithhigh risks ofmalaria transmission in recent years fromsixmalaria-endemicprovinces
in Cambodia for our study. Specifically, the districts in our study are all located in six provinces with high burdens of malaria in
the recent decade (Chhim et al., 2021), including two eastern provinces (Mondul Kiri and Ratanakiri), two northeastern
provinces (Kratie and Stung Treng), and two western provinces (Pursat and Kampong Speu). Information on these districts is
provided in Supplementary Table S1.We collected data in six categories: epidemiological data, climate data, geographical data,
entomological data, demographic data, and socioeconomic data. For the epidemiological data, we used the monthly malaria
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case number data from January 2018 to March 2021, collected by the community, i.e., the village malaria workers, in 15
aforementioned districts of Cambodia. The data were provided by the Cambodia National Center for Parasitology Entomology
and Malaria Control (CNM). For the climate data, we used temperature and rainfall to calculate several parameters in the SLIS
model that are time varying. We obtain gridded temperature data (Fan& van den Dool, 2008) with a spatial resolution of 0.5�

latitude and 0.5� longitude and a monthly temporal resolution from the Physical Sciences Laboratory (PSL) website (GHCN
CAMS: https://psl.noaa.gov/data/gridded/data.ghcncams.html, September 3, 2022, date last accessed). We also collected
gridded rainfall data (Schneider et al., 2011)with a spatial resolution of 1.0� latitude and 1.0� longitude and amonthly temporal
resolution from the PSL website (GPCC: https://psl.noaa.gov/data/gridded/data.gpcc.html, September 3, 2022, date last
accessed). For the temperature and rainfall, we calculated theweighted average value of each district in eachmonth using the
inverse distance weighting (IDW) method instead of using the grid data directly. The reason is that the spatial resolution of
temperature and rainfall data is too coarse to be adopted at the district level. The time range of the collected temperature and
rainfall data was from November 2017 to March 2021, and we used a three-month average of collected data to avoid possible
noise (Tanser et al., 2003). For example, we used the average of the temperature data in November 2017, December 2017, and
January 2018 as the input value for January 2018. For the geographic data, we collected yearly land cover type data (Friedl &
Sulla-Menashe, 2015) with a spatial resolution of 500 m � 500 m from the NASA Earth Science Data website (MCD12Q1:
https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MCD12Q1/, September 3, 2022, date last
accessed). As the changes in land cover distribution over time were relatively small, we used the data from 2018 for all three
years. Similar to the land cover data, we used the same latitude and longitude coordinates to obtain the corresponding vector
distribution data (Moyes et al., 2016) from the website of the Malaria Atlas Project (https://malariaatlas.org/explorer/#/,
September 3, 2022, date last accessed).We considered the An. Dirus complex and the An. Minimus complex in our study, which
are two dominant types of vectors in Cambodia (Suwonkerd et al., 2013). We collected economic data at the district level in
Cambodia fromthewebsite of the Statistics Bureauof Japan (http://www.stat.go.jp/english/info/meetings/cambodia/e11f_dc2.
html, September 3, 2022, date last accessed).We used the number of persons engaged in establishments to represent the level
of job opportunity in different districts. For the demographic data, we collected the humanpopulation density data for 2020 in
Cambodia from the website of the Humanitarian Data Exchange (HDX) (https://data.humdata.org/dataset/cambodia-high-
resolution-population-density-maps-demographic-estimates, September 3, 2022, date last accessed) (Facebook
Connectivity Lab and Center for International Earth Science Information Network, 2016).
2.2. Formulation of vector density

Vector density has been used to evaluate the malaria transmission intensity from the perspective of mosquito abundance.
As one type of entomological data, vector density is usually collected via field observations (Amek et al., 2012), providing finite
sampling data that cover a small range over space and time. However, in some areas, there is a paucity of entomological data.
Therefore, many studies have explored the quantitative relationship between the vector density and its related factors that
are easily accessible (e.g., climate data), so as to estimate the vector density using these available data (Amek et al., 2012; Li
et al., 2019; Rumisha et al., 2014).

Here, we introduce a comprehensive representation of vector density for a location (e.g., a district in our study) by
combining the human and vector distributions for different types of land cover to explore the spatial heterogeneity of the
vector density for measuring the local malaria transmission risk in an accurate way. Based on the assumed linear relationship
between the mosquito population and rainfall (Ceccato et al., 2012; Connor, 2002; Shi et al., 2020), we integrate the mosquito
density, which is based on the volume of rainfall, into a weighted linear function in terms of different types of land cover.
Moreover, for each type of land cover, the estimation of vector density can be obtained based on the distribution of vector
occurrence and that of the humanpopulation density for the selected type of land cover in a gridwisemanner. Specifically, our
formulation of vector density is given as follows:

m¼ vector population
human population

¼ pop2
pop1

¼
Xl
k¼1

wk

 
pop2;k
pop1;k

!
þm0

¼
Xl
k¼1

Gk
total

Gtotal

0
@ 1
Gk
total

XGk
total

g¼1

pop2;k;g
pop1;k;g

1
Aþm0

¼ 1
Gtotal

Xl
k¼1

0
@XGk

total

g¼1
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1
Aþm0;

