
CASE SERIES

Multivariable and Bayesian Network Analysis of
Outcome Predictors in Acute Aneurysmal
Subarachnoid Hemorrhage: Review of a Pure
Surgical Series in the Post-International
Subarachnoid Aneurysm Trial Era

Zsolt Zador, MD, PhD, MRCS

(Eng)∗ ‡

Wendy Huang, MD, PhD§

Matthew Sperrin, PhD¶

Michael T. Lawton, MD§

∗Department of Neurosurgery, Salf-
ord Royal NHS Foundation Trust,
Salford, United Kingdom; ‡Institute
of Cardiovascular Sciences, Centre for
Vascular and Stroke Research, University
of Manchester, Manchester, United
Kingdom; §Department of Neurosurgery,
University of California, San Francisco,
San Francisco, California; ¶Farr Institute,
Faculty of Biology, Medicine and Health,
University of Manchester, Manchester
Academic Health Science Centre

Correspondence:
Zsolt Zador, MD, PhD, MRCS (Eng),
Department of Neurosurgery,
Salford Royal NHS Foundation Trust,
Stott Lane, Salford, M6 8HD,
Manchester, United Kingdom.
E-mail: zadzso@gmail.com

Received, November 21, 2016.
Accepted, July 8, 2017.
Published Online, July 31, 2017.

C© Congress of Neurological Surgeons
2017.

This is an Open Access article distributed
under the terms of the Creative
Commons Attribution License
(http://creativecommons.org/licenses/
by/4.0/), which permits unrestricted
reuse, distribution, and reproduction in
any medium, provided the original work
is properly cited.

BACKGROUND: Following the International Subarachnoid Aneurysm Trial (ISAT), evolving
treatmentmodalities for acute aneurysmal subarachnoidhemorrhage (aSAH)has changed
the case mix of patients undergoing urgent surgical clipping.
OBJECTIVE: To update our knowledge on outcome predictors by analyzing admission
parameters in a pure surgical series using variable importance ranking and machine
learning.
METHODS: We reviewed a single surgeon’s case series of 226 patients suffering from
aSAH treated with urgent surgical clipping. Predictions were made using logistic
regression models, and predictive performance was assessed using areas under the
receiver operating curve (AUC). We established variable importance ranking using partial
Nagelkerke R2 scores. Probabilistic associations between variables were depicted using
Bayesian networks, a method of machine learning.
RESULTS: Importance ranking showed that World Federation of Neurosurgical Societies
(WFNS) grade and age were the most influential outcome prognosticators. Inclusion of
only these 2 predictors was sufficient to maintain model performance compared to when
all variables were considered (AUC = 0.8222, 95% confidence interval (CI): 0.7646-0.88 vs
0.8218, 95% CI: 0.7616-0.8821, respectively, DeLong’s P = .992). Bayesian networks showed
that age andWFNS grade were associated with several variables such as laboratory results
and cardiorespiratory parameters.
CONCLUSION: Our study is the first to report early outcomes and formal predictor
importance ranking following aSAH in a post-ISAT surgical case series. Models showed
good predictive power with fewer relevant predictors than in similar size series. Bayesian
networks proved to be a powerful tool in visualizing the widespread association of the 2
key predictors with admission variables, explaining their importance and demonstrating
the potential for hypothesis generation.
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T reatment of acute subarachnoid hemor-
rhage (aSAH) has undergone substantial
evolution over the past 3 decades.1

ABBREVIATIONS: AUC, area under the curve; CI,
confidence interval; DAG, directed acyclic graphs;
GOS, Glasgow Outcome Scale; INR, international
normalized ratio; ISAT, International Subarachnoid
Aneurysm Trial; WFNS, World Federation of Neuro-
surgical Societies

