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Lung adenocarcinoma (LUAD), one of the most common pathological subtypes in lung
cancer, has been of concern because it is the leading cause of cancer-related deaths. Due
to its poor prognosis, to identify a prognostic biomarker, this study performed an
integrative analysis to screen curial RNAs and discuss their cross-talks. The messenger
RNA (mRNA) profiles were primarily screened using robust rank aggregation (RRA)
through several datasets, and these deregulated genes showed important roles in
multiple biological pathways, especially for cell cycle and oocyte meiosis. Then, 31
candidate genes were obtained via integrating 12 algorithms, and 16 hub genes
(containing homologous genes) were further screened according to the potential
prognostic values. These hub genes were used to search their regulators and
biological-related microRNAs (miRNAs). In this way, 10 miRNAs were identified as
candidate small RNAs associated with LUAD, and then miRNA-related long non-coding
RNAs (lncRNAs) were further obtained. In-depth analysis showed that 4 hub mRNAs, 2
miRNAs, and 2 lncRNAs were potential crucial RNAs in the occurrence and development
of cancer, and a competing endogenous RNA (ceRNA) network was then constructed.
Finally, we identified CCNA2/MKI67/KIF11:miR-30a-5p:VPS9D1-AS1 axis-related cell
cycle as a prognostic biomarker, which provided RNA cross-talks among mRNAs and
non-coding RNAs (ncRNAs), especially at the multiple isomiR levels that further
complicated the coding–non-coding RNA regulatory network. Our findings provide
insight into complex cross-talks among diverse RNAs particularly involved in isomiRs,
which will enrich our understanding of mRNA–ncRNA interactions in coding–non-coding
RNA regulatory networks and their roles in tumorigenesis.

Keywords: lung adenocarcinoma (LUAD), competing endogenous RNA (ceRNA), robust rank aggregation (RRA),
cross-talk, cancer prognosis
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HIGHLIGHTS

• The abnormal mRNA profiles in LUAD were primarily
characterized using the RRA algorithm. The 16 potential
hub genes were screened via PPI network and survival
analysis, and some of them were identified as homologous
members in the gene family.

• Related miRNAs were surveyed based on the 16 hub genes,
and miRNA-associated lncRNAs were further screened.
Then, 4 mRNAs, 2 miRNAs, and 2 lncRNAs were identified
as key RNAs to construct a ceRNA network.

• Further in-depth analysis characterized CCNA2/MKI67/
KIF11:miR-30a-5p:VPS9D1-AS1 axis-related cell cycle as a
prognostic biomarker, and all of these RNAs were cancer-
associated crucial genes.
INTRODUCTION

Lung cancer, one of the most common fatal cancers, has been the
leading cause of cancer-related deaths, with an increasing
incidence worldwide (1). This cancer can be categorized into 2
major types, non-small cell lung cancer (NSCLC; ~85%) and
small cell lung cancer (SCLC; ~15%). The former is further
classified into three major subtypes according to histopathology
and clinical features: lung adenocarcinoma (LUAD; ~40%), lung
squamous cell carcinoma (LUSC; ~25%–30%), and large cell
carcinoma (LCC; ~10%–15%). LUAD and LUSC are the most
common pathological subtypes in lung cancer (2–4), and LUAD
is specifically the most frequent subtype in never or light smokers
(5). LUAD patients are mainly caused by a combination of
multiple genetic and environmental factors (6). The prognosis
of NSCLC patients is not optimistic, and the 5-year survival
rate is less than 1% (7, 8), which is mainly attributed to regional
or distant metastasis (9, 10). Patients often have little
opportunity of receiving effective treatments because they lack
specific clinical symptoms and therefore are diagnosed at a very
Abbreviations: ACC, adrenocortical carcinoma; BLCA, bladder urothelial
carcinoma; BRCA, breast invasive carcinoma; CESC, Cervical squamous cell
carcinoma and endocervical adenocarcinoma; CHOL, cholangiocarcinoma;
COAD, colon adenocarcinoma; DLBC, lymphoid neoplasm diffuse large B-cell
lymphoma; ESCA, esophageal carcinoma; GBM, glioblastoma multiforme; HNSC,
head and neck squamous cell carcinoma; KICH, kidney chromophobe; KIRC,
Kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma;
LAML, acute myeloid leukemia; LIHC, liver hepatocellular carcinoma; LGG, brain
Lower grade glioma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell
carcinoma; MESO, Mesothelioma; OV, ovarian serous cystadenocarcinoma; PAAD,
pancreatic adenocarcinoma; PCPG, pheochromocytoma and paraganglioma; PRAD,
prostate adenocarcinoma; READ, rectum adenocarcinoma; SARC, sarcoma; SKCM,
skin cutaneous melanoma; STAD, stomach adenocarcinoma; TGCT, testicular germ
cell tumors; THCA, thyroid carcinoma; THYM, thymoma; TSG, tumor suppressor
gene; UCEC, uterine corpus endometrial carcinoma; UCS, uterine carcinosarcoma;
UVM, uveal melanoma.
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late stage. Characterization of new cancer-specific diagnostic and
prognostic biomarkers is quite necessary, which will greatly assist
in timely diagnosis, prognosis, treatment selection, and guiding
further clinical treatment.