(1)

where pop1;k and pop2;k denote the human population and vector population associated with land cover type k, respectively,
in areas with overlap between vectors and humans, and wk is the weight of land cover k. Therefore, pop2;k

pop1;k
denotes the average

vector density in areas with land cover type k, and
Pl

k¼1wk

�
pop2;k
pop1;k

�
denotes the average vector density at the entire location
256

https://psl.noaa.gov/data/gridded/data.ghcncams.html
https://psl.noaa.gov/data/gridded/data.gpcc.html
https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MCD12Q1/
https://malariaatlas.org/explorer/#/
http://www.stat.go.jp/english/info/meetings/cambodia/e11f_dc2.html
http://www.stat.go.jp/english/info/meetings/cambodia/e11f_dc2.html
https://data.humdata.org/dataset/cambodia-high-resolution-population-density-maps-demographic-estimates
https://data.humdata.org/dataset/cambodia-high-resolution-population-density-maps-demographic-estimates


M. Liu, Y. Liu, L. Po et al. Infectious Disease Modelling 8 (2023) 253e269
(e.g., the district) with l types of land cover. Gtotal denotes the number of grids with all land cover types at this location, and
Gk
total denotes the number of grids of with the land cover type k at this location. Based on the assumed linear relationship

between the vector population and rainfall R, the vector population in grid g with land cover type k, denoted as pop2;k;g , is
calculated as pop2;k;g ¼ o2;k;g � xk;g � Rk;g , where o2;k;g is the vector occurrence probability in grid gwith land cover type k, Rk;g
is the rainfall amount in grid g with land cover type k (unit is mm), and xk;g represents the number of mosquitoes brought by
per mm of rainfall in grid g with land cover type k. The variable pop1;k;g denotes the number of humans in grid g with land
cover type k, and m0 is the intercept in the regression model, which can be interpreted as the baseline mosquito density at a
given location.
2.3. Modeling malaria transmission via spatiotemporal network

Malaria transmission is caused by the interaction among three key components: a vector, a human, and a parasite. These
components are the basic interacting components associated with vector-borne infectious diseases (Xia et al., 2017). The
process of malaria transmission between humans andmosquitoes can be depicted by a set of differential equations (DEs) with
biological and behavioral parameters that are influenced by complex environmental factors. In this study, we use a host-
vector susceptible-latent-infected-susceptible (SLIS) model (Xiao & Zou, 2013) to describe the local malaria transmission,
which takes into account the latent period of vectors in addition to the susceptibility and infection state of humans and
vectors. The model details can be found in the Supplementary Material.

In addition to the transmission driven by the local environment at individual locations, human mobility among different
locations is a key factor that leads to the persistence of malaria epidemics (Cosner et al., 2009; Prosper et al., 2012) and the
spread of drug-resistant parasites (Guyant et al., 2015). Such a cross-location human mobility pattern can be described as a
general population mobility matrix S:

0
BBBBBBBBBBBBBB@

�
XN

j¼1;jsi

pj;1 p1;2 / p1;N

p2;1 � PN
j¼1;jsi

pj;2 / p2;N

« « 1 «

pN;1 pN;2 / � PN
j¼1;jsi

pj;N

1
CCCCCCCCCCCCCCCA

; (2)

where pi;j ðisjÞ is the element in the i th rowand the j th column of matrix S, denoting the proportion of the population at the
j th location that moves to the i th location per time unit (the unit to be used is based on the temporal scale in the specific
model). To parameterize the humanmobilitymatrix, we construct it based on a radiationmodel (Simini et al., 2012) with both
spatial and temporal components. The spatial component is directly calculated by the economic data and the temporal
component is inferred from available empirical observations. More details can be found in the Supplementary Material.

By combining the local transmission described by the SLIS model and the cross-location mobility described by Eq. (2), we
can formulate an integrative ordinary differential equation system to comprehensively characterize the heterogeneous
transmission process at and between locations at the metapopulation level:8>>>>>>>>>>>><

>>>>>>>>>>>>:

dI1;iðtÞ
dt

¼ aie1;imiS1;i
I2;iðtÞ
Pop2;i

� r1;iI1;iðtÞ þ
XN

j¼1;jsi
pi;jI1;jðtÞ �

XN

j¼1;jsi
pj;iI1;iðtÞ

dL2;iðtÞ
dt

¼ aie2;iS2;i
I1;iðtÞ
Pop1;i

� �ε2;i þ d2;i
�
L2;iðtÞ

dI2;iðtÞ
dt

¼ ε2;iL2;iðtÞ � d2;iI2;iðtÞ

; i ¼ 1;…;N; (3)

where I1;i, L2;i and I2;i denote the number of infected human individuals, the number of latent vectors, and the number of
infected vectors at location i, respectively; Pop1;i and Pop2;i are the population of humans and that of vectors at location i
respectively; and S1;i ¼ ðPop1;i �I1;iðtÞÞ and S2;i ¼ ðPop2;i �L2;iðtÞ�I2;iðtÞÞ are the number of susceptible humans and that of
vectors respectively. Detailed explanations of all parameters and variables used in Eq. (3) and the rest of the paper are
provided in Table 1.
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Table 1
Notations and descriptions.

