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Abstract

The response of the Antarctic ice sheet (AIS) to changing global temperatures is a key com-

ponent of sea-level projections. Current projections of the AIS contribution to sea-level

changes are deeply uncertain. This deep uncertainty stems, in part, from (i) the inability of

current models to fully resolve key processes and scales, (ii) the relatively sparse available

data, and (iii) divergent expert assessments. One promising approach to characterizing the

deep uncertainty stemming from divergent expert assessments is to combine expert

assessments, observations, and simple models by coupling probabilistic inversion and

Bayesian inversion. Here, we present a proof-of-concept study that uses probabilistic inver-

sion to fuse a simple AIS model and diverse expert assessments. We demonstrate the abil-

ity of probabilistic inversion to infer joint prior probability distributions of model parameters

that are consistent with expert assessments. We then confront these inferred expert priors

with instrumental and paleoclimatic observational data in a Bayesian inversion. These addi-

tional constraints yield tighter hindcasts and projections. We use this approach to quantify

how the deep uncertainty surrounding expert assessments affects the joint probability distri-

butions of model parameters and future projections.

Introduction

Sea-level rise increases risks to coastal communities [1]. Approaches to managing these risks

include augmenting levees, adding new flood control and shoreline protection structures,

diverting sediments, improving infrastructure, relocating vulnerable populations, and restor-

ing or enhancing natural coastal protections, such as barrier reefs, barrier islands, ridges,

marshes, and regional hydrology [2,3]. The design of sound risk management strategies

depends on quantifying and characterizing the uncertainties surrounding sea-level projections

[4,5]. Projections of future sea-level rise depend on deeply uncertain projections of Antarctic

ice sheet (AIS) mass loss [4,6–9].
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Deep uncertainty arises, for example, when experts and/or decision-makers disagree about

model structure or prior probabilities of key model parameters [10]. Some sources of AIS deep

uncertainty include (i) the difficulties in representing recently discovered mechanisms affect-

ing AIS response, such as marine ice shelf instability (MISI) and marine ice cliff instability

(MICI) [11,12], and (ii) the difficulties in calibrating these models with observations [7,13]. As

a result, projections of the AIS contribution to global sea level are often characterized by diver-

gent expert assessments [5,9]. Probabilistic inversion may provide a way to represent and

quantify this deep uncertainty. Probabilistic inversion can fuse expert assessments with mecha-

nistically-motivated models to infer expert prior distributions for model parameters and to

sample the uncertainty due to divergent (interpretations of) expert assessments [6].

The scarcity of AIS instrumental and paleoclimatic observations limits the ability to con-

strain key model parameters [4,6,13]. This elevates the importance of the prior distributions

assumed for the model parameters. The complexity of the processes that determine the AIS

dynamical response can lead to high-dimensional models with many correlated model param-

eters. Eliciting prior distributions for these high dimensional probability density functions—

about which there is often little intuition—poses nontrivial challenges (e.g., [5,14]). Model

parameters lacking clear physical meaning compound this problem [15]. Probabilistic inver-

sion provides a means to infer these prior model parameters from expert assessments of future

observations [16,17], such as AIS mass loss by the year 2100 [18].

Probabilistic inversion of expert assessments first appeared prominently in peer-reviewed lit-

erature in 2000 in the context of mitigating nuclear risks [19]. In the context of sea-level rise, an

early use of a probabilistic inversion technique, via rejection sampling, appeared about a decade

later [20]. More recently, probabilistic inversion was used in the context of climate change [6].

Typically, probabilistic inversion employs the iterative proportional fitting (IPF) algorithm

[6,16,17]. Markov chain Monte Carlo (MCMC) integration of intractable model parameter

probability distributions offers an alternative to IPF for high-dimensional models [21,22].

