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Simple Summary: Personalized cancer treatment strategies, including risk-adaptive chemoradiation
therapy based on medical imaging, seek to improve outcomes of patients with unresectable and
locally advanced non-small cell lung cancer. Refining patient risk stratification relies on outcome
prediction modeling based in part on information from different imaging modalities and imaging time
points during and after treatment. Using prospectively collected longitudinal data from FDG-PET, CT,
and perfusion SPECT images of patients enrolled on a clinical trial, our aim was to evaluate the utility
of a multitask machine learning radiomics framework for survival outcome prediction. We found
that multitask learning of FDG-PET radiomics on pretreatment and mid-treatment images achieved
higher survival prediction concordance compared with single-task learning of other modalities and
clinical benchmark models. Our multitask learning radiomics framework can be applied to other
longitudinal imaging datasets, and, once validated, can strengthen clinical decision support for
personalized and adaptive treatment courses.

Abstract: Medical imaging provides quantitative and spatial information to evaluate treatment re-
sponse in the management of patients with non-small cell lung cancer (NSCLC). High throughput
extraction of radiomic features on these images can potentially phenotype tumors non-invasively and
support risk stratification based on survival outcome prediction. The prognostic value of radiomics
from different imaging modalities and time points prior to and during chemoradiation therapy of
NSCLC, relative to conventional imaging biomarker or delta radiomics models, remains unchar-
acterized. We investigated the utility of multitask learning of multi-time point radiomic features,
as opposed to single-task learning, for improving survival outcome prediction relative to conven-
tional clinical imaging feature model benchmarks. Survival outcomes were prospectively collected
for 45 patients with unresectable NSCLC enrolled on the FLARE-RT phase II trial of risk-adaptive
chemoradiation and optional consolidation PD-L1 checkpoint blockade (NCT02773238). FDG-PET,
CT, and perfusion SPECT imaging pretreatment and week 3 mid-treatment was performed and
110 IBSI-compliant pyradiomics shape-/intensity-/texture-based features from the metabolic tumor
volume were extracted. Outcome modeling consisted of a fused Laplacian sparse group LASSO with
component-wise gradient boosting survival regression in a multitask learning framework. Testing per-
formance under stratified 10-fold cross-validation was evaluated for multitask learning radiomics of
different imaging modalities and time points. Multitask learning models were benchmarked against
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conventional clinical imaging and delta radiomics models and evaluated with the concordance index
(c-index) and index of prediction accuracy (IPA). FDG-PET radiomics had higher prognostic value for
overall survival in test folds (c-index 0.71 [0.67, 0.75]) than CT radiomics (c-index 0.64 [0.60, 0.71])
or perfusion SPECT radiomics (c-index 0.60 [0.57, 0.63]). Multitask learning of pre-/mid-treatment
FDG-PET radiomics (c-index 0.71 [0.67, 0.75]) outperformed benchmark clinical imaging (c-index
0.65 [0.59, 0.71]) and FDG-PET delta radiomics (c-index 0.52 [0.48, 0.58]) models. Similarly, the IPA
for multitask learning FDG-PET radiomics (30%) was higher than clinical imaging (26%) and delta
radiomics (15%) models. Radiomics models performed consistently under different voxel resampling
conditions. Multitask learning radiomics for outcome modeling provides a clinical decision support
platform that leverages longitudinal imaging information. This framework can reveal the relative
importance of different imaging modalities and time points when designing risk-adaptive cancer
treatment strategies.

Keywords: FDG-PET; CT; SPECT; multimodal imaging; lung cancer; radiomics; multitask regression;
LASSO; gradient boosting; survival analysis

1. Introduction

Cancer mortality and incidence remains significant with aging and population growth
amid a multitude of risk factors, wherein lung cancer features high mortality and inci-
dence rates [1]. Despite recent advances in treatment strategies, including combinations of
surgery, chemotherapy, immunotherapy, and radiation therapy, median overall survival for
patients with non-small cell lung cancer (NSCLC) remains poor and not all patients derive
similar benefit. This highlights the importance of discovering and validating biomarkers
that are both sensitive to treatment effects and predict outcomes following combination
cancer therapies [2], enabling patient risk stratification for individualized treatment tech-
niques. Risk stratification studies have focused on early detection and cancerous nodules
classification [3–5], histologic subtype classification [6], prognosis after radiation therapy
or surgery [7], prediction of lung toxicity after radiation therapy [8,9], and prediction of
response to chemoradiation or immunotherapy [10–12], utilizing a variety of survival
prediction modeling [10–20].

Biomarkers from quantitative medical imaging, such as positron emission tomography
(PET), computed tomography (CT), and single-photon emission computerized tomogra-
phy (SPECT), have been used to assess various components of cancer treatment response
or risk of treatment-related side effects [21–23]. Among these imaging modalities, fluo-
rodeoxyglucose (FDG)-PET/CT has been applied for quantitative assessment of early tumor
response to lung cancer therapy and predicting survival outcomes [24]. High throughput
radiomic extraction of advanced quantitative imaging features to define tumor charac-
teristics related to intensity, shape, and texture of intratumor heterogeneity [25,26] has
also shown promise in the prediction of treatment response and association to clinical
outcomes [27–30]. Radiomics models have primarily utilized CT images, ranging from
tumor/peritumoral lung parenchyma features with conventional Cox proportional hazard
modeling of disease-free survival [31] and logistic regression modeling of chemotherapy
response [10], to transfer learning of convolutional neural networks (CNN) to predict
overall survival [12], and radiomic biomarkers of tumor mutational burden (TMB) for
response prediction following immunotherapy [11]. However, the aforementioned studies
were restricted to single imaging modalities—which may neglect information content from
other modalities [10,14,15,32]—or required large data sets to train deep learning models,
which may not be appropriate for smaller available data sets in early phase clinical trial
settings [11,33].