In recent years, non-coding RNA (ncRNA), mainly including
microRNA (miRNA), long ncRNA (lncRNA), and circular RNA
(circRNA), has been widely studied as a class of important
regulatory molecules, especially for their crucial roles in
tumorigenesis (11–13). These ncRNAs have been of interest
because of their potential roles as biomarkers for the diagnosis
and prognosis of various cancers (14–16). The interactions with
messenger RNAs (mRNAs), especially via competing
endogenous RNAs (ceRNAs), indicate that ncRNAs and
mRNAs can function as ceRNAs by competitively binding with
miRNAs through sharing miRNA recognition elements to
regulate their expression levels (17). Based on this hypothesis,
relevant RNAs have been studied, particularly for their potential
prognostic roles in tumorigenesis. For example, the circRNA
hsa_circ_0072088, miRNAs (hsa-miR-532-3p and hsa-miR-942-
5p), and mRNAs (IGF2BP3, MKI67, CD79A, and ABAT) may
serve as prognostic markers in LUAD via a circRNA-mediated
ceRNA network (18); LINC00324/miR-9-5p (miR-33b-5p)/
GAB3 (IKZF1) may play a pivotal role in regulating TAM risk
and prognosis in LUAD patients (19), and some studies focus on
cancer-related lncRNAs to search crucial RNA interactions based
on ceRNA networks (20, 21). These studies provide potential
crucial gene interactions in tumorigenesis, which are quite
necessary to reveal the detailed molecular mechanism of
diverse cancers. However, it is not enough to present these
interactions from these RNA levels, because the small
regulatory RNA, miRNA, is not a single sequence but a series
of multiple isomiRs (22–26). Do these small flexible isomiRs also
contribute to RNA cross-talks and the occurrence and
development of cancers? It is urgent to explore these
interactions at the isomiR levels, which will help us understand
the interesting cross-talks in the RNA world.

In this study, to further understand the potential cross-talks
among diverse RNAs in LUAD (Figure 1), we mainly discuss the
interactions among ncRNAs and mRNAs, particularly from the
isomiR level. Firstly, via an integrative analysis of several
datasets, consistent deregulated genes are surveyed using
robust rank aggregation (RRA) algorithm, and their functional
implications are queried to understand the potential
contributions in tumorigenesis. Secondly, protein–protein
interaction (PPI) networks are used to screen potential hub
genes associated with cancer through integrating multiple
algorithms, and these hub genes are further screened by
survival analysis. Thirdly, relevant miRNAs of these hub genes
are obtained, and then these interacted miRNAs are used to
survey related lncRNAs. Finally, based on the potential biological
interactions, a ceRNA network is constructed, and involved
RNAs are further analyzed to understand their expression
correlations and potential roles in tumorigenesis, especially for
the analysis at the isomiR level. Our study will provide insight
into RNA cross-talks and more references for potential crucial
RNAs associated with lung cancer, particularly focusing on
February 2022 | Volume 12 | Article 807367
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coding–non-coding RNA interaction networks at the isomiR
level. These findings will contribute to discovering the novel
potential anticancer drug target in precision medicine.
MATERIALS AND METHODS