Surgical clipping remains an essential treatment
modality. With the benefits of endovascular
coiling formalized by class 1 evidence, the
clinical caseload has become divided, with the
more challenging cases often being diverted
toward open clipping.2-4 In their single-center
case series, Gnanalingham et al3 noted an
increase in the percentage of coiled aneurysms
from 35% to 67% over a period of 27 mo,
centered around the publication of the Inter-
national Subarachnoid Aneurysm Trial (ISAT)
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in October 2002, with a parallel decrease in clippings. Sanai et al4
assessed the case mix of aneurysms undergoing clipping over an
11-yr period (1997-2008) in terms of complexity features, such
as aneurysm morphology and the advanced surgical techniques
required to successfully treat the aneurysm. They found that
almost double the number of posterior communicating artery
aneurysms hadmultiple complexities (25% vs 15%) in the second
half (post-ISAT period) of the case series. Another relevant factor
in the changing treatment of acute subarachnoid hemorrhage is
perioperative management, particularly the evolution of support
from intensive care, which translates into the 17% reduction
in case fatality of aSAH. Given these recent changes in the
clinical landscape, we conducted a pilot analysis of early outcome
predictors in a pure surgical case series using formal importance
ranking in multivariable regression models and machine learning
techniques.
Multivariable regression has been widely used for outcome

prediction in clinical data sets.6,7 This technique is capable of
determining the prognostic value of each variable and adjusts for
the confounding of other variables. It has yielded a number of
predictive models in the field of neurotrauma and has provided
a practical option to refine clinical decision making, inform
patient/relative expectations, and help in the designing of clinical
trials.7 Modern statistical techniques in biomedical sciences allow
further insight into outcome prediction and data structure.
Partial Nagelkerke R2 score allows formal ranking of outcome
predictors based on their contribution to how well the prediction
model fits the input data.7 Furthermore, the performance of the
predictive model can be assessed based on the area under the
receiver operating curve (AUC). Machine learning methods such
as Bayesian networks allow a picturesque view of probabilistic
associations of each variable, therefore informing on the influence
they have on one another.8-10 Using these techniques, our aimwas
to identify the most influential outcome predictors in aSAH and
to explain their importance by analyzing their associations with
the remaining variables.

METHODS

Patient Database
The study was approved by the Institutional Review Board at our

center. For the purposes of this pilot study, we retrospectively reviewed
the neurovascular database at our department. We included all patients
presenting with aSAH who subsequently underwent urgent surgical
clipping between 2011 and 2015. This search yielded a total of 246
consecutive patients. Patients with incomplete assessment data were
excluded (18 patients). To create a predictive model of early clinical
outcome, we considered Glasgow Outcome Scale (GOS)11 at the time of
discharge from the center. We dichotomized moderate to low disability
as a good outcome, whereas severe disability, persistent vegetative state,
and death were classed as a poor outcome, as described previously.12
Clinical variables included demographics, cardiorespiratory observations,
admission laboratory values,World Federation of Neurosurgical Societies
(WFNS) grade, Fisher grade, hydrocephalus, and seizures on presen-
tation (summarized in Table 1). Laboratory results were dichotomized

TABLE 1. Summary of Continuous and Categorical Variables
Considered in Our Analysis

Admission variable

Frequency
%/average±
stdev

Label on DAG
(Figure 2)

GOS 4 and 5 30.08 outcome
Patient age 56.81 ± 14.71 age
Male gender 27.43 gender
Oxygen support (>2 L) 45.13 oxygen
Systolic blood pressure
>160 mm Hg

26.1 syshigh

Systolic blood pressure
<90 mm Hg

2.21 syslow

On antocoagulation 10.17 anticoag
INR > 1.3 8.84 inr
Platelets < 150 × 103

cells/μL
7.96 ptls

HbG < 13.5 g/dL (males)
HbG < 12 g/dL (females)

32.3 HbG

WBC > 10.5 × 103

cells/μL
71.23 wbc

Glucose > 150 mg/dL 58.84 glucose
Early seizures 8.85 seizures
Hydrocephalus 69.8 hydroceph
WFNS grade wfns
1 43.81
2 7.08
3 4.42
4 34.96
5 9.73