Some studies have leveraged multimodal imaging or biomarker combinations from
tissue and peripheral blood. Multimodal CT and PET imaging biomarker logistic regression
modeling was developed to predict tumor response to radiotherapy [34], while combined
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CT imaging and genomics in a Cox model with elastic net regularization was used to
predict post-surgical recurrence risk [35]. Clinical features were combined with MRI-based
radiomics to predict histologic subtype from a nomogram, using logistic regression [36].
Neural layer fusion of features from clinical data, gene expression, and copy number
alteration within multimodal graph neural networks (MGNN) was used for survival
prediction [37]. However, these studies all relied on a single time point prior to treatment,
which neglects patient-specific response information that can guide treatment adaptation
strategies [16–20].

Multitask learning is a paradigm that leverages information and relationships from
multiple related tasks for improved robustness of prediction performance [38,39], with
broad applications in bioinformatics [40] using clinical data [41–46]. Multitask learning
can be implemented as a feature learning approach, under which the prediction model
can learn common features for all tasks [47,48], as a task clustering approach for model
hyperparameter tuning [49], and simultaneous learning of pairwise task relations and
model parameters [50]. Multiple tasks can be defined by predicting different outcomes for
a single time point or predicting one outcome over time at multiple time points, which
is especially pertinent in longitudinal studies. It remains unknown whether single- or
multitask learning radiomics approaches can improve survival outcome prediction relative
to published prognostic factors.

While most multitask learning considers multiple outcome variables for joint predic-
tion, we propose to leverage multitask learning for novel multipoint survival probability
prediction, which captures the nonlinear relationship of temporal information in longitu-
dinal imaging data. In the context of a prospective phase II clinical trial of risk-adaptive
chemoradiation therapy for unresectable NSCLC, this investigation sought to evaluate
the utility of multitask learning for survival outcome modeling on longitudinal images of
FDG-PET, CT, and perfusion SPECT. Our aim was to evaluate whether multitask learning
of pretreatment and mid-treatment radiomic features can improve survival outcome predic-
tion relative to benchmark models consisting of clinical imaging features or delta radiomics.
We also investigated the effect of multimodality imaging combinations on survival outcome
prediction. Our multitask learning approach seeks to:

• ingest feature spaces spanning multiple modalities;
• learn tasks jointly defined by the prediction of survival outcome continuously over

time instead of prediction at a single time horizon;
• overcome missing and unbalanced data encountered in longitudinal datasets;
• incorporate a kernel-based model of nonlinear relationships between radiomics and

survival outcomes beyond linear relationships;
• train efficiently on modest sample sizes from early phase clinical trial datasets that

can robustly scale to larger datasets;
• guard against error propagation across feature space modalities.

2. Materials and Methods
2.1. Participants and Clinical Trial Protocol

Data in this study was prospectively collected on 45 patients with unresectable Ameri-
can Joint Committee on Cancer v7 stage IIB–IIIB non-small cell lung cancer and Eastern
Cooperative Oncology Group performance status 0–1 enrolled on the phase II FLARE-RT
clinical trial (NCT02773238). All patients were screened for trial eligibility based on strict
inclusion and exclusion criteria, including adequate pulmonary function, renal function,
and liver function. PET/CT and SPECT/CT imaging was performed 1–2 weeks prior to
treatment start, and PET/CT imaging was repeated during week 3 to assess early treat-
ment response. Patients received standardized 6 weeks of chemoradiation therapy that
was risk-adapted based on FDG-PET response, with PET responders receiving 60 Gy in
30 fractions to planning target volumes and PET-non responders receiving 74 Gy in 30 frac-
tions via concomitant dose boost over the final 15 fractions. Consolidation durvalumab
anti-programmed death ligand 1 (PDL1) immune checkpoint inhibitor therapy was admin-
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istered in patients who enrolled after this regimen became the standard of care following
the PACIFIC trial [51,52]. Table 1 lists the demographic and clinical information of patients,
which formed the basis for variables in the benchmark clinical imaging model.

Table 1. Demographic and clinical information of the participants in the FLARE-RT clinical trial.

Characteristics Value *

Age 63 (34–78)
Gender

Female 25 (56%)
Male 20 (44%)

Clinical Stage (AJCCv7)
IIB 2 (4%)
IIIA 23 (51%)
IIIB 15 (33%)
N2 Recurrence 5 (11%)

Histology
Squamous cell carcinoma 14 (31%)
Adenocarcinoma 29 (64%)
other 2 (4%)

Radiation therapy
Proton scanning beam therapy 23 (51%)
X-ray radiotherapy
(IMRT/VMAT) 22 (49%)

Chemotherapy
Carboplatin + paclitaxel 25 (56%)
Cisplatin + etoposide 11 (24%)
Other platinum doublet 9 (20%)

PD-L1 tumor proportion score
>50% 6 (13%)
1–49% 7 (16%)
<1% 7 (16%)
Unknown 25 (56%)

Mid-PET Response
Responder 29 (64%)
Non-responder 16 (36%)

Mid-PET PERCIST 1.0
Partial metabolic responder 27 (60%)
Stable metabolic disease 17 (38%)
Progressive metabolic disease 1 (2%)

* Values represent the number of patients (%) or median (range) for all attributes.