Data Resource
In order to obtain deregulated mRNAs in LUAD, we obtained
659 samples (tumor, 433; normal, 226) from 9 datasets in the
Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih.gov/
geo/, GSE31210, GSE118370, GSE75037, GSE32863, GSE85716,
GSE85841, GSE63459, GSE130779, and GSE148036) by
GEOquery (27) and 542 (tumor, 483, normal, 59) samples from
The Cancer Genome Atlas (TCGA; https://tcga-data.nci.nih.gov/
tcga/) using the “TCGAbiolinks” package (http://doi.org/10.1093/
nar/gkv1507) (28) (Table S1). High-throughput RNA sequencing
data (including mRNA, lncRNA, and miRNA/isomiR) in diverse
cancer types were also obtained from TCGA, which were mainly
used to detect the detailed pan-cancer expression patterns of
screened crucial genes in LUAD.
Screening and Identification of
Deregulated RNAs
The limma (29) was used to screen and identify deregulated
RNAs in GEO and TCGA datasets using the Bioconductor
packages. The common candidate cancer-associated mRNAs
were firstly screened using R package RobustRankAggreg (30)
in 9 GEO datasets, and candidate mRNAs were further analyzed
with deregulated mRNA profiles from TCGA dataset. mRNAs
with |log2FC| > 1 and padj < 0.05 were primarily identified as
abnormally expressed genes.
Frontiers in Oncology | www.frontiersin.org 3
Functional Enrichment Analysis of Gene
Sets
To understand the detailed functional implication of
differentially expressed gene sets or screened specific genes, the
Database for Annotation, Visualization and Integrated Discovery
(DAVID) version 6.8 (31) and clusterProfiler (32) were used to
perform functional analysis. Simultaneously, based on identified
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, z
scores were estimated according to the following formula (33):

z–score =
up − downð Þ

ffiffiffiffiffiffiffiffiffiffiffi

count
p (1)

where the up and down indicate the numbers of upregulated and
downregulated genes, respectively, and the count was the total
number of involved deregulated genes.

Furthermore, to understand the detailed expression patterns
of the screened genes, their expression distributions in KEGG
pathways were also queried, and significantly enriched pathways
were further presented using Pathview (34, 35). A p-value <0.05
was considered to have statistical significance.

Screening and Identification of Potential
Cancer-Associated Hub Genes
To survey the potential hub genes in LUAD, PPI networks were
firstly constructed based on deregulated mRNA profiles using the
STRING online database with default parameters (36). Networks
were constructed using upregulated and downregulated genes.
For the PPI network, the candidate key genes were firstly
screened based on the potential modules using the CytoHubba
plug-in in Cytoscape 3.7.2 (37). Then, we selected the top 10
node genes from 12 algorithms results (including Betweenness,
BottleNeck, Closeness, ClusteringCoefficient, Degree, DMNC,
EcCentricity, EPC, MCC, MNC, Radiality, and Stress) as
candidate genes. Genes with degree scores <10 were excluded,
and the remaining genes detected in more than 4 other
algorithms were finally selected as candidate hub genes. We
here used the PageRank algorithms to explore the hub genes
from the significant-difference expression genes. As a method of
evaluating the importance of nodes, the PageRank was also a
useful algorithm to explore the relative topological importance,
and the PageRank had been used to discover the herb’s relative
importance and determine the core herbs (38).

For primarily screened hub genes, further analysis was
performed to understand the potential role in tumorigenesis,
mainly including drug sensitivity and correlations between hub
genes and immune infiltrates (http://bioinfo.life.hust.edu.cn/
web/GSCALite/) (39). Moreover, gene set variation analysis
(GSVA) scores for hub gene sets were also estimated
using GSCALite.

Characterization of Potential Prognostic
Values of Candidate Genes
It was necessary to query the potential prognostic values of the
screened cancer-associated hub genes, which will help us to
understand their roles in tumorigenesis. Then, survival
analyses were used to estimate the correlations of the candidate
FIGURE 1 | The main flowchart of the study. DE genes, deregulated genes.
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genes (also including further screened candidate miRNAs and
lncRNAs) with cancer prognoses. The clinical data, mainly
including survival status, cancer stage and grade, survival time,
and molecular subtype, were obtained from TCGA using the
“TCGAbiolinks” package (28). The log-rank test was used to
estimate the potential differences, and statistical significance was
set at p < 0.05. Simultaneously, in order to obtain the integrated
results to ensure the potential prognostic values of screened
genes, prognostic results were also obtained from the GEPIA (40,
41) and StarBase (42, 43) databases.

Screening and Identification of Relevant
Cancer-Associated Non-Coding RNAs
Candidate hub mRNAs with potential prognostic values were
firstly used to screen related miRNAs based on biological
interactions because the small ncRNAs have been widely studied
as a class of important regulators in gene expression. The miRNA:
mRNA interactions were firstly collected from the StarBase
database (42, 43), and those miRNAs remained as candidate-
related miRNAs if they had opposite expression patterns with
target mRNAs and had significant prognostic results. Here, due to
the phenomenon of multiple isomiRs in the miRNA locus (22–
26), we selected the most dominant isomiR as the classical miRNA
to perform the relevant analysis. The detailed isomiR expression
patterns were further queried for the final screened cancer-
associated crucial miRNAs, because the multiple isomiRs may
lead to perturbed coding–non-coding RNA regulatory network
(44) that may also perturb the ceRNA network.