Notation Description Values (Calculated from) Attribute

I1 The size of the infectious human population Historical malaria data Time
varying

I2 The size of the infectious vector population N.A.a N.A.
L2 The size of the latent vector population N.A. N.A.
a The daily biting rate of an individual female mosquito on

humans
Temperature (Fan & van den Dool, 2008) Time

varying
m The number of female mosquitoes per person (vector

density)
N.A. N.A.

m0 The intercept in the formula of vector density To be estimated Time
invariant

e1 The fraction of mosquitoes with sporozoites that actually
generate infection (and infectiousness) when biting an
uninfected person
(transmission efficiency from mosquitoes to humans)

N.A. N.A.

e2 The proportion of bites by which one susceptible mosquito
becomes infected (transmission efficiency from humans to
mosquitoes)

N.A. N.A.

b The transmission efficiency between humans and
mosquitoes (e1 � e2)

To be estimated Time
invariant

b1 The natural birth rate of humans 0 Time
invariant

b2 The natural birth rate of female mosquitoes N.A. N.A.
d1 The natural death rate of humans 0 Time

invariant
d2 The natural death rate of female mosquitoes Temperature (Fan & van den Dool, 2008) Time

varying
r1 The average daily recovery rate of an infectious human

individual
To be estimated Time

invariant
ε2

�1 The mean exposure time (remaining in the latent classes) of
female mosquitoes

Temperature (Fan & van den Dool, 2008) Time
varying

wk The weight of land cover k land cover (Friedl & Sulla-Menashe, 2015) Time
invariant

Gtotal The number of grids with all land cover types at this location land cover (Friedl & Sulla-Menashe, 2015) Time
invariant

Gk
total The number of grids with the land cover type k at this

location
land cover (Friedl & Sulla-Menashe, 2015) Time

invariant
xk;g The number of mosquitoes brought by per mm of rainfall in

grid g with land cover type k
To be estimated Time

invariant
o2;k;g The occurrence probability of a vector in grid g with land

cover type k
Vector distribution (Moyes et al., 2016) and land cover (Friedl & Sulla-
Menashe, 2015)

Time
invariant

pop1;k;g Human population in grid g with land cover type k Human population density (Facebook Connectivity Lab and Center for
International Earth Science Information Network, 2016) and land
cover (Friedl & Sulla-Menashe, 2015)

Time
invariant

Rk;g The rainfall in grid g with land cover type k Rainfall (Schneider et al., 2011) and land cover (Friedl & Sulla-
Menashe, 2015)

Time
varying

F The matrix representing the temporal patterns of human
mobility

To be estimated Time
varying

Q The matrix representing the spatial patterns of human
mobility

Socioeconomic indicators Time
invariant

a Not applicable.

M. Liu, Y. Liu, L. Po et al. Infectious Disease Modelling 8 (2023) 253e269
2.4. Modeling local and cross-location malaria transmission intensities via the next-generation matrix

According to the SLIS model for single locations (without considering the humanmobility for cross-location transmission),
the local malaria transmission intensity can be formulated as follows:

Rmo;i ¼
a2i e1;ie2;imiε2;i

r1;id2;i
�
ε2;i þ d2;i

� : (4)
Here the local transmission intensity Rmo;i represents the number of secondary infections of human brought by a single
humanmalaria case in a region i during themonthmo, which is consistent with the concept of the basic reproduction number
(Diekmann et al., 1990; Van Den Driessche & Watmough, 2002).

After taking human mobility into consideration, we expand the formulation of transmission intensity from the single-
location scenario to the multi-location scenario. Based on Eq. (3), we can construct the next-generation matrix (NGM)
(Cosner et al., 2009; Diekmann et al., 2010) of the malaria transmission as follows:
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Kt ¼
 0 AE1Mε2ðD2ðD2 þ ε2ÞÞ�1

AE2
�
�ðS� R1Þ�1

�
0

!
; (5)

where A; E ; E ;D ;R ;M; and ε areN � N diagonal matrices with diagonal elements a ;e ;e ;d ;r ;m ;and ε ði ¼ 1;2;…;
1 2 2 1 2 i 1;i 2;i 2;i 1;i i 2;i
NÞ, respectively, and S is the human mobility matrix. Then we can define the malaria transmission matrix P of multiple
locations:

Itþ1
1 ¼ PIt1;

P ¼
�
AMε2ðD2ðD2 þ ε2ÞÞ�1AE1E2

��
�ðS� R1Þ�1

�
:

(6)
Accordingly, the malaria transmission intensity at location i during a specific month mo can be represented as the sum of
all the elements in the i th row of matrix P:

Rmultiple
mo;i ¼

XN
j¼1

Pij: (7)
For the situation of considering multiple locations, based on our definition of malaria transmission matrix P, the Rmultiple
mo;i ¼PN

j¼1Pij can be interpreted as the number of secondary infections in region i if there exists one human malaria case in each of
the N regions. To provide clear and specific guidance for malaria control, we decompose the parameters associated with
transmission intensity into two categories: human risk factors, represented by a function fhuman, and vector risk factors,
depicted by a function fvector:

fvector;i ¼
a2i e2;imiε2;i

d2;i
�
ε2;i þ d2;i

�; fhuman;i ¼
Rmultiple
mo;i

fvector;i
; (8)

where fvector;i represents the generalized formulation of VCAP that considers temperature, rainfall, vector distributions, and
land cover types, while fhuman;i is a non-linear function that takes into account the human mobility, the human recovery rate,
and the transmission efficiency from vectors to humans.

Based on the malaria transmission matrix P, we define the imported and exported malaria transmission intensity at
location i as follows:

Rmultiple
i;imported ¼

XN
j¼1;jsi

Pij;

Rmultiple
i;exported ¼

XN
j¼1;jsi

Pji:

(9)
2.5. Multivariate regression model for risk prediction

Based on the definition of malaria transmission intensity matrix of multiple locations introduced in Eq. (6), we can
formulate amultivariate regressionmodel with nonlinear parameters and noise terms to predict the futuremalaria risk based
on the ground-truth of malaria risk in previous time step:8>>>>>>>><

>>>>>>>>:

Itþ1
1;1 ¼ P1;1I

t
1;1 þ P1;2I

t
1;2 þ…þ P1;NI

t
1;N þ ε

t
1

Itþ1
1;2 ¼ P2;1I

t
1;1 þ P2;2I

t
1;2 þ…þ P2;NI

t
1;N þ ε

t
2

/

Itþ1
1;N ¼ PN;1I

t
1;1 þ PN;2I

t
1;2 þ…þ PN;NI

t
1;N þ ε

t
N

; (10)

where It is the number of human infections at the i th location at time step t, εt is the noise term for the i th location at time
1;i i
step t, and Pi;j represents the element in the i th row and j th column of matrix P. Let ytþ1 ¼ ½ytþ1

1 ; ytþ1
2 ;/; ytþ1

N �T with ytþ1
i ¼

Itþ1
1;i , xt ¼ It1 ¼ ½It1;1; It1;2;/; It1;N �

T , and ε
t ¼ ½εt1; εt2;/; εtN �

T ; then we can obtain the following equation for all locations at time
step t:
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ytþ1 ¼ Pxt þ ε
t : (11)

Thus, letting Y ¼ ½y2;y3;/;yT �, X ¼ ½x1;x2;/;xT�1�, and ε ¼ ½ε1;ε2;/;εT�1�, for all time steps, we have:
Y ¼ PX þ ε ¼ Y* þ ε; (12)

where Y is the ground truth of the transmission risk (e.g., quantified by the number of infected cases) and Y* ¼ PX is the

predicted values of our model. According to Eq. (12), we obtain the objective function for parameter inference and future risk
prediction based on the least squares method, which aims to minimize the noise term (i.e., the difference between predicted
values Y* and the ground-truth Y):

min
P

kεk22 ¼ min
P

kY � Y*k22 ¼ min
P

kY � PXk22: (13)
In matrix P, some parameters are directly calculated using the climate data based on domain knowledge (Ceccato et al.,
2012; Shi et al., 2020), while the rest are inferred via the standard gradient descent method in optimization. The details of
optimization procedure can be found in the Supplementary Material.

3. Results

In this section, we validated the effectiveness of the proposed model by investigating the spatiotemporal malaria trans-
mission patterns and the possible intervention responses in 15 malaria-severe districts in Cambodia from January 2018 to
March 2021. First, we presented and analyzed the trajectories of the model-inferred malaria transmission intensity over time
in terms of human and vector factors. Then, wemapped the local and cross-district transmission risks to facilitate the intuitive
analysis of the characteristics of the malaria transmission risk distribution. Finally, we conducted a sensitivity analysis of the
intensity with respect to different factor-related parameters to uncover the quantitative relationships between the influential
factors and the transmission intensity, and explored the potential intervention strategies for containing malaria transmission
in these districts. For the above-mentioned analysis, we demonstrate and discuss the results of 2018 in this paper in detail and
put the results of 2019e2021 (which are in the similar format as the results of 2018) in the SupplementaryMaterial for further
reference.