2.2. Image Acquisition and Processing

Pretreatment and mid-treatment PET/CT imaging was performed in radiation treat-
ment position with standardized imaging protocols on matching scanners and patient
immobilization. Patients scanned on the GE Discovery STE (GE Healthcare, Waukesha, WI,
USA) underwent acquisitions of 5 min per bed position while patients scanned on GE Dis-
covery MI underwent acquisitions of 2.5 min per bed position due to differences in scanner
sensitivity. PET ordered subset expectation maximization (OSEM) reconstruction param-
eters were harmonized between scanners to yield concordant quantitative images [53].
CT-based attenuation correction (CTAC) of the standardized uptake values (SUV) in quan-
titative PET was applied [54]. PET/CT images were rigidly aligned to the radiation therapy
planning CT and corresponding dose distribution using mutual information in MIM 7.1
(MIM Software, Cleveland, OH, USA). Pretreatment [99 mTc] MAA perfusion SPECT/CT
was performed on a Precedence (Philips Healthcare, Andover, MA) 16-slice scanner on all
patients followed by correcting for attenuation, collimator–detector response, and scatter.
SPECT image reconstruction was performed using ordered subset expectation maximiza-
tion with spatial resolution recovery and a 10 mm cut-off filter. PET/CT and SPECT/CT
images were co-registered to the reference planning CT via rigid alignment. Metabolic
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tumor volume (MTV) contours were prospectively delineated at each time point under the
FLARE-RT trial protocol using a commercially validated semi-automatic gradient-based
segmentation tool in MIM (PET Edge, MIM Software, Cleveland, OH, USA) with consen-
sus from a multidisciplinary team, including a board-certified radiation oncologist. MTV
contours defined in this way improved repeatability compared to manual contouring and
reduced sensitivity to image reconstruction compared to fixed threshold contouring [53].
MTV contours were then propagated to all co-registered images. Figure 1 displays the
pre-RT and mid-RT fused FDG-PET/CT images for an responder and non-responder to
treatment from the FLARE-RT clinical trial.

(a) (b)

(c) (d)

Figure 1. FDG-PET/CT images for an example PET non-responder patient (a,c) and PET responder
patient (b,d), acquired pretreatment (a,b) and mid-treatment (c,d). Tumor volumes are displayed as
blue/green contours.

2.3. Radiomic Feature Extraction

The MTV contour in DICOM RTstruct format along with the associated DICOM
images at the native resolution (CT 0.8× 0.8× 2.5 mm3, FDG-PET 5.4× 5.4× 3.2 mm3,
perfusion SPECT 4.6× 4.6× 4.6 mm3) were loaded separately for each modality using 3D
slicer software into the imaging biomarker standardization initiative (IBSI) [55] compliant
pyradiomics module [56]. No additional denoising of images was applied so as to preserve
information content from clinical scanner protocols. All radiomic features were calculated
over the 3D MTV mask volume and aggregated over voxels to report the average MTV fea-
ture values. Both native voxels and geometric mean resampled isotropic voxels (CT 1.2 mm,
FDG-PET 4.5 mm, perfusion SPECT 4.6 mm) were utilized for texture feature calculation,
in order to evaluate the reliability of our multitask learning radiomics framework [57–62].
Image intensities were discretized using standardized fixed bin width (FBW) of 25 HU,
25 CNTS, and 0.25 SUV for CT, SPECT, and PET, respectively, which promoted sufficient
voxel sampling. Texture features were extracted without additional wavelet filtering to
limit dimensionality. Of 110 total features, 75 texture features of gray-level run length
(GLRLM), gray-level co-occurrence (GLCM), neighborhood gray tone difference (NGTDM),
gray-level size zone (GLSZM), and gray-level dependence (GLDM) matrices, as well as
16 shape-based and 19 first-order intensity statistic-based features, were extracted.

2.4. Fused Laplacian Sparse Group LASSO (FLSGL)

In this longitudinal imaging biomarker study for cancer survival outcome modeling,
the problem can be framed by multitask regression, either by predicting multiple outcomes
or predicting an outcome at multiple time points. A multitask learning approach has been
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applied for the prediction of overall survival. Let us consider the input matrix of radiomic
features for each modality as Xt = {x1, x2, . . . , xN} and target vector of overall survival
as yt = {y1, y2, . . . , yN}; therefore, Xt ∈ RN×F and yt ∈ RN , where N is the number of
observations and F is the number of features at the time of t = 1, 2, . . . , T. It should be
noted that all vectors are defined with lowercase letters, and matrices are defined with
uppercase letters throughout this article. If the regression parameters across all tasks are
considered as Φ ∈ RF×T matrix, then ϕ ∈ RF denotes the column of regression parameters
of the task at the time, t. Wt = {w1, w2, . . . , wT} is the weight matrix at all time points.
A local kernel-based smoothing approach [63] is used for local smoothing in order to
minimize the regression error at each time point, and is associated with the task, t, and
neighbor, ϕt. Thus, the approximation model can be determined as follows:

ϕ̂t =
T

∑
r=1
r 6=t

wr,t ϕr, t = 1, 2, . . . , T (1)

where wr,t =
K( r−t

σ )

∑T
r=1
r 6=t

K( r−t
σ )

, r = 1, 2, . . . , T, r 6= t.