Fisher grade fisher
1 0.88
2 7.52
3 25.66
4 65.93

as guided by standard reference values.13 We dichotomized clinical
outcome as favorable (GOS 4 and 5: moderate to low disability, respec-
tively) and unfavorable (GOS 3, 2, and 1: severe disability, persistent
vegetative state, and death, respectively). We carefully considered the
potential problem of losing valuable clinical information by collapsing
a multilevel clinical scale (the GOS) into a binary measure. We gave
thought to circumventing this problem by using methods such as a
sliding dichotomy and proportional odds model. These two methods
were suggested as having distinct advantages over a fixed dichotomy,
such as a reduction in sample size without loss of statistical power14
in traumatic brain injury data sets. On the other hand, Ilodigwe
et al15 found no benefit in applying these methods to a subarachnoid
hemorrhage data set compared to the conventional fixed dichotomy. Our
study uses variable importance ranking and Bayesian networks, which
technically limited our interface to dichotomized outcomes. Previous
studies have also favored fixed dichotomy, and continuing with this
technique allowed for better interpretation of our results. Furthermore,
dichotomized outcomes lend themselves to well-established evaluation
methods such as receiver operating curve. Although the concept of
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alternative methods was appealing, given the reasons above, we chose to
stay with a fixed dichotomy.

Predictive Models
We applied logistic regression models for predictions and to assess

variable correlation with clinical outcome. For model selection, we used
Akaike information criterion with backward elimination to optimize
the balance of model complexity against goodness of fit.16 Predictions
were undertaken with 5-fold cross validation to avoid overfitting.10,17
This method has been found superior in terms of discriminatory ability,
calibration, and overall accuracy to the split-sample method by the
comparative study of Steyerberg et al.18 Predictive performance of the
different models described below was assessed by computing the AUC
and compared using DeLong’s test.19

Variable Importance Ranking
We used the Nagelkerke R2 value, a measure for goodness of fit,

to rank variable importance. Nagelkerke R2 numerically expresses the
percentage of variability attributed to a predictor. The ranking of
variables was extracted from the drop in the Nagelkerke R2 value that
occurred in response to excluding variables of interest from the model.
We used this ranking to identify themost influential variables and include
them to create a more simplistic model with fewer variables. There are
recognized limitations for “pseudo” R2 methods: (1) they can be argued
to give artificially high R2 scores that may suggest the model fits better
than it really does, and (2) there are a variety of “pseudo” R2 measures to
choose from, each of which interprets the model differently and therefore
gives different results. In our study, we used the samemodality of R2 value
to assess the change in model fit rather than focus on the numeric value,
a technique that has been applied in multiple papers.7,10

Assessing Probabilistic Associations Using Bayesian
Networks

Bayesian networks depict probabilistic relationships between
variables10,20 using directed acyclic graphs (DAG). The DAG comprises
nodes, representing clinical variables, and edges that connect nodes,
indicating the conditional dependence between them. To establish
which network structure best describes the probabilistic relationships
between the variables, we used the hill-climbing algorithm10,21 to search
the possible networks.

Statistical Software
All statistical analysis and modeling was carried out in R,22 an open-

source software environment for statistical programing and graphics
(https://www.r-project.org/). Receiver operating curve analysis was
carried using the “pROC” package.23 Threshold optimization was
performed using packages “pROC” and “SDMTools.”24 AUCs were
compared using DeLong’s test.19 Nagelkerke R2 was implemented using
the “fmsb” package.25,26 The “bnlearn”27 package was used for Bayesian
network analysis.

RESULTS

Patient Characteristics
Patient characteristics and admission variables are summa-

rized in Table 1. Mean follow-up was 19.08 ± 11.44 d, and

average time to clipping was 2.93 ± 3.22 d (average ± standard
deviation).