Advantages to using MCMC for probabilistic inversion include (i) good resolution of

the tails of probability distributions [23,24] which can be critical from a risk-management

perspective (e.g., [6,7,20]), (ii) theoretical convergence diagnostics [25–27], and (iii) the ability

to subsample or post-process Markov chains [28]. On the other hand, MCMC can be compu-

tationally expensive. The computational demands for this study are relatively low, however;

producing a five million member Markov chain requires roughly 30 hours of computer pro-

cessing time. This study requires eight such chains which we produce in parallel on a high-per-

formance computing cluster.

Here, we employ probabilistic inversion [16,17] to fuse different interpretations of an expert

assessment [18] with a simple AIS model, modified to include a rudimentary mechanism for

the potential rapid AIS ice loss [7,13,29]. We demonstrate that probabilistic inversion leads to

expert prior model parameters that are consistent with the expert assessments. Then, we cou-

ple probabilistic inversion and Bayesian inversion. This coupled probabilistic-Bayesian inver-

sion combines expert assessments with paleoclimatic and instrumental AIS observational data.

The resulting posterior parameter estimates and sea-level projections exhibit tighter con-

straints relative to the expert prior model parameters and projections, showcasing the value of

combining the two information streams. We demonstrate the impact of varying interpreta-

tions of expert assessments on model projections of Antarctic ice sheet mass loss by 2100.

Finally, we characterize deep uncertainty by quantifying the impacts of these divergent expert

assessments on prior model parameters and projections. We constrain estimates of all model

parameters using this method (see Supporting Information, S5–S7 Figs). However, we focus

the analysis on the two parameters relevant to the potential fast Antarctic ice sheet dynamics,

as this mechanism is a key potentially decision-relevant deep uncertainty [4,7].
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Methods

Model

We employ the Danish Center for Earth System Science (DCESS) Antarctic ice sheet (DAIS)

model [13,29], modified to capture AIS fast dynamical contributions to sea-level rise [7]. DAIS

simulates an idealized ice sheet that is symmetric around a central vertical axis. The model

averages processes around the ice sheet rather than distinguishing between individual basins,

and follows a mass balance formulation that accounts for precipitation, runoff from melt, and

ice flow into the ocean from the ice sheet periphery. Ice flow is calculated as (i) proportional to

the radius of the ice sheet, (ii) proportional to the height of the ice at the periphery, which cap-

tures processes such as marine ice shelf instability (MISI) [13], and (iii) exponentially propor-

tional to the difference between Antarctic ocean subsurface temperature and sea-level

temperature, which captures processes such as basal melt [29]. The DAIS model contains

many of the key ice sheet physical processes, while approximating some of the relevant mecha-

nisms, making it computationally efficient enough to enable probabilistic inversion and cali-

bration [13].

The addition of an explicit model representation of fast AIS dynamical disintegration pro-

cesses [7] enables DAIS to approximate recently discovered AIS physical processes, such as

hydro-fracturing and marine ice cliff instability (MICI) [11,12]. In order to keep things simple,

fast dynamical contributions are included directly in the mass balance rather than indirectly

through the ice flow at the periphery [7]. Fast dynamical disintegration is triggered when the

Antarctic sea-level temperature rises above Tcrit (˚C) and the volume of the ice sheet is greater

than 18 million km3, which we approximate as the volume of ice susceptible to fast dynamics

[7,30]. Fast dynamical ice sheet disintegration is assumed to occur at rate λ (mm yr-1). This

parameterization follows Diaz and Keller [31] and Wong et al. [7]. As noted by Wong et al. [7],

the relationship between Tcrit and fast AIS disintegration is not a causal one, but rather Tcrit

serves as an indicator of other relevant mechanisms leading to fast disintegration. We use a

Markov chain Monte Carlo method to jointly sample the uncertainty in Tcrit and λ [7,32], as

well as 13 other model parameters [13]. Sampling Tcrit produces a probabilistic estimate of the

temperature that is associated with accelerated disintegration of the AIS. Thus, this coupled

physical-statistical model enables learning about key components of the physical system repre-

sented by this simple, yet informative, model.