Here σ is the bandwidth and K is the kernel matrix using the Gaussian kernel as

K =
1

σ
√

2π
exp(

x2

2σ2 ) (2)

In Equation (1), the weights are defined by the Gaussian kernel where its bandwidth
needs to be determined. A small value of σ leads to quick decay of the Gaussian curve,
whereas a larger value promotes more gradual decay. We determined σ = 1 as an appropri-
ate default empirical value to be used in this study. On the other hand, the fused aspect of
the model is obtained by adding sparsity on the matrix of residuals. The fused penalty or
the transformation matrix as used in this study can be defined as G ∈ RT×T in the term of
P = ΦG as follows:

[
ρ1 ρ2 · · · ρT

]
=


ϕ1
ϕ2
...

ϕT


T


I −w|t−r| I −w|t−r| I
... −w|t−r|

−w|t−r| I I
...

... −w|t−r| I
...

...
...

...
...

−w|t−r| I −w|t−r| I −w|t−r| I · · · I

 (3)

The matrix of G includes the weights wt,r = w|t−r|, demonstrating the edges between
the nodes t and r. Therefore, the solution for the multitask problem is to solve the following
constrained optimization equation:

min
Φ,P

T

∑
t=1
||yt − Xt ϕt||2 + Hβ1

β2(Φ) + β3 ||P||1

and ρt = ϕt −
T

∑
r=1
r 6=t

wr,t ϕr

(4)

where the columns of residuals, ρt, creates the matrix of residuals P ∈ RF×T , the β1, β2, and
β3 are the regularization parameters, and Hβ1

β2(Φ) = β1 ||(Φ)||1 + β2 ||(Φ)||2,1 denotes the
combination of penalties of the LASSO and the group LASSO. The group LASSO defined
as ||(ϕ)||2,1 = ∑F

i=1 ||ϕi|| considers the groups across all time points for each variable i,
which allows sharing a common set of variables at each time point. In order to solve
the optimization problem in Equation (4), which is ill-posed for direct optimization, an
alternating direction method of multiplier (ADMM) is used. A detailed description of the
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multiblock ADMM steps for finding the matrix regression parameters, Φ can be found
in [64]. Following this fused Laplacian sparse group LASSO (FLSGL) methodology, M
modality-specific regression matrices are obtained to generate the M primary prediction
of each target of ŷ using ŷM

t = Xt
M ×Φt

M as well as to select the most important features.
These outputs of selected features are then ensembled by the gradient boosting survival
algorithm described in the next section.

2.5. Component-Wise Gradient Boosting Survival Analysis (CWGBS)

To account for a time-dependent outcome target variable with right censoring, a
component-wise gradient boosting survival (CWGBS) approach was employed. Sur-
vival analysis is a series of statistical procedures which considers the time until an event
occurs [65]. Right-censoring in survival analysis occurs when there is finite survival time
information about each individual, who will each have variable duration of follow-up
intervals over which an event may or may not occur. One can leverage a gradient boosting
survival model that combines the prediction of multiple weak learners in an additive
manners to achieve a powerful model. The overall model of the boosting algorithm can be
defined as Equation (5).

ûV,X = argmin
u

n

∑
i=1

(Vi − g(Xi|u))2 (5)

where N > 0 is the number of base or weak learners, V defines a pseudo-response variable,
uV,X is a parameters vector, and the base learner regressing v on the covariates X is indicated
by g(.|uV,X). Since the provided least-squares problem cannot be solved for fitting the
base learner due to dependency of Vi to the censored Yi, the weighted least squares of ũṼ,X
is computed using the pseudo-responses (Equation (6)) follow by fitting the base learner
g(.|uV,X) to the new vi.

Ṽi = −
∂L(Ỹi, ϕ)

∂ϕ

∣∣∣∣ϕ = f̂m(Xi) (6)

where f̂ is the estimation of regression function, L is the loss function, and ϕ is the candi-
date estimators for the regression function f . Details of the mathematical formalism are
described in [66]. Here, the CWGBS algorithm uses the partial likelihood loss of Cox’s
proportional hazards model (coxph) as the loss function and component-wise least squares
as the base learner that fits a regression tree of selected features of different modalities
in the last step at each stage on the negative gradient of the loss function. The CWGBS
output generates the predicted overall survival time as well as the probability of survival
for each patient.

The overall schematic of the multitask single/multimodality pipeline for prediction
of survival outcomes is depicted in Figure 2. The multitask learning pipeline consisted
of stratified 10-fold cross-validation repeated iteratively 15 times for different random
seeds to ensure that the prevalence of overall survival events was similar in training and
testing subsets, as well as to remove any bias in selecting training and testing subsets. The
hyperparameters of CWGBS, including the number of estimators and the loss function
type, as well as hyperparameters of the FLSGL feature selection algorithm, were optimized
by nested grid search in python using the Scikit-learn library within the training sets
and blinded to testing sets in order to prevent data leakage. Tuned hyperparameters
for CWGBS were constrained to no more than 15 base weak learners (estimators) for the
Cox proportional hazard (Coxph) loss function with a learning rate of 1. Tuned FLSGL
hyperparameters included σ = 1, δ = 10, β1 = 4.8, β2 = 2.2, and β3 = 4.2 using the nested
grid search in the range of [1, 5].
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Figure 2. Overall schematic of survival outcome prediction pipeline using multitask feature selection
across time points from single/multimodality radiomics (left) and steps inside the stratified cross-
validation folds for multitask and gradient boosting survival (right). Note that feature selection and
nested grid search for hyperparameter tuning were constrained to training folds and blinded to test
folds, in order to prevent data leakage for unbiased performance evaluation.