Multivariable Analysis and Variable Importance Ranking
Backward elimination selected WFNS grade, age, hydro-

cephalus, international normalized ratio (INR) equal or greater
than 1.3, white blood cell count over 10.5 × 103 cells/μL
(leukocytosis), and male gender to be included in the logistic
regressionmodel. Analysis demonstrated that lowerWFNS grade,
younger age, and absence of acute hydrocephalus on admission
were significantly correlated with good clinical outcome (GOS
4 and 5). To better illustrate the odds ratio associated with
these variables, a dichotomized model was also created as
summarized in Table 2. Variable importance ranking based
on partial Nagelkerke R2 values is summarized in Figure 1A,
with WFNS grade and age shown as the most influential
variables.

Prediction of Clinical Outcome
For predictions, we used the model built with backward elimi-

nation as described previously. AUC for this predictive model was
0.8218 (95% confidence interval (CI): 0.7616-0.8821), trans-
lating into 81.82% median sensitivity and 71.88% median speci-
ficity (Figure 1B).

Model Selection Based on Variable Importance Ranking
We tested which variables were essential to maintain the

accuracy of the predictive model. Inclusion of the 2 highest
ranking variables WFNS grade and age alone gave an AUC
of 0.8223 (95% CI: 0.7646-0.88) with 78.79% sensitivity and
79.38% specificity (Figure 1B). This simplified model yielded
equally accurate predictions as the complete model described
earlier (DeLong’s test P = .992).

Probabilistic Associations Between Key Outcome
Predictors and Remaining Variables
In the Bayesian network analysis, the influence of age and

WFNS grade on outcome was prefixed using the “whitelist”
argument in the “bnlearn” package to demonstrate their key
predictor role in the simplified model. The probabilistic relation-
ships outside this constraint were explored using the hill-climbing
search. The network analysis showed widespread probabilistic
associations between the key predictors and the remaining
variables (Figure 2). Age was indirectly associated with variables
through systolic blood pressure over 160 mm Hg, whereas
WFNS grade was associated with oxygen requirements. The
need for oxygen support appeared to have further associa-
tions with several admission variables besides WFNS grade,
such as Fisher grade, early seizures, and systolic blood pressure
below 90 mm Hg. Intuitive associations in other parts of
the networks were anticoagulation to raised INR influencing
low hemoglobin. Furthermore, Fisher grade was associated
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TABLE 2. Results Summary From Optimized Regression Models. Patient Age and WFNS Grade were Considered as Continuous Then as
Dichotomized Variables

Variable Coefficient Standard error
Odds ratio
(favorable outcome)

Confidence Interval
(97.5%) P-value

Continuous
Intercept 3.19 0.82 N/A N/A <.001
Patient age − 0.047 0.013 0.95 0.93-0.98 <.001
Male gender 0.57 0.39 1.77 0.82-3.82 .14
INR > 1.3 − 1.82 1.13 0.16 0.008-1.01 .11
WBC > 10.5 cells/μL 0.76 0.42 2.13 0.96-4.96 .07
WFNS grade − 0.68 0.14 0.51 0.38-0.66 <.001
Hydrocephalus − 0.95 0.39 0.39 0.18-0.82 <.001

Dichotomized
Intercept − 3.67 0.81 N/A N/A <.001
Age below 65 2.12 0.57 8.35 2.99-29.93 <.001
Male gender 0.44 0.39 1.55 0.72-3.33 .26
INR > 1.3 − 1.66 1.18 0.19 0.009-1.34 .16
WBC > 10.5 cells/μL 0.58 0.41 1.78 0.81-4.06 .16
WFNS grade 1.98 0.43 7.23 3.22-17.52 <.001
Hydrocephalus − 1.05 0.38 0.35 0.16-0.75 <.01