Expert assessments

We adopt published expert assessments to sample some of the deep uncertainty (i.e. multiple

probabilistic assessments) surrounding the projections of AIS dynamics. Specifically, the Low

2 and High 1 projections for Antarctica from Table 3 in Pfeffer et al. [18] imply a probable

range of 128 mm to 619 mm of sea-level rise from the AIS by the year 2100, relative to the year

2010. The study does not specify a probability distribution or how to interpret the range. Here,

we adopt three mathematical forms that approximate past interpretations: (i) a uniform distri-

bution (as an imputation to Pfeffer et al. [18]), which treats all levels of AIS sea-level rise as

equally probable within the given range, (ii) a normal distribution (approximating Church
et al. [33]), derived from taking each bound of the 128–619 mm range as representing plus and

minus two standard deviations from the mean of the range, giving a mean of 373.5 mm and a

standard deviation of 122.75 mm, and (iii) a beta distribution (e.g., [20,34]) with the lower

bound equal to 128 mm, the upper bound equal to 619 mm, the shape parameter α = 2, and

the shape parameter β = 3. This allows us to quantify the impact of different assumptions

about the distribution of the expert assessments.

Probabilistic inversion of Antarctic ice sheet responses
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Observations and constraints

We select observations for the full calibration from previous work using the DAIS model

[7,13]. We incorporate AIS paleoclimatic data, instrumental data, and modelled trends. All

AIS mass balance data is specified in global mean sea-level equivalents (SLE), relative to the

mean of the 1961–1990 period, unless otherwise stated or implied.

Paleoclimatic data includes the Last Interglacial (LIG, about 118 kyr BCE), the Last Glacial

Maximum (LGM, about 18 kyr BCE), and the Mid-Holocene (MH, about 4 kyr BCE). We select

the LIG constraint of 3.6 m to 7.4 m SLE from DeConto and Pollard [11]. We treat the LIG as

normally distributed with a mean of 5.5 m and a standard deviation of 0.95 m, and truncate the

distribution at two standard deviations above and below the mean. We choose the normally-dis-

tributed LGM and MH constraints from Ruckert et al. [13] with means of -11.35 m and -2.63 m

and standard deviations of 2.23 m and 0.69 m, respectively.

The instrumental data includes estimated AIS mass loss and global mean sea-level data. We

adopt Shepherd et al. [35] for mass loss during the instrumental period. For instrumental year

2002, we take AIS mass loss to be normally-distributed with a mean of 1.97×10−3 m SLE and a

standard deviation of 4.7×10−4 m per Ruckert et al. [13]. Following Wong et al. [7], we incorpo-

rate a Heaviside function to disallow model simulations in which AIS mass loss (in SLE) exceeds

global mean sea-level rise [36] for each of the instrumental years from 1900 to 2013 CE.

Lastly, we constrain the rate of AIS mass loss for multiple recent periods with information

from the IPCC assessment [33]. Specifically, we consider rates of AIS mass loss for the years

1993 to 2010 CE, 1992 to 2001 CE, and 2002 to 2011 CE [33]. These have means of 0.27 mm y-1

SLE, 0.08 mm y-1, and 0.40 mm y-1 respectively with corresponding standard deviations of 0.11

mm y-1, 0.185 mm y-1, and 0.205 mm y-1.

Climatic forcings

Global mean sea level, Antarctic sea-level temperatures, and Antarctic ocean subsurface tem-

peratures force the DAIS model. We adopt climatic forcings following Ruckert et al. 2017 [13].

For the period from 238 kyr BCE to the year 1997 CE, we use climatic forcings from Shaffer
[29]. For the years 1997 to 2100 CE, we use forcings as generated for Ruckert et al. [13] from

the extended Representative Concentration Pathways (RCP) 8.5 scenario [37].

Statistical calibrations

We perform two interacting inversions: (i) probabilistic inversion of expert assessments and

(ii) Bayesian inversion of instrumental and paleoclimatic observations (Fig 1). First, we use

probabilistic inversion to fuse the DAIS model with each of the three interpretations of the

expert assessments (uniform, normal, and beta distributions). By inverting the expert assess-

ments with the DAIS model, we inform the prior probabilities of model parameters (Fig 1).