3. Results

Overall survival prediction performance of the models in test folds, based on con-
cordance index (c-index) along with 95% confidence intervals, is reported in Table 2 for
single task learning of different modalities compared to multitask learning of pre-/mid-
treatment time points. Table 2 reports non-parametric Friedman ANOVA statistical testing
of multitask versus single task learning models, as well as Wilcoxon signed rank statistical
testing of radiomics model performance in comparison to the benchmark clinical imaging
model. From the patient characteristics listed in Table 1, the benchmark clinical imaging
model included LASSO-selected CT planning target volume, FDG-PET SUVmax, FDG-PET
metabolic tumor volume, and FDG-PET total lesion glycolysis. As seen in Table 2, the c-
index of the multitask pre-/mid-RT FDG-PET radiomics model is significantly higher than
the c-index of the benchmark clinical imaging model. In addition to c-index, the index of
prediction accuracy (IPA) was computed for the multitask learning models. IPA combines
calibration and discrimination in one performance evaluation metric by rescaling the Brier
score, which enhances interpretability by adjusting for a reference model [67]. A 2-year
time horizon and reference (null) model of Kaplan–Meier were considered for calculating
IPA. We obtained a higher IPA of 30% for FDG-PET multitask learning, compared to 26%
for the clinical imaging benchmark and 15% for the delta radiomics benchmark, which was
consistent with the c-index results. By contrast, CT and SPECT radiomics achieved lower
performance relative to FDG-PET radiomics. Figure 3 visualizes the receiver operating
characteristic (ROC) curves along with the c-index for different modalities.
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Figure 3. Receiver operating characteristic (ROC) curves and c-index values for different modalities.

Table 2. Prediction performance of overall survival for the proposed model of FLSGL combined with
CWGBS using a single time point or multiple time points for each modality. Values represent c-index
(95% confidence interval) with p-values of the Friedman ANOVA test for multitask versus single task
learning, as well as p-values of the Wilcoxon signed rank test for multitask learning of each modality
relative to the benchmark model using clinical variables.

Modality Single Task
(Pre-RT)

Single Task
(Mid-RT)

Multitask
(Pre-RT/Mid-RT)

Friedman
p-Value

Wilcoxon
Signed Rank p

FDG-PET 0.66 (0.61–0.70) 0.63 (0.56–0.67) 0.71 (0.67–0.75) <0.01 0.02
CT 0.56 (0.52–0.61) 0.64 (0.60–0.71) 0.64 (0.59–0.72) 0.01 0.23
SPECT * 0.60 (0.57–0.63) - - - 0.20
Clinical Variables 0.63 (0.58–0.70) 0.62 (0.56–0.67) 0.65 (0.61–0.71) 0.06 reference

* No perfusion SPECT images acquired mid-RT.

Table 3 summarizes overall survival prediction performance for the proposed model
of a single time point or two time points for different combinations of modalities. Here,
in the first step, the FLSGL model was applied on each modality at different time points
(either single or multitask at each column). Then the result of each modality obtained was
ensembled using the CWGBS model for different multimodality combinations at each row.
Table 3 demonstrates that combining other modalities with FDG-PET does not improve
the prediction results either on the pre-RT or mid-RT time point. However, Friedman
ANOVA testing reveals that multitask learning of pre-RT/mid-RT achieves higher model
concordance for each multimodality combination relative to single task learning. This
mirrors the improved prediction performance of multitask learning of individual modalities
in Table 2.

Figure 4 displays the Kaplan–Meier curves for the test folds stratified into 2 groups
of high risk (above median prediction) and low risk (below median prediction) for each
modality of FDG-PET, CT, and perfusion SPECT radiomic features, along with bench-
mark clinical imaging variables. Statistically significant stratification of low-risk versus
high-risk groups was achieved using FDG-PET radiomics (log rank p = 0.01). Results
in Figures 3 and 4 are generated based on aggregating test samples across the stratified
10-fold cross-validation and 15 iterative resamplings. Table 4 and Figures 5 and 6 summa-
rize the performance of different learning combinations, including our multitask learning
framework compared to other machine learning approaches in terms of c-index and IPA.
Of note, delta radiomics models [68,69], in which feature differences between time points
are used as predictors, showed lower performance as compared to our proposed multitask
learning approach, which combines fused Laplacian sparse group LASSO feature selection
with component-wise gradient boosting survival trees.
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Table 3. Prediction performance of overall survival in terms of c-index for the proposed model of a
single time point or multiple time points for the combination of modalities. Here, FLSGL was applied
on each modality at single-/multi-time points separately and results (each row) were ensembled
using CWGBS at single-/multi-time points for different multimodality combinations. p-values of the
Friedman ANOVA test are reported for each modality combination between multitask and single-task
learning time points.