3.1. Inferred malaria transmission intensity in terms of human and vector factors

The distribution of the model-inferred transmission intensity in terms of fhuman and fvector (refer to Eq. (8)) and temporal
trajectories of the intensity in six selected districts in 2018 are shown in Fig. 1. The patterns of temporal intensity variations in
different districts were quite different. Based on this, the districts were stratified into three categories: (1) those with an
intensity < 1 all of the time; (2) those with an intensity near 1; and (3) those with an intensity > 1 most of the time. We also
show the distributions of fvector and fhuman in both the dry and rainy seasons in the subfigures at the bottom left and top right of
Fig. 1.

For fvector, we observed that the values in the rainy season were larger than those in the dry season and they varied across
districts. Some districts, such as Chbar Mon, displayed relatively large fvector values, with the corresponding malaria trans-
mission intensity exceeding 1 for most of the year. Other districts, such as Bar Kaev and Pursat, exhibited small fvector values,
with the transmission intensity always remaining < 1. In other districts, such as Krakor, Phnum Kravanh, and Stueng Traeng,
fluctuations in fvector values reflected instability in the corresponding transmission intensity. These values were varying all
around 1. Unlike the fvector values, which reflected obvious heterogeneity across spatial and temporal dimensions, fhuman
values were relatively stable and ranged from 0.2 to 0.35 (mean value over time for each district). However, fhuman still
displayed some temporal heterogeneity in districts such as Stueng Traeng, where the fhuman value was slightly larger in the
rainy season than in the dry season, and Bar Kaev, where the fhuman value was slightly smaller in the rainy season than in the
dry season. These relationships between transmission intensity and the two categories of risk-related factors, fvector and fhuman,
may facilitate the implementation of intervention strategies, such as intensive vector control measures and strengthened
mobile population surveillance within targeted time periods and at specific locations for the effective control of malaria
transmission.

3.2. Spatiotemporal variations in local malaria transmission intensity

An important aspect of malaria control is evaluating the local malaria transmission intensity to gain insights into the
transmission potential based on local transmission conditions. The local transmission intensity was calculated using Eq. (4),
which does not take the effect of human mobility into account. The average local intensity for each of the 15 districts and the
gridded map for each district are illustrated in Fig. 2. Specifically, Fig. 2(a) and (b) show the intensity maps for all 15 districts
for two time periods: April 2018 (end of the dry season) and October 2018 (end of the rainy season). We observed clear spatial
and temporal heterogeneity in the transmission intensity. For example, the transmission intensities in Bar Kaev, Stueng
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Fig. 1. Inferred malaria transmission intensity in terms of fhuman and fvector in six malaria-endemic districts in Cambodia from January 2018 to December 2018. The
trajectories of the malaria transmission intensity in terms of fvector and fhuman are shown in the top left. The background color illustrates the strength of malaria
transmission intensity in ascending order from blue to red; the white lines show the thresholds of R0 ¼ 1 and R0 ¼ 2. In the bottom left, the distributions of
fvector in different districts during the dry (from November to April) and rainy (from May to October) seasons, calculated using kernel density estimation, are
shown. In the top right, the distributions of fhuman in different districts during the dry and rainy seasons are shown.
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Traeng, and Phnum Kravanh in April 2018 diverged greatly from those in October 2018. Moreover, the intensities in these
three districts within the same period were highly variable, indicating spatial heterogeneity.

Importantly, even though some districts exhibited similar average intensities, the patterns of intrinsic transmission in-
tensity were quite heterogeneous. Fig. 2(c) shows detailed gridded maps of the transmission intensity in all 15 districts in
October 2018. Here, Phnum Kravanh and Odongk are used as examples. Both districts had similar average intensities (1.19 for
Phnum Kravanh and 1.21 for Stueng Traeng in October 2018). However, the gridwise intensity maps show clear differences in
the fine-scale intensity results for each district. In Phnum Kravanh (the first map in the third row of Fig. 2(c), malaria
transmission risk was mainly concentrated in the north; in Stueng Traeng (the third map in the fourth row of Fig. 2(c),
transmission risk was mainly concentrated in the middle and south. The discovery of such fine-scale heterogeneity is
important for guiding location-specific intervention measures, as even for districts with similar average intensities, different
public health responsesmay be required to effectively allocate resources to locationswith the greatest need (e.g., villages with
the highest transmission risk).

The isolines shown in themaps in Fig. 2(c) indicate the human population density. Interestingly, the areas or grids with the
highest population densities were not necessarily those with the highest transmission risk. This may be because the vector
density in these areas with high population densities was relatively low. For example, in SaenMonourom, Stueng Traeng, and
Phnum Kravanh, the grids with relatively high transmission intensities were generally located in sparsely populated areas.
Such areas are also usually remote, comprising the edges of forests and fields. This information is practically useful for
implementing tailor-made intervention strategies, such as strengthening the active surveillance of populations in the
planting and harvest seasons, especially in hard-to-reach areas.