Next, we add instrumental [35,36] and paleoclimatic constraints [11,13], as well as AIS mass

loss trends [33], to each of the three expert assessments in a coupled probabilistic-Bayesian

inversion. This results in six statistical calibration experiments: three probabilistic inversions

and three coupled probabilistic-Bayesian (hybrid) inversions.

We implement the inversions using MCMC, by employing an adaptive Metropolis-Has-

tings algorithm [32]. The Metropolis-Hastings algorithm [23,24] samples from a target poste-

rior probability distribution, given a likelihood function and prior probability distribution,

that together are proportional to the target probability distribution (by Bayes’ theorem), condi-

tioned on the data employed. The likelihood function evaluates the probability of each data

constraint according to its assumed probability distribution and the model output for a given

set of model parameters. For the three probabilistic inversions, the likelihood function

Probabilistic inversion of Antarctic ice sheet responses
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calculates the conditional probability of the expert assessments as a function of the model

parameters. For the three hybrid inversions, our likelihood function provides the conditional

probability of the expert assessments, the paleoclimatic and instrumental constraints, and the

IPCC modelled trends, as a function of the model parameters.

We adopt wide, uncorrelated prior model parameter distributions from Wong et al. [7]. We

employ gamma prior distributions for the fast dynamics parameters, Tcrit and λ from Wong
et al. [7], as well as an inverse gamma prior for a variance parameter and uniform prior distri-

butions for the remaining 12 DAIS model parameters, following previous work [13]. The

probabilistic inversion experiments include only the expert assessments in the likelihood func-

tion. We use these experiments to evaluate the extent to which the expert assessments update

the wide prior probability distributions of the model parameters [15]. For the hybrid inver-

sions, we infer posterior probabilities for the model parameters from all of the constraints,

including the expert assessments and observations, and the assumed wide prior probabilities

of the model parameters.

We follow Wong et al. [7] to calibrate the hybrid inversions, with a few changes. First, we

employ two separate statistical parameters to represent the variance for the paleoclimatic and

instrumental observations as in Ruckert et al. [13]. Second, we only consider the RCP8.5 scenario

for future projections. Third, we include the expert assessments in the likelihood function.

We produce Markov chains from 5×106 iterations of the Metropolis-Hastings algorithm for

each of the six inversions. We discard the first 250,000 iterations of each chain for burn-in. We

use Gelman and Rubin’s potential scale reduction factors to diagnose convergence [27].

We post-process the Markov chain for the uniform probabilistic inversion using rejection

sampling [28] to improve the fit to the uniform expert assessment. Others have experienced

challenges in inverting uniform distributions as well (e.g., [15,38]). The normal and beta prob-

abilistic inversions did not require rejection sampling. The random-walk Metropolis-Hastings

algorithm seems adequately guided by the probability differing throughout the range of the

normal and beta expert assessments.

Results

Probabilistic inversion

The probabilistic inversions produce weakly multimodal expert priors for the fast dynamics

parameters, Tcrit and λ (Fig 2A). (See also the other DAIS model parameters’ probability distri-

butions for the inversions, S5–S7 Figs). The inferred expert priors generate model simulations

that are readily able to approximately reproduce the three different interpretations of the

Fig 1. Schematic of coupled probabilistic-Bayesian inversion. Hexagons indicate observational

constraints. Parallelograms represent probability distributions: prior, posterior, and predictive. Rectangle

denotes physical and statistical model. Arrows contrast the direction of inference in the coupled inversions.

https://doi.org/10.1371/journal.pone.0190115.g001
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expert assessment (Fig 3). We do not expect the approximations to be exact because we are

using the expert assessments as conditional distributions to update the assumed wide priors

[15].