Modalities Single Task
(Pre-RT)

Single Task
(Mid-RT)

Multitask
(Pre-RT/Mid-RT)

Friedman
p-Value

FDG-PET + CT 0.62 (0.58–0.66) 0.63 (0.59–0.68) 0.66 (0.63–0.70) 0.03
FDG-PET + SPECT 0.59 (0.56–0.63) 0.63 (0.56–0.67) 0.65 (0.61–0.69) 0.01
FDG-PET + Clinical Variables 0.63 (0.58–0.68) 0.60 (0.55–0.66) 0.67 (0.64–0.72) <0.01
FDG-PET + CT + SPECT 0.57 (0.54–0.61) 0.60 (0.56–0.65) 0.63 (0.59–0.67) <0.01
FDG-PET + CT + SPECT + Clinical Variables 0.57 (0.53–0.61) 0.61 (0.55–0.66) 0.62 (0.57–0.67) 0.01
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Figure 4. Kaplan–Meier curves of overall survival in test folds stratified by high-risk (>median
prediction) versus low-risk (<median prediction) groups with models using the (a) FDG-PET, (b) CT,
(c) perfusion SPECT radiomic features, and (d) clinical imaging variables.

Supplemental results based on texture features extracted from geometric mean resam-
pled isotropic voxels are reported in Supplementary Tables S1–S3 and Figures S1–S4. The
isotropic radiomic model performance trends were consistent with those of models based on
texture features from native voxels following standardized clinical trial imaging protocols.



Cancers 2022, 14, 1228 11 of 18

Table 4. Comparison of FDG PET radiomics overall survival prediction models between the proposed
FLSGL and CWGBS with different feature selection and survival regression models (DR—delta
radiomics; Coxnet—Cox net survival model; RR-RFE—ridge regression recursive feature elimination;
RF—random forest; FLSGL—fused Laplacian sparse group LASSO; RSF—random survival forest;
GBS—gradient boosting survival; SSVM—survival support vector machine; CWGBS—component-
wise gradient boosting survival). Bolded values denote highest level of performance.

Feature Selection Survival Analysis Time Points No. of Features
C-Index (95%
Confidence

Interval)
IPA (%)

LASSO CWGBS Pre-RT 3–7 0.59 (0.55–0.66) 22
LASSO+DR CWGBS pre-/mid-RT 1–6 0.45 (0.40–0.51) 12

RF+DR CWGBS pre-/mid-RT 2–10 0.52 (0.48–0.58) 15
RR-RFE CWGBS Pre-RT 2–7 0.54 (0.51–0.60) 24

RF CWGBS Pre-RT 3–12 0.61 (0.55–0.66) 21
FLSGL RSF pre-/mid-RT 1–5 0.65 (0.60–0.70) 28
FLSGL Coxnet pre-/mid-RT 1–5 0.67 (0.63–0.72) 27
FLSGL SSVM pre-/mid-RT 1–5 0.62 (0.59–0.69) - *
FLSGL GBS pre-/mid-RT 1–5 0.63 (0.58–0.68) 21
FLSGL CWGBS pre-/mid-RT 1–5 0.71 (0.67–0.75) 30

* Brier score-derived IPA is not calculated as SSVM does not generate predicted probability.

Coxnet RSF SSVM GBS CWGBS
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LASSO + Mid-RT

RF + Pre-RT

RF + Mid-RT

RF+DR

LASSO + DR

RR-RFE + Pre-RT
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FLSGL

0.59 0.54 0.56 0.47 0.59

0.52 0.59 0.45 0.6 0.61

0.55 0.51 0.52 0.48 0.6
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Figure 5. Heatmap of c-index values of overall survival prediction for different feature selection
and survival analysis algorithms using FDG-PET radiomics (DR—delta radiomics; Coxnet—Cox
net survival model; RR-RFE—ridge regression recursive feature elimination; RF—random forest;
RSF—random survival forest; GBS—gradient boosting survival; SSVM—survival support vector
machine; GBS—gradient boosting survival).
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Figure 6. Heatmap of IPA values of overall survival prediction for different feature selection and
survival analysis algorithms using FDG-PET radiomics (DR—delta radiomics; Coxnet—Cox net
survival model; RR-RFE—ridge regression recursive feature elimination; RF—random forest; RSF—
random survival forest; GBS—gradient boosting survival; SSVM—survival support vector machine;
GBS—gradient boosting survival).
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4. Discussion

We developed and implemented a novel multitask learning radiomics framework
over multiple imaging time points using the fused Laplacian sparse group LASSO (FLSGL)
kernel-based algorithm that can capture non-linear associations to clinical outcomes. The
framework was applied to survival outcome modeling in a cohort of patients with unre-
sectable non-small cell lung cancer enrolled on the FLARE-RT phase II clinical trial, from
which CT, FDG-PET, and perfusion SPECT radiomic features at pre- and mid-treatment
time points were extracted. Stratified 10-fold cross-validation with 15 iterative resamplings
was utilized to ensure consistent survival event proportionality across training/testing
folds and guard against overfitting when reporting test set performance. In addition,
an ensemble approach using component-wise gradient boosting survival (CWGBS) was
applied to the primary predictions of separate-modality regressions to improve the overall
estimation of prediction. Higher concordance was achieved for prediction of overall sur-
vival using PET radiomic features relative to a benchmark model using clinical imaging
factors. Moreover, multitask learning of pretreatment and mid-treatment time points jointly
resulted in improved survival prediction performance compared with delta radiomics mod-
eling between time points, which highlights the power and flexibility of multitask learning.
Radiomics model performance trends between multitask learning and single-task learning
were consistent under different voxel resampling conditions. We observed differences
in the importance of radiomic features across modalities. Shape and intensity features,
such as volume and uni-dimensional length measures, were most frequently selected as a
percentage of all radiomic features from FDG-PET (89%) and CT (64%). These pyradiomics
features included voxel volume, major axis length, and total energy. By contrast, 86% of the
most frequently selected SPECT radiomic features were from texture feature families.