3.3. Spatiotemporal variations in cross-location malaria transmission intensity

Given the continuous reduction in the number of indigenous cases in recent years, imported malaria has played an
increasingly important role in the persistence and resurgence of transmission. Based on the inferred malaria transmission
intensity matrix, we easily visualized the spatiotemporal patterns in cross-location transmission intensity. We precisely
identified areas with the highest imported and exported risks based on the visualization results, which may prove crucial for
determining the best intervention measures in a timely and accurate manner.
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Fig. 2. Spatiotemporally varying maps of the local malaria transmission intensity in all 15 malaria-endemic districts in Cambodia. (a) The average local malaria
transmission intensity map for April 2018 (end of the dry season). (b) The average local malaria transmission intensity map for October 2018 (end of the rainy
season). The color indicates the intensity of malaria transmission, with a darker color indicating higher intensity. (c) Gridwise map of the local malaria trans-
mission intensity for each district in October 2018. For the malaria transmission intensity in panels a, b, and c, please refer to the color bar at the bottom of this
figure. In panels a and b, the light yellow background and light blue line in the map show the province boundaries and the gray background and white line denote
districts not included in this study. In panel c, the grids in the map (with a grid resolution of 500 m � 500 m) denote the malaria transmission intensity at
different locations, and the size and color of each point indicate the corresponding strength of the transmission intensity; the isolines in the maps indicate the
human population density at the corresponding locations; the yellow isolines indicate high population density and the dark purple ones indicate low population
density; the white background and black line denote the district boundaries.
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From the maps in the third and fourth rows in Fig. 3, we further identified several districts with high imported and
exported transmission intensities. The patterns of imported intensities (third row in Fig. 3) showed that D3 (Saen Mono-
urom), D8 (Krakor), and D11 (Chbar Mon) displayed high importation levels (indicating higher imported risks) than other
districts at the end of the dry season; D9 (Phnum Kravanh), D11 (Chbar Mon), and D3 (Saen Monourom) displayed high
importation levels at the end of the rainy season. The patterns of exported intensities (fourth row in Fig. 3) showed that D1
(Ban Lung), D11 (Chbar Mon), and D13 (Odongk) exhibited higher exportation levels (indicating higher exported risks) than
other districts at the end of the dry season and D7 (Bakan), D11 (Chbar Mon), and D13 (Odongk) displayed higher exported
intensities than other districts at the end of the rainy season. These observations may help further guide mobility restriction
policies for areas with relatively high intensities or risks to effectively control disease transmission. The detailed rankings of
the imported and exported intensities for these 15 districts are shown in the bar chart in the first row of Fig. 3.
3.4. Factor-risk relationship discovery via sensitivity analysis

In addition to inferring and investigating malaria transmission patterns, we conducted a sensitivity analysis of model
parameters to examine the influence of parameter variations for providing insights into the effectiveness of control in-
terventions in different situations. We used the maximum eigenvalue of the transmission intensity matrix to represent the
overall malaria transmission intensity in all 15 districts in Cambodia, i.e., Rall ¼ rðPÞ, and increased or decreased the pa-
rameters related to vector and human factors by 0% (i.e., keeping the original values), 5%,10%,15%, 20%, and 25% in all districts.
The variations in the overall transmission intensity with respect to the variations in the four representative parameters, a, d2,
m, and r1, are shown in Fig. 4, and that with respect to the variations in other parameters is provided in the Supplementary
Figs. S18 and S19.

Specifically, the baseline values of the model parameters (i.e., the values without any change) were calculated in different
ways as described in the Supplementary Material. Some parameters, such as the human biting rate a, the latent period of the
parasite in mosquitoes ε2�1, and the natural death rate of mosquitoes d2, can be estimated from the environmental data (i.e.,
temperature data) based on the empirical knowledge. Since the temporal and spatial resolutions of the temperature are
monthly and district-wise, respectively, the values of these data vary over time and space. An example of the value of the
temperature and that of these three parameters from 2018.02 to 2021.03 in the district Ban Lung can be found in
Supplementary Fig. S1. Other parameters, such as the transmission efficiency fromhumans tomosquitoes e2, the transmission
efficiency frommosquitoes to humans e1, and the human recovery rate r1, can be inferred from data by our method. To infer
the values of these parameters, we assigned an initial value to each of them, and used our algorithm iteratively update the
values based on the optimization equations, which are shown in the SupplementaryMaterial, to fit the data. The transmission
efficiency fromhumans tomosquitoes e2, the transmission efficiency frommosquitoes to humans e1, and the human recovery
rate r1, are assumed to be time-invariant and are the same for all locations; these three learned parameters, e2, e1, and r1, are
around 0.17, 0.17, and 0.61, respectively. For the vector density m, it was calculated based on Eq. (1) in Section 2.2. This
equation considers the time-varying rainfall data, the inferred variables, the distribution of human density, the vector
occurrence, and the land cover. Therefore, the vector density also varies over time and space.