with the presence of hydrocephalus, as shown by previous
results.28

DISCUSSION

Our preliminary report gives an update on outcome predictors
for a pure surgical case series in the post-ISAT era of neurovascular
surgery. We applied established statistical methods to optimize
logistic regression models, which achieved over 75% sensitivity
and specificity at predicting a dichotomized clinical outcome.
Our study is the first to adopt the methods of variable impor-
tance ranking to subarachnoid hemorrhage in a pure surgical
series post-ISAT. This concept can help with refocusing our
clinical assessment and subsequent decision making. Our model
selection was based on variable contribution to predictive perfor-
mance and yielded a relatively parsimonious model compared
to recent studies of comparable sample size.28-31 In line with
a previous study,32 we found age and WFNS grade to be the
most important predictors. Our study is the first to demon-
strate that inclusion of only these 2 variables was sufficient to
predict clinical outcome with equal accuracy to more complex
models. Using Bayesian networks, we further demonstrated
that these 2 key predictors were influenced by the remaining
variables, which may explain why the simplified model has
maintained its accuracy. We also found that some of the associ-
ations revealed by the Bayesian network paralleled our clinical
expectations and also raised new research questions. These
latter findings suggested that Bayesian networks are efficient at

formalizing clinical intuition and also allow hypothesis gener-
ation.

Multivariable Predictive Models in Subarachnoid
Hemorrhage
Predicting surgical outcomes using modern statistical models

is of increasing interest due to their ability to inform clinical
decision making and patient/relative expectations.6,7,10 Recent
case series of aSAH have demonstrated several admission variables
associated with clinical outcome in a mixed clipping and
coiling case series.29-32 Variables such as blood transfusion,
pyrexia, hyperglycemia, hypotension with vasopressor require-
ments, posterior circulation aneurysm, early onset seizures,
hematoma, and ischemic stroke on imaging correlated signifi-
cantly with poor clinical outcomes in logistic regression models.
Although the types of clinical variables analyzed by these studies
are not fully consistent, age and WFNS grade appears to be a
common predictor of poor outcome. Rosengart et al32 amalga-
mated 4 randomized, double-blind, placebo-controlled trials
from the 1990s for analysis of outcome predictors. They demon-
strated admission neurological grade as the highest ranking
variable followed by patient age based on proportion of explained
variance in multivariable logistic regression model. Our study
conveys the same findings, suggesting that despite the shift
in treatment paradigm, the same clinical features continue to
be the main predictors of outcome. Our predictive model
achieved similar accuracy compared to more complex models,
which included numerous predictors by incorporating only age
and WFNS grade (AUC 0.8218 vs 0.8223 in our study).
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FIGURE 1. A, Importance ranking of variables using partial Nagelkerke
R2 scores. Variables incorporated into the complete model are highlighted by
the black bar, and those used in the simplified model are indicated by the
interrupted red bar. B, Receiver operating characteristic curve for complete
(continuous line) and simplified (red interrupted) logistic regression models.
Threshold was selected to achieve optimal sensitivity and specificity.

Furthermore, our study focuses on admission variables in a pure
surgical case series of a single surgeon. With the current models,
we aim to reflect the clinical information available pretreatment,
which is meant to inform early decision making. Therefore, later
stages of the patient’s clinical journey, such as delayed ischemic
deficits, pretreatment rebleeds, postprocedure complication, or
sepsis are not represented. Analysis of these variables would
constitute a separate study, and we have ongoing work with
modeling these stages of the patient clinical journey.

Machine Learning: An Emerging Technique in
Biomedical Sciences
Machine learning has the ability to process high-dimensional