Inferred fast dynamics priors

The expert prior distributions inferred for the fast dynamics parameters show a secondary

mode in their marginal probability distribution (Fig 2A). Adding paleoclimatic and instru-

mental observations to the information from the expert assessments sharpens the inference of

the fast dynamics parameters (Fig 2B and Table 1). The Last Interglacial constraint largely

eliminates the secondary mode (Fig 2). We discuss this further in the Supporting Information

(S1 Text and S3 and S4 Figs). (See also the hindcast of the Last Interglacial and other additional

constraints, S8 Fig).

The estimate of the temperature associated with AIS fast disintegration, Tcrit, is sharpened

by including the expert assessments in the coupled probabilistic-Bayesian inversion (Table 1).

The Bayesian inversion without the expert assessments gives a 90% credible interval of 1.5–

7.0˚C, scaled to global mean surface temperature [39] from Antarctic sea-level temperature

[29]. We narrow this range to 1.8–5.6˚C by incorporating the uniform expert assessments into

the coupled probabilistic-Bayesian inversion. The Bayesian inversion without the expert

assessment tightens up the 5% quantile of the inferred distribution for Tcrit—from a prior of

-2.00˚C to a posterior of 1.5˚C—whereas probabilistic inversion of the uniform expert assess-

ment without the Bayesian inversion tightens up the 95% quantile for Tcrit—from a prior of

7.1˚C to an inferred prior of 6.6˚C. We find probabilistic inversion and Bayesian inversion to

be complementary means of estimating key model parameter uncertainty, particularly in the

case of Tcrit. However, the addition of the observational data does little to further constrain the

disintegration rate, λ. This indicates that the assimilation of additional data streams may be

needed.

Posterior projections

We find that the projected AIS contribution to sea-level rise hinges considerably on the inter-

pretation of the expert assessments, particularly in the tail areas of the probability distributions.

This is illustrated by the survival functions (Fig 4). As expected, the probabilistic inversion

tightly constrains the projected AIS contribution to sea level by 2100, and these projections are

relatively unchanged by including the observational data in the coupled probabilistic-Bayesian

inversion. For example, the 90% credible interval for the probabilistic inversion of the normal

interpretation of the expert assessments is 0.14–0.55 m SLE from the Antarctic ice sheet by the

year 2100 (Table 1). Adding the paleoclimatic and instrumental constraints tightens these pro-

jections only slightly, with a 90% credible interval of 0.15–0.55 m SLE. We note that while the

projections are relatively unchanged by the addition of the observational constraints, these

data improve posterior inference regarding key model parameters (Fig 2). This suggests that

the expert assessments are consistent with the observational constraints and model.

Discussion and caveats

We intend this paper to be viewed pedagogically rather than as an exhaustive treatment of the

problem domain. Specifically, this study illustrates a method for combining expert assessments

with paleoclimatic and instrumental observations in a coupled probabilistic-Bayesian inver-

sion. We quantify the effects of combining expert assessments with observational data in a

model inversion. We find that the two techniques can be integrated to constrain future

Probabilistic inversion of Antarctic ice sheet responses
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projections as well as key model parameters. This coupled-probabilistic Bayesian inversion

technique can also be more widely applied to other problem domains.

For the sake of simplicity, we examine several interpretations of one expert assessment [18].

Future work might further characterize the deep uncertainty surrounding future AIS contribu-

tions to sea-level rise by considering multiple expert assessments and/or more complex model

structures. Here we apply probabilistic inversion to one expert’s assessments whereas algo-

rithms such as IPF have been used to invert and reconcile multiple experts’ assessments. IPF

also lends itself to inverting multi-variate distributions of expert assessments. For example,

Fig 2. Inferred probability density functions. Shown are marginal posterior distributions of fast dynamics

parameters from the (a) probabilistic inversion of the expert prior and the (b) combination of the expert prior

with the observations using coupled probabilistic-Bayesian inversion. Contours delimit the 90% credible

interval. Shaded circles indicate the mode. Temperature is scaled to global mean surface temperature.

https://doi.org/10.1371/journal.pone.0190115.g002

Probabilistic inversion of Antarctic ice sheet responses

PLOS ONE | https://doi.org/10.1371/journal.pone.0190115 December 29, 2017 7 / 13

https://doi.org/10.1371/journal.pone.0190115.g002
https://doi.org/10.1371/journal.pone.0190115


total sea-level rise could be inverted from multiple experts’ assessments of the constituent com-

ponents of sea-level rise, such as thermosteric expansion, the Greenland ice sheet, the Antarc-

tic ice sheet, and other glaciers [17].