Next, based on the screened miRNAs that were crucial
intermediate nodes correlating mRNAs and lncRNAs, miRNA-
related deregulated lncRNAs were further surveyed from
LncBase Predicted v.2 (45), and lncRNAs were identified if
they had opposite expression patterns with miRNAs and had
potential prognostic values in cancer prognosis.

Construction of Competing Endogenous
RNA Network to Screen Cancer-
Associated Crucial RNAs
According to screened cancer-associated abnormal RNAs, mainly
including hub genes, interacted miRNAs, and associated lncRNAs,
a ceRNA network was constructed based on their regulatory
relationships using the R package of “networkD3” (https://
CRAN.R-project.org/package=networkD3). The primary
constructed ceRNA network contained a series of mRNAs and
ncRNAs, and then these related mRNA:miRNA and miRNA:
lncRNA pairs were further queried for their expression
relationships. A correlation analysis was used to estimate their
expression correlations, and if the correlation coefficient was less
than −0.20, p < 0.05, and the average expression level (log2TPM)
was more than 10 (ensure the abundant enrichment level), further
analysis of the genes remains to be performed.

In-Depth Analysis for Screened Crucial
RNAs
Moreover, although all of the above-screened associated genes
were dominantly and abnormally expressed in tumor samples,
Frontiers in Oncology | www.frontiersin.org 4
and they also had significant correlations with cancer prognosis,
it is necessary to further understand the expression patterns
across diverse cancer types (46) that will help us assess the
potential expression and function of genes in different tissues and
tumorigenesis. Therefore, a pan-cancer analysis was used to track
their expression patterns. Simultaneously, the binding events of
diverse RNAs were visualized using DIANA (http://carolina.
imis.athena-innovation.gr/diana_tools/web/index.php?r=site%
2Findex) (47, 48), which could indicate the interactions among
different RNAs in the ceRNA network. Furthermore, the
screened crucial mRNAs were queried for the potential roles in
immune infiltrates in LUAD (46), which would contribute to
understanding the biological role of the hub genes.

Statistical Analysis and Network
Visualization
An unpaired t-test and the Wilcoxon rank-sum test were used to
estimate differentially expressed genes for the unpaired samples.
For interactions between related genes, especially among
different RNAs, further network visualization was presented
using Cytoscape 3.8.2 (37). A Pearson’s or Spearman’s
correlation coefficient was estimated to assess expression
relationships among different RNAs. All of these statistical
analyses were performed using the R programming language
(version 3.4.3), and Venn distributions were performed with a
publicly available tool (http://bioinformatics.psb.ugent.be/
webtools/Venn/).
RESULTS

Messenger RNA Expression Profile in
Lung Adenocarcinoma
According to 9 GEO datasets (Table S1 and Figure 1), the RRA
algorithm was used to screen deregulated mRNAs, and a total of
787 abnormally expressed genes were obtained based on
distributions of scores in the RRA algorithm (Figures 2A and
S1A). Subsequently, 5,476 abnormally expressed genes were
obtained from TCGA data (Figure S1A), and 710 genes
(including 474 downregulated genes and 236 upregulated
genes) with consistent expression patterns were collected as
candidate genes to perform further analysis (Figure 2B). Some
abnormal genes were reported with important roles in
tumorigenesis. For example, upregulated CST1 can promote
gastric cancer migration and invasion through activating the
Wnt pathway (49), and CST1 also promotes cell proliferation,
clone formation, and metastasis in breast cancer cells, indicating
that CST1 is a novel potential prognostic biomarker and
therapeutic target for breast cancer (50). The screened
upregulated and downregulated genes were further queried for
their expression patterns, respectively, and we found that both
of them showed significant expression differences (Figure 2C,
p = 2.20e−16 for the upregulated genes and p = 2.20e−16 for
the downregulated genes). Most of them showed abundant
expression distributions, indicating that these screened
candidate genes were dominantly expressed in LUAD.
February 2022 | Volume 12 | Article 807367
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To understand whether these surveyed genes had a potential
function, functional enrichment analysis was performed. Both
upregulated and downregulated genes showed significant Gene
Ontology (GO) terms (Figures S1C, D), indicating that these
abnormal genes might contribute to multiple biological processes.
Frontiers in Oncology | www.frontiersin.org 5
These primarily screened genes were also enriched in several KEGG
pathways, especially for cell cycle and oocyte meiosis pathways
(Figures 2D, E, and S2). In the detailed pathways, many relevant
genes were involved in deregulated expression patterns (Figure
S3A), which may perturb the relevant pathways.
A B