Limited studies have investigated multitask learning in cancer survival outcome
modeling and associations of medical imaging features to clinical factors [32,43–45,70,71].
Fan et al. mapped the radiomic features of MRI to tumor proliferation Ki-67 and tumor
grade using a multitask learning to enhance prediction performance of breast cancer with
the assumption of sharing common patterns of different source of features [70]. The same
approach of joint prediction using a multiobjective Bayesian network for radiation pneu-
monitis and tumor local control was utilized in NSCLC radiotherapy [71]. In addition,
Zhang et al. proposed a 2-layer pyramid network to first extract 737 radiomic features from
CT images along with a LASSO feature selection and a joint multitask to learn simulta-
neously from correlated tasks of survival and prognosis prediction of gastric cancer [43].
Another investigation developed a combination of deep learning and radiomics to jointly
classify atypical adenomatous hyperplasia/adenocarcinoma and minimally invasive adeno-
carcinoma, non-invasive adenocarcinomas, and invasive adenocarcinomas [32]. However,
these studies considered tasks at a single time point and obtained shared information of
correlated tasks to improve the prediction performance. They did not incorporate patient-
specific response for treatment adaption during the course of therapy at multiple time
points, which limits their application in the context of longitudinal studies.

Chi et al. proposed semi-supervised multitask learning for survival analysis on four
different cancer data sets [44]. They applied model prediction error by randomly adding
noise to each feature in order to obtain the feature importance and a deep learning-based
model to transform the time-dependent analysis into multitask learning, which includes
survival probability prediction at multiple time points. In this designed structure, a semi-
supervised loss is used to deal with censored or unlabeled data, logarithmic loss for the
binary classification of labeled data, and a ranking loss to deal with the prior knowledge
of the non-increasing survival probability trend. They considered the survival time as
multiple discrete time points rather than a continuous variable and applied the multitask
learning on survival time points, with confined learning of a single imaging modality. In
addition, the aforementioned studies performed training on large datasets, which may
not readily translate to the setting of smaller sample sizes prevalent in early phase clinical
trials. Therefore, an efficient learning method with unbiased performance evaluation is
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crucial to secondary analyses of early phase prospective clinical trials with limited patient
sample sizes.

Our novel multimodal multitask learning framework can be applied on different
dataset sizes with different therapy duration at multiple time points. To the best of our
knowledge, this is the first multitask learning study to predict the survival outcomes for
patients with unresectable NSCLC in the context of an early phase clinical trial. Multi-
task learning radiomics extracts greater information content across longitudinal imaging
than delta radiomics, including optimizing combinations of imaging modalities and time
points. Delta radiomics approaches for predictive modeling have been proposed by several
studies [69,72–74]. Fave et al. used delta radiomics to investigate the prognostic improve-
ment for NSCLC of 107 patients [69]. Applying multivariate models, delta radiomics
improved the c-index of overall survival prediction and changed significantly during the
treatment. Another study found that the combination of conventional radiomic features
with delta radiomics in lung cancer screening can improve pulmonary nodule malignancy
prediction [74]. We compared the PET delta radiomics models for overall survival predic-
tion against multitask learning models of pre-/mid-treatment PET radiomics and observed
significant improvement in performance with multitask learning. This highlights the effec-
tiveness of capturing the nonlinear relationship of radiomic features and survival outcome
jointly across time points.

Outcome modeling can enable identification of prognostic signatures and a means of
risk stratifying patients for increasingly precise combinations of cancer therapies. Prog-
nostic decision making usually depends on multifactorial aggregation of information,
including but not limited to histologic, genetic, and molecular testing along with clinician
heuristic experience [75]. Prediction of survival using non-invasive imaging features can
facilitate risk stratification. Identifying patients at high risk for disease progression and
poor survival prognosis early during the course of treatment can empower treatment inten-
sification strategies, including radiation dose escalation, radiosensitizing chemotherapies,
and immune-modulating therapies. In this study, survival outcome modeling with multi-
task learning radiomics can stratify patients to support decisions related to personalized
adaptive cancer therapies. The proposed model is able to stratify high-risk and low-risk
groups (as shown in Figure 4) based on FDG-PET radiomic features. Moreover, multitask
learning radiomics can be applied to other clinical settings with longitudinal imaging, in-
cluding CT, PET, or MRI for response assessment, daily cone beam CT or MRI for adaptive
radiation therapy, and theranostic strategies utilizing both serial PET and SPECT imaging.
The multitask learning framework can reveal the relative importance of different imaging
modalities and different imagine time points, which may be leveraged when designing
imaging components of future clinical trials. This may include longitudinal imaging to
assess novel strategies combining anti-angiogenic therapy and immunotherapy that seek
to alter the tumor microenvironment towards favorable response patterns [76]. Further
investigation with multitask learning to elucidate the biological meaning of radiomics in
response to therapy is warranted [77].