Another promising avenue would be to combine multiple expert assessments into a possibil-

ity function (see for example, [9]), then use the methods presented here to invert a possibility

Fig 3. Probabilistic inversion of different interpretations of expert assessments. Shaded areas denote

expert prior probability distribution. Lines give posterior expert probability distribution from probabilistic

inversion. Shown are (a) uniform, (b) beta, and (c) normal interpretations. Vertical lines demarcate the range

provided by Pfeffer et al. [18].

https://doi.org/10.1371/journal.pone.0190115.g003

Table 1. Quantiles for parameters and projections.

Tcrit (˚C), GMST SLE by year 2100 (m)

Evidence Expert Interp. 5% mean 95% 5% mean 95%

Wide priors n/a -2.00 2.9 7.1 n/a n/a n/a

+instrument+paleo+IPCC 1.50 3.1 7.0 0.03 m 0.29 m 0.75 m

Wide priors

+expert

Assessment

uniform -0.40 3.3 6.6 0.15 m 0.37 m 0.59 m

beta -0.59 3.6 6.8 0.17 m 0.30 m 0.48 m

normal -0.60 3.3 6.7 0.14 m 0.35 m 0.55 m

Wide priors+expert

+instrumental

+paleo+IPCC

uniform 1.8 2.9 5.6 0.15 m 0.37 m 0.58 m

beta 1.8 3.0 5.0 0.18 m 0.33 m 0.49 m

normal 1.9 2.9 5.2 0.15 m 0.38 m 0.55 m

https://doi.org/10.1371/journal.pone.0190115.t001
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function along with paleoclimatic and observational data. The possibility function could include

higher estimates for AIS contributions from more recent studies such as DeConto and Pollard
[11], for example, but this is beyond the scope of this study. Also, IPF could be used to reconcile

multiple divergent expert assessments, although feasibility may be an issue [6].

Future calibrations could include additional data. For example, we only consider the high-

emissions RCP8.5 scenario here [37], whereas others include more scenarios (see for example,

[7]). One could also calibrate the model with paleoclimatic data extending back to the Pliocene

—between 5.3 and 2.6 million years ago—during which more AIS fast dynamical behavior

occurred [11]. Thus, including paleoclimatic data from the Pliocene should further constrain

the fast dynamics parameters.

Many of the caveats discussed elsewhere apply to this study as well (e.g., [7,13]). Briefly, the

DAIS model emulates fast disintegration of the Antarctic ice sheet with a single threshold tem-

perature, Tcrit, and a single rate of disintegration, λ. A more detailed physical model could

explicitly resolve the individual processes, such as hydro-fracturing, marine ice shelf instability

(MISI), and marine ice cliff instability (MICI). It seems unlikely that these processes all share a

single response timescale or triggering mechanism. Moreover, a threshold response might

exhibit hysteresis. In other words, if the temperature were to fall below the trigger temperature,

Tcrit, ice sheet disintegration might still continue. Nevertheless, we show the utility in combin-

ing probabilistic inversion and Bayesian inversion, and use this coupled inversion technique to

characterize the deep uncertainty in future Antarctic ice sheet contributions to sea level.