D

E

C

FIGURE 2 | Screening candidate genes and functional analysis via an integrative analysis of multiple datasets. (A) A heatmap of distributions of RRA scores in 9
GEO datasets. (B) Expression distributions for screened 710 common genes via GEO and TCGA datasets. (C) Expression patterns (based on the median values of
TPM) for all the screened up-deregulated and downregulated genes, and a p-value based on t-test is also presented. (D) Significant enriched KEGG pathways of
screened deregulated genes. (E) GSEA in significant KEGG cell cycle pathways. RRA, robust rank aggregation; GEO, Gene Expression Omnibus; TCGA, The
Cancer Genome Atlas; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, gene set enrichment analysis.
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Screening of the Potential Most Influential
Genes in Protein–Protein Interaction
Networks

Based on the obtained upregulated and downregulated gene sets,
the PPI network was constructed. According to the primarily
constructed complex networks, the potential hub genes were
further screened using 12 different algorithms. Based on the top
20 genes in the PPI network (Figures 3A, B), some genes were
detected with a higher ranking score, such as upregulated genes
in the EPC network and downregulated genes in the EcCentricity
Frontiers in Oncology | www.frontiersin.org 6
network (Figures 3A, B). Most genes were filtered if they were
not simultaneously detected by Degree and other >4 algorithms,
and only 31 genes (including 13 upregulated genes and 18
downregulated genes) were obtained as candidate hub genes
associated with LUAD. Many hub genes were detected in
multiple algorithms and simultaneously had higher degree
scores, and most showed consistent scores in specific
algorithms (Figure 3). These implied that candidate hub genes
had higher confidence levels and might be the most influential
proteins in PPI networks, further indicating that they might be
crucial genes in tumorigenesis.
A

B

FIGURE 3 | Potential hub genes via PPI networks based on different algorithms. (A) Examples of PPI networks using different algorithms (each network contains the
top 20 upregulated genes). The darker the red background color of the gene, the higher the ranking of the gene. The gene distributions in different algorithms, and
score distributions for surveyed genes in diverse algorithms. The score of degree is also presented for screened 13 hub genes. (B) Examples of PPI networks using
different algorithms (each network contains the top 20 downregulated genes). The darker the red, the higher the ranking. The gene distributions in different algorithms,
and score distributions for surveyed genes in diverse algorithms. The score of degree is also presented for 18 screened hub genes. PPI, protein–protein interaction.
February 2022 | Volume 12 | Article 807367
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To validate whether these candidate hub genes indeed had
crucial roles in tumorigenesis, 31 genes were queried for the
potential roles in biological pathways, apoptosis, cell cycle, DNA
damage response, etc. These candidate hub genes were found to
activate and inhibit some biological pathways (Figures 4A and
S3A), implying their roles in relevant pathways that were crucial
in the occurrence and development of cancer. Simultaneously,
Frontiers in Oncology | www.frontiersin.org 7
we have performed the analysis of the association between
immune cells’ infiltrates and hub genes’ CNV levels. The
results showed that CD4+ cells had a higher copy number
variation (CNV) level in the hub gene CNV amplificated group
than that in the wild-type group, and CD8_native cells had a
significant CNV level in hub gene CNV deleted group compared
with the wild-type group (Figure 4B). These genes did not show
A B

D

C

FIGURE 4 | Functional analysis for 31 candidate hub genes and further screening. (A) Interaction map of 31 hub genes and pathways. (B) Potential roles of 31 hub
genes in immune infiltrates. (C) Potential roles of 31 hub genes in LUAD, mainly including GSVA scores in tumor and normal samples, subtype, and stages in LUAD.
(D) A final 16 genes are identified based on survival analysis, and all of these 16 genes showed abundant expression. The overall survival analysis is also presented.
LUAD, lung adenocarcinoma; GSVA, gene set variation analysis. *p < 0.05.
February 2022 | Volume 12 | Article 807367
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a significant difference between tumor and normal samples (p =
0.1200), but they showed significant differences among different
subtypes of LUAD (p = 4.00e−13) and different stages of LUAD
(p = 8.32e−4, Figure 4C). These varieties revealed that these
screened genes were associated with subtypes and diverse stages.
Moreover, these genes had positive or negative correlations with
some drugs (Figure S3B). For example, trametinib was positively
correlated with CCNA2, KIF11, MKI67, and MAD2L1. In June
2017, the Food and Drug Administration (FDA) approved
trametinib plus dabrafenib for the treatment of BRAF V600E
mutation-positive metastatic NSCLC patients. These showed the
potential associations with anticancer drugs and roles as
potential drug targets in future cancer treatment.
Further Validation of Hub Genes and
Relevant Non-Coding RNAs
To further survey and validate the hub genes associated with
LUAD, their potential prognostic values were queried as an
important index. A total of 16 genes were detected with
significant prognostic values (Figure 4D), and all of them
showed significantly deregulated expression patterns based on
median expression values of tumor and normal samples. The
overall survival curve of these genes showed that patients with
lower expression had a higher survival probability than those
with higher expression levels (Figure 4D). Accordingly, these
candidate genes were identified as hub genes associated with
LUAD, which were used to survey relevant miRNAs to explore
the potential interactions among diverse RNAs, especially among
mRNAs and ncRNAs. Interestingly, some of them were
homologous genes in a specific gene family, including CCNA2,
CCNB1, and CCNB2. Some of them, CCNA2, MKI67, and
KIF11, were identified as cell cycle-related factors, implying
their roles in the cell cycle pathway.

