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Abstract

Motivation: Metabolic flux balance analysis (FBA) is a standard tool in analyzing metabolic reaction

rates compatible with measurements, steady-state and the metabolic reaction network stoichiom-

etry. Flux analysis methods commonly place model assumptions on fluxes due to the convenience

of formulating the problem as a linear programing model, while many methods do not consider

the inherent uncertainty in flux estimates.

Results: We introduce a novel paradigm of Bayesian metabolic flux analysis that models the reac-

tions of the whole genome-scale cellular system in probabilistic terms, and can infer the full flux

vector distribution of genome-scale metabolic systems based on exchange and intracellular (e.g.

13C) flux measurements, steady-state assumptions, and objective function assumptions. The

Bayesian model couples all fluxes jointly together in a simple truncated multivariate posterior dis-

tribution, which reveals informative flux couplings. Our model is a plug-in replacement to conven-

tional metabolic balance methods, such as FBA. Our experiments indicate that we can characterize

the genome-scale flux covariances, reveal flux couplings, and determine more intracellular unob-

served fluxes in Clostridium acetobutylicum from 13C data than flux variability analysis.

Availability and implementation: The COBRA compatible software is available at github.com/mar

kusheinonen/bamfa.

Contact: markus.o.heinonen@aalto.fi

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Metabolic modeling considers networks of up to thousands of chem-

ical reactions that transform metabolite molecules within cellular

organisms (Palsson, 2015). The key problem of metabolism is esti-

mation of the reaction rates, or fluxes, of the system of the highly

interdependent intracellular fluxes from measurements of few ex-

change fluxes that transfer nutrients or products between the exter-

nal medium and the cell.

The dominant approach to flux estimation is the celebrated flux

balance analysis (FBA) framework that finds reaction rates that

maximize pre-specified cellular growth or other target objective

function (Feist and Palsson, 2010), while assuming the cell is in a

steady-state, where concentrations of intracellular metabolites do

not change (Almaas et al., 2004). Such FBA problem can be casted

as a convenient and computationally efficient linear programing

problem of solving a system of linear steady-state constraints while

maximizing a linear target objective (Orth et al., 2010), and where

flux measurements can be encoded as constraints to the fluxes

(Carreira et al., 2014). FBA is commonly used to characterize intra-

cellular fluxes in various simulated objective conditions (Mo et al.,

2010). In metabolic flux analysis (MFA) values of unknown fluxes

are directly estimated based on measurements of some determined

fluxes without explicit maximal growth or other objective assump-

tion (Kim et al., 2008). In both approaches a point estimate for up

to thousands of highly interdependent fluxes are determined

(Bordbar et al., 2014).

The standard metabolic analyses contain three major model

assumptions that warrant careful methodological protocol to

achieve biologically meaningful results. First, the exact steady-state

constraint can be an unrealistic assumption since metabolites can ac-

cumulate or deplete to adapt to dynamic situations, such as during
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responses to changing nutrient conditions (MacGillivray et al.,

2017; Pakula et al., 2016). Second, in FBA maximal growth (or

other target objective) is often assumed as a constraint, while it only

holds at the highest growth phase in practise. Third, due to a large

number of metabolic reactions and limited number of experimental

data, flux point estimates commonly used in the field ignore the not-

able uncertainty involved in FBA and MFA solutions. The flux var-

iances are key in characterizing metabolic systems and uncertainties

emerging from the use of insufficient and noisy data.

Numerous separate extensions to flux analysis have been intro-

duced to alleviate these three assumptions. The robust FBA framework

considers the effect of measurement uncertainties to the maximal

growth (Zavlanos and Julius, 2011). The steady-state assumption was

recently relaxed by the robust analysis of metabolic pathways

(RAMP) model (MacGillivray et al., 2017). In contrast to point flux

estimates of FBA and MFA, the flux variability analysis (FVA) charac-

terizes the sensitivity of the objective function to independent flux per-

turbations, resulting in upper and lower bounds around the FBA

solution (Gudmundsson and Thiele, 2010; Mahadevan and Schilling,

2003). In principal flux mode analysis, the eigenvectors of steady-state

flux cone characterize the flux variability (Bhadra et al., 2018).

Alternatively the solution space of the fluxes can be sampled

(Schellenberger et al., 2010) by considering only optimal fluxes from

border of the flux hypercone (Bordel et al., 2010) or by sampling also

inoptimal fluxes from the inside the hypercone (Mo et al., 2010; Saa

and Nielsen, 2016a). The sampling methods use the hit-and-run for-

malism (Smith, 1984) as either the artificially centered hit-and-run

(ACHR) (Kaufman and Smith, 1998; Megchelenbrink et al., 2014) or

the coordinate hit-and-run with rounding (CCHR) (Haraldsdóttir

et al., 2017) sampling algorithms to cope with the large flux space. A

related approach uses possibility calculus (Dubois et al., 1996) to itera-

tively refine the estimate of possible and impossible flux states

(Llaneras et al., 2009).