Conclusions

We demonstrate how a coupled probabilistic-Bayesian inversion may be used to combine

expert assessments with paleoclimatic and instrumental data in order to make probabilistic

projections of future sea-level rise from the Antarctic ice sheet. We use probabilistic inversion

Fig 4. Posterior probability density functions. Sea-level projections inferred by combining expert

assessments, paleoclimatic data, instrumental observations, and IPCC information [33]. Shown are (a)

uniform, (b) beta, and (c) normal interpretations of the expert assessments. Vertical lines demarcate the range

provided by Pfeffer et al. [18].

https://doi.org/10.1371/journal.pone.0190115.g004
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to illustrate how inverting expert assessments of future mass loss with a simple Antarctic ice

sheet model can be used to inform the prior probabilities of key model parameters. We show

that combining expert assessments and observations in a coupled probabilistic-Bayesian inver-

sion sharpens the inference of model parameters. Adding the expert assessments to the obser-

vations narrows the 90% credible interval for Tcrit, the global mean warming associated with

Antarctic ice sheet fast disintegration, from 1.5–7.0˚C to 1.8–5.6˚C (Table 1). While projec-

tions of Antarctic ice sheet contributions to sea levels remain deeply uncertain, this work pro-

vides guidance on how we can leverage the available data to constrain these projections as well

as key model parameters.

Supporting information

S1 Fig. Comparison of different interpretations of expert assessments. Lines give posterior

probability distribution from probabilistic inversion of expert assessments. Vertical lines

demarcate the range provided by Pfeffer et al. [18].

(TIF)

S2 Fig. Expert assessments vs. all data. Dashed lines give sea-level estimates from probabilis-

tic inversion of expert assessments. Solid lines give sea-level estimates from combining expert

assessments, paleoclimatic data, instrumental observations, and modelled trends. Shown are

(a-b) uniform, (c-d) beta, and (e-f) normal interpretations of the expert assessments. Vertical

lines demarcate the range provided by Pfeffer et al. [18].

(TIF)

S3 Fig. Probabilistic inversion sampling of fast dynamics parameters. Shown are (a) covari-

ance of Tcrit and sea-level estimates, (b) covariance of λ and sea-level estimates, and (c) marginal

posterior distribution of fast dynamics parameters from probabilistic inversion of the uniform

expert prior with all other parameters fixed at their joint maximum likelihood estimate.

(TIF)

S4 Fig. Latin hypercube sampling of fast dynamics parameters with widened priors. Shown

are (a) all model runs and the (b) subset of those model runs that fall within the range of the

expert assessments [18].

(TIF)

S5 Fig. Calibrated parameter distributions for the uniformly-distributed interpretation of

the expert assessment. Shaded areas represent the assumed wide prior probability distribu-

tions. Dashed red lines show distributions inferred by updating with the expert assessment.

Solid black lines show posterior distributions from the combination of the expert assessment

[18], paleoclimatic and instrumental observations, and the IPCC data [33].

(TIF)

S6 Fig. Calibrated parameter distributions for the beta-distributed interpretation of the

expert assessment. Shaded areas represent the assumed wide prior probability distributions.

Dashed red lines show distributions inferred by updating with the expert assessment. Solid

black lines show posterior distributions from the combination of the expert assessment [18],

paleoclimatic and instrumental observations, and the IPCC data [33].

(TIF)

S7 Fig. Calibrated parameter distributions for the normally-distributed interpretation of

the expert assessment. Shaded areas represent the assumed wide prior probability distribu-

tions. Dashed red lines show distributions inferred by updating with the expert assessment.
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Solid black lines show posterior distributions from the combination of the expert assessment

[18], paleoclimatic and instrumental observations, and the IPCC data [33].

(TIF)

S8 Fig. Hindcasts from the inversions. Hindcasts of Antarctic ice sheet contribution to sea

level from probabilistic inversion of expert assessments [18] (dashed red lines) and from com-

bining expert assessments, paleoclimatic data, instrumental observations, and trends from the

IPCC [33] using coupled probabilistic-Bayesian inversion (solid lines and shaded region).

Shown are (a) uniform, (b) beta, and (c) normal interpretations of the expert assessment.

(TIF)

S1 Text. Discussion of secondary mode in inferred expert priors.

(PDF)
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