A series of relevant miRNAs were surveyed based on the
potential biological relationships with the 16 hub genes. Based on
expression patterns and the significant correlations with cancer
prognosis (log-rank p < 0.05), 10 miRNAs were obtained
(Figures 5A, B). These miRNAs showed significant abnormal
expression in LUAD, including 6 downregulated and 4
upregulated miRNAs, and all of them were detected with
abundant enrichment levels. Of these, 3 of them were
identified as homologous miRNAs, in let-7 gene family, and
these miRNAs also had similar sequence, expression
distributions, and biological roles. These miRNAs had opposite
expression patterns with their target mRNAs (Figure 5C),
implying their potential regulatory roles in the relevant mRNA
expression process. Then, the primarily screened miRNAs were
used to survey relevant lncRNAs based on their biological
relationship. According to expression patterns and prognostic
values, 2 lncRNAs as well as 4 mRNAs and 2 miRNAs were
finally identified as candidate relevant RNAs, and most paired
RNAs showed significant expression correlations (Figures 5D
and S3C). These diverse RNAs showed potential regulatory
relationships, and these obtained lncRNAs also had significant
correlations with cancer prognosis and were detected with
Frontiers in Oncology | www.frontiersin.org 8
abundant enrichment levels (Figure 5E). Among these, both
miR-145-5p and miR-30a-5p were identified regulators with 3
mRNAs and 1 lncRNA, respectively. These screened RNAs have
been reported with important biological roles.
Competing Endogenous RNA Construction
and In-Depth Analysis
A total of 8 diverse RNAs were used to construct a ceRNA
network based on their expression correlations (Figure 6A),
showing their potential interactions across different RNAs,
especially among ncRNA and mRNAs. LncRNA may control
mRNA expression via binding to the regulator of mRNA and
miRNA, and the complex interactions might further complicate
the coding–non-coding RNA regulatory network. Based on
involving RNAs in the ceRNA network, further analysis was
performed to verify their regulatory interaction, mainly
including expression level, expression correlation, and survival
analysis. Finally, the 5 RNAs, including CCNA2, MKI67, KIF11,
miR-30a-5p, and VPS9D1-AS1, were further identified as
candidate crucial RNAs associated with cancer. A significant
expression correlation could be found between miRNA and its
relevant mRNA and lncRNA (Figure 6B), and an in-depth
analysis of the three RNAs was performed to verify their
potential biological roles.

To understand the potential roles of surveyed RNAs in other
cancer types, a pan-cancer analysis was performed to discuss
their expression patterns. Involved genes (CCNA2, MKI67, and
KIF11) were found with abundant expression levels in many
tissues, and they showed a significantly upregulated expression
pattern in many cancer types (Figure 6C). Simultaneously,
lncRNA VPS9D1-AS1 also showed a significant overexpression
pattern in many cancer types (Figure 6D), and the consistent
expression trends implied their competition binding with miR-
30a-5p. Moreover, although miR-30a-5p was identified as a
crucial miRNA, it is not a single miRNA but a series of
multiple isomiRs. Then, based on dominantly expressed
isomiRs, 6 abundant isomiR were selected, and they showed
diverse expression patterns than mRNAs and lncRNAs
(Figure 6E). The dynamic expression of isomiRs implied their
flexible regulatory expression, which may contribute to specific
biological pathways in different tissues based on their broad-
spectrum target RNAs. Further, these 6 dominant isomiRs were
found with the consistent 5′ ends and seed sequences
(nucleotides 2–8) that were binding sites with target RNAs,
and they were only involved differently in the 3′ ends and
diverse expression patterns. It is unclear whether the length
difference would influence stability or regulation efficiency, but
most of them were found with unexpected enrichment levels that
ensured their biological function. These isomiRs with the same
seed sequences have diverse length and expression levels, which
would further complicate the interaction network among
coding–non-coding RNA regulatory networks.