As shown in Fig. 4, the impact of parameter variations on the overall transmission intensity Rall varies across different
parameters. For example, the variations in a and d2 yielded larger reductions in Rall than do changes in other parameters.
Additionally, in different periods, the attention and effort needed for disease control and prevention will be different. In
general, the malaria transmission intensities in JulyeSeptember are greater than transmission threshold 1, which could lead
to the persistence of malaria in all 15 districts. Therefore, some actions need to be taken to reduce the intensity below the
threshold and prevent further disease transmission during this period. For example, in October 2018, if we aim to control Rall
below 1, we could increase d2 by approximately 5%, as can be observed in Fig. 4(b), or reducem by approximately 10%, as can
be observed in Fig. 4(c). Here, the increase in d2 (the natural death rate of mosquitoes) reflects killing the female mosquitoes
to decrease the transmission risk, which can be achieved by implementing insecticide-based methods (Brady et al., 2016),
such as insecticide-treated nets (ITNs) and indoor residual spraying (IRS). A decrease in m (the vector density) involves
reducing the risk of contact between humans and mosquitoes, reducing the birth of mosquitoes, or increasing the death of
mosquitoes. Larval source management (Brady et al., 2016), such as regularly applying biological or chemical insecticides to
water bodies (World Health Organization, 2013), and insecticide-based methods can be used to control this parameter.

In addition to exploring the impact of parameter control in all districts simultaneously, we further observed the sensitivity
of the overall malaria transmission intensity with respect to the parameters of each district individually. To demonstrate the
heterogeneity of effects of parameter variation in different districts, we showed the results with respect to the variation of
parameter a (human biting rate) in Fig. 5. The results with respect to other parameters can be found in Supplementary Figs.
S20eS25, which have similar patterns as that of parameter a. Notably, the variation of the parameters in different districts, at
different times, and at different scales will affect the overall transmission intensity to varying degrees. For example, the
variation of parameters such as a and d2 in Chbar Monwill have a large impact on the overall intensity Rall in December, and
the variation of all parameters in Stueng Traeng may largely affect Rall during the rainy season. Such a location/time-specific
effect of parameter variation provides valuable information for guiding tailor-made control strategies; e.g., implementing
ITNs or IRS in Chbar Mon in December can significantly reduce fvector in the district (as shown in Fig. 1), thus making a direct
contribution to controlling the overall malaria transmission intensity in all districts.
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Fig. 3. Spatiotemporal variations in cross-location malaria transmission intensity. The four rows show four types of information: (1) the inferred malaria
transmission intensity matrix; (2) the map of total malaria transmission; (3) the map of imported malaria transmission, and (4) the map of exported malaria
transmission. The four columns show the results for four different periods in 2018: (1) middle of the dry season (January); (2) end of the dry season (April); (3)
middle of the rainy season (July); and (4) end of the rainy season (October). (First row) The matrix in the center shows the cross-location malaria transmission
intensity. The first bar chart on the right side of the center matrix denotes the intensity or impact of cases of imported malaria from other districts (yellow). The
bar chart on the top of the center matrix denotes the intensity or impact of malaria cases exported to other districts (green). The second bar chart on the right side
of the center matrix denotes the total malaria intensity calculated after considering the effect of human mobility (pink). The dashed lines in the bar charts denote
the bounds of the highest and lowest values. (Second row) The color of each district denotes the total malaria transmission intensity; each directed edge denotes
the cross-district malaria intensity across different districts. Here, we only show edges with intensities > 0.005. (Third row) The color of each district denotes the
imported malaria transmission intensity. Here, we only show edges going to districts with the top three imported intensities and those with intensities > 0.005.
(Last row) The color of each district denotes the exported malaria transmission intensity. Here, we only show edges coming from districts with the top three
exported intensities and those with intensities > 0.005. For the value range of the colors, please refer to the color bars on the right side of each row.
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4. Discussion

Comprehensively quantifying the malaria transmission intensity by considering heterogeneous risk-related factors and
understanding the spatiotemporal transmission patterns are crucial for developing intervention strategies for malaria control
and elimination. In this paper, we model the malaria transmission intensity from human, vector, and environmental per-
spectives and analyze the spatiotemporal patterns of malaria transmission to provide detailed insights regarding endemics
and create a valuable reference for planning accurate and timely responses at locations with the greatest needs. In this study,
we follow the settings in (Ceccato et al., 2012; Shi et al., 2020) to use a linear model to approximate the relationship between
the rainfall and vector density because of the good explainability of the linear model. In fact, the relation between rainfall and
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Fig. 4. The sensitivity of the overall malaria transmission intensity with respect to the parameters related to vector factors and human factors. (a) a (human biting
rate), (b) d2 (mosquito death rate), (c) m (vector density), and (d) r1 (human recovery rate). The solid lines denote the value of Rall over time with respect to
parameter variation. The color intensity of each line indicates the extent of the variation (please see the legend in the subfigures). The darker the color is, the
higher the variation percentage. Please refer to the left vertical axis in each subfigure for the detailed values of Rall . The dashed lines denote the percentage
changes in the value Rall . Please refer to the right vertical axis in each subfigure for the detailed values of the changing percentage of Rall . The straight red line in
each subfigure denotes malaria transmission threshold 1.
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vector density could be more complex in reality (Li et al., 2019). Therefore, we plan to explore more sophisticated nonlinear
models to represent the relation between them, so as to further enhance the prediction power of the developed model.