Despite the potential of multitask learning to improve survival outcome modeling
relative to single task learning and clinical benchmarks, this study has several limitations.
One of the major limitations is a small number of participants due to constraints from an
early phase single-institution clinical trial. Modest sample sizes in early phase trials present
challenges to the model generalizability, requiring internal validation techniques (cross-
validation, bootstrapping, optimism adjustment) rather than testing on external validation
datasets. From this early phase investigation, validation of the proposed multitask learning
radiomics framework on a larger independent cohort of patients is a focus of future work.
We observed that adding information from CT or SPECT modalities to FDG-PET did not
improve outcome models. Although the multimodality imaging models did not enhance the
overall survival prediction performance, multitask learning did improve survival outcome
prediction for multimodality combinations relative to single task learning. Other imaging
modalities in our cohort may not have contributed relevant prognostic information beyond
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PET due to the lack of contrast on CT images acquired in the PET/CT exams, which differ
from contrast enhanced diagnostic CT exams. Likewise, low spatial resolution of perfusion
SPECT imaging may have limited the extraction of relevant features from tumor regions.
Furthermore, while the current study demonstrates improvement of multitask learning in
overall survival prediction, each of the survival outcomes are considered separately across
multiple time points. Model prediction performance may be improved by considering
multiple survival outcomes, such as overall survival and disease-free survival as multitask
learning targets over time continuously. Our prediction results rely on only two imaging
time points separated by three weeks of time for multitask learning. Adding imaging time
points after treatment with larger time intervals would enhance survival outcome model
prediction performance, though time points during treatment promote earlier intervention
and treatment adaptation. Finally, other longitudinal biomarkers beyond imaging derived
from tissue and blood assays can be integrated into the multitask learning framework in
the future.

5. Conclusions

In this investigation, we evaluated the radiomic features of FDG-PET, CT, and SPECT
imaging for prediction of overall survival in patients with non-small cell lung cancer. A
multitask learning approach considering pre-/mid treatment time points combined with a
gradient boosting survival network has been applied to different imaging modalities. FDG-
PET radiomics carried greater prognostic value than CT or perfusion SPECT radiomics in
our clinical trial cohort. Multitask learning models of longitudinal FDG-PET outperformed
benchmark clinical imaging and delta radiomics models. Multitask learning of multimodal-
ity radiomics should be further investigated and validated for outcome modeling, with the
potential to provide clinical decision support during risk-adaptive cancer therapy.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cancers14051228/s1, Table S1: Prediction performance of overall
survival for the proposed model of FLSGL combined with CWGBS using a single time point or
multiple time points for each modality. Values represent c-index (95% Confidence interval) with
p-values of the Friedman ANOVA test for multitask versus single task learning time points, as well
as p-values of the Wilcoxon signed rank test for multitask learning of each modality relative to the
benchmark model using clinical variables; Table S2: Prediction performance of overall survival
in terms of c-index for the proposed model of a single time point or multiple time points for the
combination of modalities. Here, FLSGL was applied on each modality at single/multi-timepoints
separately and results (each row) were ensembled using CWGBS at single/multi timepoints for
different multimodality combinations. p-values of the Friedman ANOVA test are reported for each
modality combination between multitask and single task learning time points; Table S3: Comparison
of FDG PET radiomics overall survival prediction models between the proposed FLSGL and CWGBS
with different feature selection and survival regression models (DR: Delta Radiomics, Coxnet: Cox
Net Survival Model, RR-RFE: Ridge Regression Recursive Feature Elimination, RF: Random Forest,
FLSGL: Fused Laplacian Sparse Group LASSO, RSF: Random Survival Forest, GBS: Gradient Boosting
Survival, SSVM: Survival Support Vector Machine, and CWGBS: Component-Wise Gradient Boosting
Survival); Figure S1: Receiver-operating Characteristic (ROC) curves and c-index values for different
modalities; Figure S2: Kaplan-Meier curves of overall survival in test folds stratified by high risk
(>median prediction) versus low risk (<median prediction) groups with models using the (a) FDG-
PET, (b) CT, (c) SPECT radiomic features, and (d) clinical-imaging variables; Figure S3: Heatmap
of c-index values of overall survival prediction for different feature selection and survival analysis
algorithms using FDG-PET radiomics (DR: Delta Radiomics, Cox: Cox Net Survival Model, RR-
RFE: Ridge Regression Recursive Feature Elimination, RF: Random Forest, FLSGL: Fused Laplacian
Sparse Group LASSO, RSF: Random Survival Forest, GBS: Gradient Boosting Survival, SSVM:
Survival Support Vector Machine, and CWGBS: Component-Wise Gradient Boosting Survival);
Figure S4: Heatmap of IPA values of overall survival prediction for different feature selection and
survival analysis algorithms using FDG-PET radiomics (DR: Delta Radiomics, Cox: Cox Net Survival
Model, RR-RFE: Ridge Regression Recursive Feature Elimination, RF: Random Forest, FLSGL: Fused
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Laplacian Sparse Group LASSO, RSF: Random Survival Forest, GBS: Gradient Boosting Survival, and
CWGBS: Component-Wise Gradient Boosting Survival).
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