Furthermore, the crucial genes, CCNA2, MKI67, and KIF11,
were further queried for their roles in immune infiltration in
LUAD. In different immune cell types, all of them showed a
February 2022 | Volume 12 | Article 807367
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significant positive correlation with immune infiltration
(Figures 7A–C). These results showed that a higher expression
level of CCNA2, MKI67, and KIF11 might lead to higher
infiltration levels, implying their roles in immune infiltration, a
key step in the pathological process of cancer.
Frontiers in Oncology | www.frontiersin.org 9
Potential Prognostic Marker via RNA
Cross-Talk
As cancer-associated crucial RNAs, the 5 screened RNAs showed
a significant difference between groups with high and low
expression, and patients with higher expression of mRNAs and
A B

D E

C

FIGURE 5 | Screening the relevant RNAs based on hub genes. (A) A scatter plot shows distributions of log2FC and padj values of surveyed miRNAs, and all of these
miRNAs have significant correlations with cancer prognosis. (B) The distributions of log-rank p-values of screened miRNAs (only significant results are presented) and
the average expression levels of miRNAs are also presented. All of these involved miRNAs have abundant enrichment levels. (C) miRNA:mRNA interaction network
based on their biological relationships. (D) Expression correlations among different RNAs. mRNAs, miRNAs, and lncRNAs are highlighted in different colors. (E) The
relevant lncRNAs are further screened based on identified miRNAs, and the interactions networks among diverse RNAs are presented. The average expression of
lncRNAs and log-rank p-values are also presented. LUAD, lung adenocarcinoma; GSVA, gene set variation analysis. *p < 0.05, **p < 0.01, ***p < 0.001.
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A B

D

E

C

FIGURE 6 | Construction of ceRNA network and further analysis for the involved RNAs. (A) Constructed ceRNA network based on obtained RNAs. The line shows
the correlation between diverse RNAs, and the abnormal expression patterns are also highlighted using red arrows (upregulated) and blue arrows (downregulated).
The red genes are further identified as potential crucial RNAs associated with LUAD. (B) The scatter plots show the negative expression correlation between miR-
30a-5p and CCNA2 and VPS9D1-AS1. (C) Expression distributions of CCNA2, MKI67, and KIF11 in tumor and normal samples across diverse cancer types. *p <
0.05, **p < 0.01, ***p < 0.001. (D) Deregulated expression patterns for VPS9D1-AS1 based on log2FC values. * indicates significant abnormal expression (log2FC >
1.2, padj < 0.05). (E) Expression distributions of the multiple isomiRs in miR-30a-5p locus across diverse cancer types, and only the dominantly expressed isomiRs
are presented here (the top 6 isomiRs). These isomiRs are presented using the detailed location, and 593–617 indicate hg38:chr6:71403593–71403617:–. ceRNA,
competing endogenous RNA; LUAD, lung adenocarcinoma.
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lncRNA had a poorer prognosis than those with lower
expressions (p < 0.0001, p = 0.00014, p < 0.0001, and p =
0.0088, Figure 7D). However, patients with lower expression of
miR-30a-5p had a poorer prognosis than those with higher
expressions (p = 0.0016). Their prognostic values were also
verified by analysis of hazard ratio (the global log-rank p =
1.43e−06, Figure 7E). These results significantly showed that
different RNAs, CCNA2/MKI67/KIF11:miR-30a-5p:VPS9D1-
AS1 axis-related cell cycle, could be a potential prognostic
marker via RNA cross-talk, especially for the cross-talks
among ncRNAs and mRNAs (Figure S3D).
Frontiers in Oncology | www.frontiersin.org 11
Furthermore, CCNA2 and KIF11 were identified as core
essential genes according to the common data of Hart et al.
(51), Blomen et al. (52), and Wang et al. (53). CCNA2
contributed to the cell cycle pathway, and it also had a role in
the hallmarks of cancer in reprogramming energy metabolism.
These contributions implied their key role in the occurrence and
development of LUAD, even in cancer diagnosis and prognosis.
The interactions with CCNA2, MKI67, and KIF11, particularly
for the small and long ncRNAs, may have great importance as
potential drug targets based on their contributions in multiple
biological pathways (Figures S3A, B).
A B