Bayesian methods have been scarcely applied in flux analysis.

Small-scale Bayesian construction of kinetics was proposed by Saa

and Nielsen (2016b). The Metabolica method proposed modeling

distributions of fluxes of skeletal muscle metabolism (Heino et al.,

2007, 2010), but did not include modeling of target objectives or

genome-scale metabolic models. Bayesian methods have also been

developed for 13C labeling data (Kadirkamanathan et al., 2006;

Theorell et al., 2017) by assuming fixed steady-state and without

incorporating any target objectives.

In this article, we treat all three model assumptions simultaneously

by introducing a novel paradigm of Bayesian MFA where the genome-

scale, interdependent flux vector distributions are estimated. Our

model allows probabilistic relaxation of steady-state and target object-

ive constraints. In contrast to earlier uniform sampling approaches,

we place priors on flux distributions, and estimate posterior distribu-

tions that characterize and quantify the probability of all flux states

that are compatible with flux measurements, steady-state assumption

and stoichiometry. Our model reveals flux dependencies in explicit

form and characterizes the full space of flux states in principled fash-

ion. The Bayesian flux analysis can be used as a drop-in replacement

to standard FBA, MFA, FVA and sampling methods. We provide pub-

lic implementation of the Bayesian flux analysis using the standard

COBRA framework (Becker et al., 2007; Schellenberger et al., 2011).

2 Materials and methods

The goal of this article is a probabilistic formulation of static steady-

state metabolic systems that can be applied to whole genome MFA,

FBA and FVA. We propose the Bayesian method as a direct replace-

ment to these classic FBA, MFA and FVA tools. We start by assum-

ing a metabolic system of M metabolites and N reactions has been

characterized by a constant stoichiometric matrix S 2 Z
M�N, where

the rows denote metabolite participations in all reactions, while the

columns denote reactants and products of metabolites by individual

reactions. The flux vector v ¼ ðv1; . . . ; vNÞT 2 R
N denotes the reac-

tion rates of the system. The steady-state equation can be stated as

Sv ¼ x
: ¼ 0;

which encodes that metabolite concentration changes x
: 2 R

M are

zero and hence the metabolite concentrations x 2 R
M do not change.

Throughout the article, we assume a subset of fluxes have been

observed or determined (for instance, some of the exchange fluxes),

while the remaining fluxes are unknown. Our goal is to infer the dis-

tribution of all unknown fluxes given the observed fluxes, the

steady-state constraints and the flux lower and upper bounds.

2.1 Bayesian metabolic model
We formulate a Bayesian flux model (see Supplementary Material

for a graphical model), which starts by assuming multivariate

Gaussian priors for fluxes as

vjmv;rv � Nðmv;RvÞ;

with means mv 2 R
N and diagonal covariances

Rv ¼ diagðr2
vÞ ¼ diagðr2

v1
; . . . ; r2

vN
Þ. The prior means are set to zero,

or to the closest value to zero considering the flux upper and lower

bounds. The variances rvi
are hyperparameters that characterize the

a priori values the flux can take. The prior distribution converges to-

wards an uninformative uniform prior as the prior variances

increase.

We assume a Gaussian prior also for the metabolite changes

x
: jmx

: ; rx
: � Nðm _x ;R _x Þ;

where m _x 2 R
M are the a priori mean accumulations or depletions

of metabolite species. The diagonal covariances R _x ¼
diagðr2

x: Þ ¼ diagðr2
x
:

1
; . . . ;r2

x
:

M
Þ encode the variances around prior me-

tabolite changes. In strict steady-state, the prior for metabolite

change becomes Dirac’s delta function at zero. By increasing the var-

iances r2
x
: we can relax the steady-state assumption on individual

metabolites, and encode allowance for accumulations or depletions

of them.

The joint distribution of fluxes v and metabolite changes x
:

can

now be stated as a joint multivariate Gaussian distribution

v
x
:

� �
¼ v

Sv

� �
� N mv

Smv

� �
;

Rv RvST

SRv SRvST

� �� �
;

that encodes the exact (We add small numerical tolerance jI within

the inverse to ensure invertibility of the matrix.) relation Sv ¼ x
:
.

The conditional distribution of fluxes given a specific realization of

metabolite changes x
:

(e.g. 0) is then from standard Gaussian

identities

vjx: �Nðmv þ RvSTðSRvSTÞ�1ðx:�SmvÞ;Rv � RvSTðSRvSTÞ�1SRvÞ
�Nðmv þ Aðx:�SmvÞ;Rv � ASRvÞ

where A ¼ RvSTðSRvSTÞ�1. Since we do not in general have access

to exact metabolite change values x
:
, we marginalize the conditional

flux distribution over the change prior distribution pðx:Þ resulting in
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pðvjrv; rx
: Þ ¼

Ð
pðvjx:Þpðx:Þd x

: ¼ Nðvjl;CÞ; (1)

where l ¼ mv þ Aðmx
: � SmvÞ and C ¼ Rv � ASRv þ AR _x AT .