It is worth noting that the malaria transmission intensity matrix established with our method is not static but dynamically
adaptive over time because it is based on time-varying heterogeneous data and parameters. Our analyses of the inferred
transmission intensity patterns in terms of human and vector factors show that 15 pilot districts in Cambodia can be stratified
into several groups with different levels of risk, thus enabling us to deploy flexible strategies to control vector and human
factors at different locations over time. We map the local malaria transmission intensity at both fine and coarse scales and
visualize the cross-location malaria transmission intensity to identify the areas with the highest malaria transmission risk for
the accurate implementation of interventions.

Based on the sensitivity analysis of parameters, the proposed model can be used to develop and support various strategies
for malaria control and elimination (World Health Organization, 2015, 2017), such as vector control, case detection and
management, and malaria surveillance. For vector control, IRS, ITNs, and long-lasting insecticidal nets can reduce the contact
between humans and vectors and decrease the mosquito survival, so as to decrease the human biting rate and increase the
mosquito death rate. For case control and surveillance, timely tracking and treatment of malaria cases can increase the human
recovery rate to curb the further spread of disease.

As pointed out by the Updated Global Technical Strategy for Malaria 2016e2030 (World Health Organization, 2021a),
countries that aim to effectively control and eliminate malaria are suggested to adopt tailor-made, data-driven intervention
strategies to replace a “one-size-fits-all” method, so as to maximize the utilization of limited anti-malaria resources. Having
leapfrogged intomalaria elimination, Cambodia's commitment to vanquish the “last mile” ofmalaria elimination is facedwith
various obstacles such as artemisinin resistance (Phyo & Nosten, 2018), hard-to-trace human mobility (Guyant et al., 2015),
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Fig. 5. The sensitivity of the overall malaria transmission intensity with respect to the parameter a (human biting rate) in individual districts. In each subfigure,
with a fixed percentage change for all districts, as noted in the title of each subfigure, the solid lines denote the Rall values over time with respect to the variation
of parameter a in different districts (see the legend). Please refer to the left vertical axis in each subfigure for the detailed values of Rall . The dashed lines denote
the percentage changes in Rall . Please refer to the right vertical axis in each subfigure for the detailed values of the changing percentage of Rall . The straight red
line in each subfigure denotes malaria transmission threshold 1.
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and a suitable climate and environment for mosquito breeding (Kar et al., 2014; Kerkhof et al., 2016; Suwonkerd et al., 2013),
putting up challenges to public health policy-makers to devise actionable plans that precisely allocate their limited resources
to lessen the malaria burden in various regions. Our investigation in Cambodia provides a step-by-step demonstration of the
developed integrative risk assessment method in inferring the underlying spatiotemporal malaria transmission intensity
from the available empirical observation data and informing corresponding intervention measures. This investigation can
also offer evidence-based support and guidance to other malaria-endemic countries and regions that face similar challenges
on how targeted intervention strategies can be devised through data-driven approaches to achieve effective malaria control.

The proposed model is a comprehensive and general approach for assessing malaria transmission intensity and is useful
for understanding the complex transmission patterns associated with various factors. However, it should be noted that when
using the model in other countries or regions, location-specific settings should be considered. For instance, in Africa, the ratio
of indigenous cases to imported cases, human social activities, and distributions of land cover and vector species are quite
different from those in Cambodia. Consequently, the numerical results reported in this paper may not be directly applicable to
other countries or regions, and domain-specific data and information are required to generate context-aware analysis results
and guide tailor-made public health responses. Moreover, when implementing intervention strategies for different countries
or regions, local conditions such as the cost-effectiveness, availability of health facilities, and operational capacity should be
balanced and taken into consideration (Brady et al., 2016).

In addition to the risk-related factors that we have investigated and discussed in this study, other influential factors may
also impact the malaria transmission, e.g., the intervention coverage, the immunity level of the population, and the acces-
sibility of healthcare facilities. In fact, themalaria cases in Cambodia in recent years (including the study duration of this work,
i.e., from January 2018 to March 2021) obviously demonstrated a decreasing trend, which should be attributed to the effective
intervention strategies, e.g., the establishment of village malaria workers (VMWs) for active diagnosis and treatment
(Ministry of Health Kingdom of Cambodia, 2021). By fitting the data using a least squares regression, our model implicitly
takes such intervention effects into account in a data-driven manner. In our future work, we plan to collect and explicitly
incorporate more information about the aforementioned intervention implementations as well as other related data (e.g., the
entomological data) to further improve the prediction accuracy and the explainability of the developed model.
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