D

E

C

FIGURE 7 | In-depth analysis of screened RNAs. (A) The expression correlation of CCNA2 in Macrophage. (B) The expression correlation of CCNA2 in T cell CD4+
memory activated. (C) The expression correlation of CCNA2 in T cell CD8+. (D) The survival analysis for the three RNAs. (E) Hazard ratio analysis based on forest
plot. *p < 0.05, ***p < 0.001.
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DISCUSSION

Based on the potential interactions or cross-talks among different
RNAs, it is quite necessary to perform an integrative analysis to
survey the relevant RNAs as a potential prognostic marker. Due
to the fact of being the leading cause of cancer-related death, lung
cancer has been widely of concern, and it is urgent to obtain
prognostic markers with higher sensitivity that will largely
contribute to adjusting drugs and cancer treatment, especially
in precision medicine.

Herein, based on an integrative analysis of diverse RNAs
from different datasets, CCNA2/MKI67/KIF11:miR-30a-5p:
VPS9D1-AS1 axis-related cell cycle is identified as a potential
prognostic marker via constructing a ceRNA network and in-
depth analysis, and all of them are characterized as crucial RNAs
in the occurrence and development of LUAD. Of the three
mRNAs, CCNA2 has been studied because of its role in cancer,
including its prognostic value in breast cancer (54–56),
colorectal cancer (57), pancreatic cancer (58), LUAD (59),
gastric cancer (60), bladder cancer (61), etc. MKI67, a marker
gene in the cell cycle, also has been reported with prognostic
value in NSCLC (62) and breast cancer (63). Furthermore, the
prognostic value of KIF11 has been reported in oral cancer (64)
and colorectal cancer (65).

Our analysis shows that CCNA2 is an important gene in the
cell cycle, and it is significantly upregulated in many cancer
types. The disorder of CCNA2 contributes to multiple cancers,
implying its potential role in cancer diagnosis and prognosis.
Tanshinone IIA can significantly downregulate the expression of
the CCNA2–CDK2 complex and suppress the progression of
LUAD by inducing cell apoptosis and arresting the cell cycle
(66). One of its regulators, miR-30a-5p, also has been widely of
concern as an important miRNA, especially for its role via cross-
talk with other RNAs in some pathways in different cancers (67–
69). The overexpression of another ncRNA, lncRNA VPS9D1-
AS1, a potential prognostic marker, can be used to predict poor
prognosis in NSCLC (70), and its role in cancer has been
validated (71, 72). All of these RNAs have been validated with
roles in tumorigenesis, and this axis may be a proper marker to
predict cancer progression.

Meanwhile, based on the widespread phenomenon of isomiRs
occurring in the miRNA locus, the screened crucial miR-30a-5p
is also further analyzed at multiple isomiR levels. A series of
multiple isomiRs can be detected, and dominantly expressed
isomiRs are also unexpectedly enriched, which may ensure their
regulatory roles. Although these isomiRs are not involved in
causing the differences of 5′ ends and seed shifting events, their
expression and length difference still provide a possibility to
perturb the original coding–non-coding RNA regulatory
network. The main reason may possibly be derived from these
isomiRs with expression and sequence heterogeneities, but it is
unclear whether these isomiRs may competitively bind to target
RNA (mRNA and lncRNA). If the 5′ ends are involved
differently, the novel seed sequences will be found, which may
lead to some novel targets simultaneously losing some targets. It
Frontiers in Oncology | www.frontiersin.org 12
is quite necessary to perform analysis from the multiple isomiR
levels despite many studies only focusing on the traditional/
classical miRNAs. The small ncRNAs largely contribute to the
complex cross-talks among diverse RNAs, especially in coding–
non-coding RNA regulatory network, which is more complex
than we thought because of the phenomenon of isomiRs in the
miRNA locus.

Taken together, based on the potential cross-talks among
diverse RNAs, this study finally screened and identified CCNA2/
miR-30a-5p/VPS9D1-AS1 axis as a potential prognostic marker
in LUAD. All of the relevant RNAs have been widely studied
with roles in the occurrence and development of cancers,
indicating their crucial roles in tumorigenesis, especially for
association with cell cycle via direct or indirect contribution.
Further study should focus on their values as a potential
therapeutic target for cancer treatment. Our findings will
provide insight into cross-talks among diverse RNAs, especially
from the unique perspective of multiple isomiRs from a given
miRNA gene locus, which will enrich our understanding of
mRNA–ncRNA interactions in coding–non-coding RNA
regulatory network in tumorigenesis.
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