2.2 Conditioning the model with observations
Assume we have access to noisy observations yo ¼ vo þ e from a

subset of observed fluxes vo � v. The observations can be empirical

measurements, 13C flux estimations, or flux hypotheses determined

by the user. We assume independent additive Gaussian noise ei �
Nð0;x2

i Þ with variances collected in a matrix

Xo ¼ diagðx2
1; . . . ;x2

Nobs
Þ, and hence the likelihood of observed

fluxes is

pðyojvo;xoÞ ¼ N ðyojvo;XoÞ:

The joint distribution of all fluxes v and noisy flux observations

yo is now

v
vo þ e

� �
¼ v

yo

� �
� N

"
l
lo

#
;

CNN CNo

CoN Coo þ Xo

� �0
@

1
A;

which gives a conditional distribution of all fluxes given the observa-

tions as

vjyo � Nðlþ CNoC�1
y ðyo � loÞ;C� CNoC�1

y CoNÞ: (2)

where Cy ¼ Coo þ Xo is the noisy covariance, CNN is the full ðN �
NÞ covariance matrix, CNo ¼ CT

oN is the ðNobs �NÞ covariance ma-

trix between observed fluxes and all fluxes, and Coo is the ðNobs �
NobsÞ covariance matrix between observed fluxes. Note that

observed fluxes are in both v and in vo. Note also that the model

works with no observations at all as the conditional distribution in

Equation (2) reduces back to the prior in Equation (1).

Finally, we add the flux upper and lower bounds by truncating

the distribution with the known flux lower lb and upper ub bounds

resulting in the final truncated normal flux posterior

vjyo � T Nðlþ CNoC�1
y ðyo � loÞ;C� CNoC�1

y CoN ; lb; ubÞ:

The posterior encodes the distribution of bounded fluxes that are

compatible with the flux observations, flux priors, and where

steady-state applies according to the tolerances determined by the

steady-state prior means m _x and variances r2
x
: .

The derived flux posterior is an unimodal truncated multivariate

normal (TMVN) distribution where flux dependencies are repre-

sented through the covariance matrix C, which encodes all flux rela-

tionships with high rank. The flux posterior as a whole characterizes

the distribution of all valid flux vectors. The main characterizations

of interest are the individual flux distributions (the marginals) and

flux combination distributions (multi-variate marginals). Marginals

of TMVN’s are not analytically tractable, nor are they TMVN dis-

tributions (Horrace, 2005). We resort to Markov Chain Monte

Carlo (MCMC) sampling from the TMVN flux distribution to re-

veal individual flux, flux pair or flux group distributions.

2.3 Gibbs sampling truncated MVN’s
A recent review summarizes sampling approaches for TMVNca

(Altmann et al., 2014). The conditionals of TMVNhe are still

TMVNs (Horrace, 2005), which has led to many Gibbs-based sam-

plers (Emery et al., 2014; Geweke, 1991; Horrace, 2005; Kotecha

and Djuric, 1999; Li and Ghosh, 2015). In addition, Hamiltonian

Monte Carlo samplers (Pakman and Paninski, 2014) have been pro-

posed, while elliptical slice samplers would also fit well to the prob-

lem (Murray et al., 2010). We experimented with the three main

approaches, and found out that Gibbs sampling has consistently the best

performance in genome-scale metabolic models up to 4000 fluxes (data

not shown). In the remainder of the article we apply Gibbs sampling.

To sample the distribution v � T Nðl;C; lb; ubÞ we begin by

transforming it into whitened domain by Cholesky decomposition

C ¼ LLT with transformed fluxes ~v ¼ L�1ðv� lÞ with white distri-

bution ~v � T Nð0; I; a; bÞ, where a ¼ lb� Ll and b ¼ ub� Ll. We

sample from the univariate conditional distributions

~vij~v�i � T Nð0; 1; að~v�iÞ;bð~v�iÞÞ; (3)

which is a standard Normal with bounds in the white domain are

(We refer to Li and Ghosh, 2015; for detailed explanation):

að~v�iÞ ¼ max maxj:Lji>0
aj � Lj;�i~v�i

Lji
; max

j:Lji <0

bj � lj;�i~v�i

Lji

( )

bð~v�iÞ ¼ max minj:Lji>0
bj � lj;�i~v�i

Lji
; min

j:Lji < 0

aj � lj;�i~v�i

Lji

( )
:

The bounds are functions of the remaining (whitened) fluxes ~v�i

and need to be updated after each change to flux values. We itera-

tively update each whitened flux ~vi by sampling a new value from

the conditional distribution ~vij~v�i with the minimax tilting method

(Botev, 2016), which we found out to outperform the alternative

Chopin’s algorithm (Chopin, 2011). Finally, we transform the whit-

ened variables back into original domain by v ¼ L~v þ l.