data sets for complicated tasks such as image recognition,
language processing,33 or radiological image analysis.34
Techniques are evolving rapidly, and their application in clinical
neurosciences holds great potential. In the current study, we used
Bayesian networks, a more classic example of machine learning,
in which probabilistic relationships between clinical variables can
be established using an automated algorithm. These relations
are then displayed using a DAG, in which “nodes” represent
clinical predictors and “edges” between nodes highlight the
probabilistic relationships. This technique allows insight into
data structure (ie, which variable influence each other), which
is a distinct advantage over conventional statistical methods. In
a recent study, we used this technique to explore probabilistic
relationships between predictors of clinical outcome in traumatic
brain injury.10 Through an automated search process, we found
intuitive associations between clinical variables: age was related
to mechanisms of injury, and pupil reactivity was related to
mass effect on admission computed tomography scan. Artificial
neuronal networks are another example of machine learning,
which are quite distinct from Bayesian networks. This technique
was inspired by the biological structure of nervous tissue, in
particular the way neurons process synaptic input and subse-
quently communicate with one another. Nodes are equivalents
to neurons (rather than the nodes representing variables as in
Bayesian networks), and these nodes are connected by edges
analogous to synapses between the neurons. The fundamental
structure of the neuronal network can be predefined, and the
nodes are initially trained with input data to fire only above a
given threshold. Further important components are the weight
assigned to the edge, representing the influence of the synapse,
and a bias, which adjusts the activation threshold of the neuron.
With multiple layers of nodes connected to one another (also
called a deep neuronal network), this technique can be used to
process rather detailed data such as images, handwriting, or even
human voices for recognition. In the biomedical field, recent
studies have applied artificial neuronal networks to predicting
vasospasm in subarachnoid hemorrhage with encouraging
results.35 One of the most recently developed techniques of
machine learning is “deep learning,” which essentially represents
a sophisticated neuronal network consisting of several node
layers. There have been some striking results in the recent liter-
ature using this method. Hassabis’s group has reported deep
learning to achieve human performance at beating classic Atari
2600 games36 and even defeat human professionals at the game
of Go.37 Translating this method to the medical field carries
revolutionary potential. Studies so far have demonstrated deep
learning to distinguish between calcification and carcinoma on
mammograms with great efficacy.34 These techniques, however,
require sufficiently complex data for their potential to unfold.
Suggested by results from a preliminary study from our group,
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FIGURE 2. DAG depicting Bayesian networks with probabilistic associations between key predictors
(highlighted in gray) and remaining variables. Note the widespread influence of oxygen requirements and
the associations of laboratory/cardiovascular parameters with age. See Table 1 for abbreviations.

we found that machine learning gave similar prediction accuracy
as logistic regression when applied to traumatic brain injury
data sets.38 When applied to highly structured data (such as
clinical trials databases), machine learning techniques are likely
to detect the same patterns as logistics regression yielding similar
performance. However, the ability to formalize intuitive clinical
associations remains a distinct advantage of machine learning,
as demonstrated in the current and previous studies.10 One
promising trajectory for machine learning and clinical prediction
models would be the combination of unstructured imaging data
and clinical text from electronic patient records to potentially
boost the performance of existing predictive models.

Model Building and Bayesian Network Analysis
of Variable Importance
As discussed above, several clinical features were demonstrated

to be important at determining outcome. Our study shows
that a limited amount of clinical information in a simplified
model was sufficient to predict outcome with accuracy equal

to more complex models. Recent studies have described model
performance by computing AUC30,32; others have used it as an
endpoint to examine the contribution of variables to predictive
model accuracy.10,12 As demonstrated by our results, statistical
correlation with outcome does not necessary mean the same
variable will be useful at informing predictions. This means that
excluding lower ranking variables from the predictive model does
not change prediction accuracy. Using Bayesian networks, we
showed that the high-ranking predictors of WFNS grade and
age hold probabilistic associations with the remaining clinical
variables, and therefore their effect is carried on into the predictive
model through these probabilistic effects. Bayesian networks
allow a visual demonstration of probabilistic influence between
variables, therefore representing a convenient technique to test
variable influence on the 2 key predictors in our study. Our
network analysis showed that admission cardiovascular param-
eters and blood glucose levels influence outcome through patient
age. This may point toward the impact of comorbidities such as
hypertension and diabetes on outcome. Another finding was the
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widespread association of oxygen support with several variables.
The explanation for this could be the protocol-driven adminis-
tration of oxygen to patients with low GCS score (corresponding
to high WFNS grade) or seizures. There were further intuitive
associations in parts of the network that were more distant
from outcome, such as the influence of anticoagulation on high
INR and low hemoglobin. Another finding was the influence of
Fisher grade on hydrocephalus, an association well documented
in the literature.39,40 The sensitivity of Bayesian networks to
these associations highlights it as a powerful method to formalize
clinical intuition and can potentially help hypothesis generation
in future studies.
There is robust evidence that modern perioperative care is

effective at recognizing and treating important medical/surgical
problems mirrored by the improvement in patient mortality;5
in particular, the introduction of multidisciplinary neuro-
critical care translated into substantial improvements in patient
outcome in acute aSAH.1 Such advances can interpret the
relatively low predictive importance of other admission variables
such as Fisher grade, early seizures, low hemoglobin, or low
platelet count. Furthermore, the high importance and predictive
accuracy of age and WFNS grade in contrast to the above
factors suggests that our clinical management is successful
at reducing the impact of “treatable” risk factors of poor
outcome.

Limitations
Our study only considered early clinical outcomes, which does

not capture the substantial progress patients can make during the
rest of their clinical course, particularly during their rehabilitation
period.41 Our predictions are made using a single-center data set,
which could result in confounding from characteristics of the
local patient population, neurosurgical care setup, and surgical
techniques. Validation of our findings using an external data set
is therefore desirable.
Although the topic is relevant, neither current nor prior studies

offer a complete analysis on treatment trends for aneurysms over
the pre- and post-ISAT era. We were also limited by logistics,
as the neurointerventional data are managed separately from
the vascular neurosurgery database in our department. Such an
analysis is beyond the scope of our paper and would constitute a
separate study.

CONCLUSION

We provide the first analysis of early clinical outcomes in a
pure surgical case series in the post-ISAT era. Our preliminary
study highlights the benefits of insight and hypothesis gener-
ation for modern statistical methods in clinical data analysis:
(1) identification of influential variables allows the selection of
simplified models while maintaining prediction accuracy, and
(2) probabilistic associations between variables may propose
previously unappreciated correlations, prompting future studies.
Although we were limited to a single surgeon experience, our

results promote the application of modern statistical methods,
including machine learning, to larger, multicenter databases in
future studies.
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COMMENT

I n this retrospective review of 226 acute subarachnoid patients
who underwent surgical clipping at a single-institution by a

single surgeon, the authors aimed to identify outcome predictors.
Multiple clinical variables were evaluated and outcome was measured by
the Glasgow Outcome Scale at the time of discharge.

The opportunities to exploit the advantages of machine learning,
such as any multi-variable statistics and Bayesian networks for health
care research are exciting, though limitations and concerns must be
considered. The authors‘ concluding remarks support the benefit of
insight and hypothesis generation but also promote the use of proba-
bilistic analytics to suggest new associations to drive future studies. One
may argue that these 2 points may be contradictory as conducting a
study in aims to prove results from machine learning networks may
innately create bias.

Using Bayesian networks for analysis of outcome predictors begins
with probable associations and assumptions using previous data and
results in statements yielded from a certain degree of inference. The
interpretation therefore must be taken with the understanding
of conditionally independent variables outside of its descendants and
Markov‘s blanket. The authors are mixing multiple statistical methods
that are considered novel and utilize a chained analysis, which is
extremely difficult to evaluate for its ability to deliver results that can be
trusted. Cardiovascular parameters and blood glucose levels influencing
outcomes through patient age are examples of these inferences and, more
simply, are just noted associations.

The article encourages thought-provoking discussion and opens a
nuanced way of evaluating and treating these complex patients, which
is directly in line with the recent and current health care reforms on
value of care.1 As elegantly stated by the authors, clinical evaluations post-
dischargemay significantly change reported patient outcomes. It is unfor-
tunate that it remains unclear how the methods used here actually relate
to other publications that use different methods and why the authors
believe that using some different statistical methods is superior. It would
be interesting to see if there would be any change in networks
after new reports of long-term patient outcomes. Improved short-term
outcomes may prove to be a predictor of improved long-term outcomes.
The application of such associations is key to these types or reports.
Prospective randomized-controlled trials evaluating modifiable periop-
erative risk factors that can affect outcome can yield fruitful results.

Sanjay Konakondla
Danville, Pennsylvania
Clemens M. Schirmer

Wilkes Barre, Pennsylvania

1. Bailey DJ. Value-Based Care Won’t Reduce Health Spending and Improve Patient
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