We notice that the method of Li and Ghosh (2015) can be fur-

ther optimized by running multiple chains in parallel by considering

a flux sample matrix ~V ¼ ð~v1; . . . ; ~vNc Þ containing whitened flux

vector chains ~vc. The bound function is then represented as

að ~V�iÞ ¼ max maxj:Lji>0
a� L�i

~V�i

Lji
; max

j:Lji <0

b� L�i
~V�i

Lji

( )

bð ~V�iÞ ¼ max minj:Lji>0
b� L�i

~V�i

Lji
; min

j:Lji < 0

a� L�i
~V�i

Lji

( )
;

where ~V�i is the sample matrix ~V without the ith row, L:;�i is the

Cholesky matrix without the ith column. By sampling several chains

in parallel with one CPU node we can utilize the full bandwidth of

the CPU. This is especially useful for Gibbs sampling.

2.4 Sampling the flux posterior
We set the initial flux vector vð0Þ ¼ vMAP ¼ arg maxvpðvÞ to the

maximum a posteriori of the truncated normal distribution, which

we compute using quadratic programing. The truncated normal dis-

tribution is unimodal, and hence we begin sampling from the mode

of the distribution providing efficient optimization.

The fluxes can be arranged into distinct bounded fluxes vb and

unbounded fluxes vu, where v ¼ ðvb; vuÞT . The conditional distribu-

tion of a truncated normal is still a truncated normal (Horrace,

2005). We only need to sample the bounded fluxes vb with Gibbs

MCMC, and afterwards the distribution of unbounded fluxes vu

conditioned on the bounded flux samples vb can be drawn from

untruncated normal as

vujvb � Nðlu þ CubC�1
bb ðvb � lbÞ;Cuu � CubC�1

bb CbuÞ;

where we arrange l ¼ ðlb;luÞ
T and C ¼ Cbb Cbu

Cub Cuu

� �
.

We implement the MCMC sampling in Matlab. We run multiple

independent Markov chains in a vectorized form. By default we run

Nc ¼ 10 chains of Ns ¼ 500 flux samples for a total of 5000 flux

vector samples. We use thinning and only accept every Nt ¼ 100th

i550 M.Heinonen et al.



flux sample. The MCMC chains have converged if successive sam-

ples are uncorrelated; chains are indistinguishable and have effect-

ively forgotten the initial value. Convergent chains indicate that the

MCMC sampler has characterized the whole flux posterior. We use

potential scale reduction factor R̂ to approximate convergence

(Gelman and Rubin, 1992). An optimal value of R̂ ¼ 1 indicates

convergence, while values R̂ < 1:1 are considered sufficient for

convergence. We also compute the effective number of samples Neff

per flux (Gelman et al., 2013).

We assume that flux means mv are fixed to either zero or the

lower bound of each respective flux. The model has then two main

hyperparameters rv and rx
: that affect the posterior. The rx

: deter-

mines how much the mass balance can be relaxed, and can be set

according to the prior knowledge of the modeler. To enforce mass

balance, a small value such as rx
: ¼ 0:001 should be chosen. The

prior flux variance r2
v determines how much fluxes are driven to-

wards zero a priori, but also should be set to sufficiently high value

not to exclude possibly high fluxes. In practise we set the variance

r2
vi
¼ 1002 for all fluxes vi.

2.5 Sampling FBA solutions
The presented Bayesian model is a MFA model designed to charac-

terize the global flux configurations v � pðvjyobsÞ compatible with

mass balance assumption, observations, and bounds. The method

can as well be applied as a FBA method, where an objective func-

tion—such as biomass reaction—is maximized. For FBA mode we

first find the standard FBA solution objective flux vFBA
obj with linear

programing, and encode it as a flux observation yobj6x2
c , where the

variance determines how closely we sample from the maximal ob-

jective. By default, we set the standard deviation to 0.1% of the

objective flux. To run maximum growth Bayesian FBA we would set

an observation for the biomass pseudoreaction to the classical FBA

maximum growth value and condition the model with the pseudo-

measurement as in Section 2.2.

3 Results

We first perform in silico experiments to highlight the capabilities of

the Bayesian FBA and MFA models in Sections 3.1–3.3. Our goal is

to compare the computational approach against the conventional

FBA and FVA methods, and to showcase the method’s in silico per-

formance in various metabolic models. We also compare Bayesian

FBA solutions with the uniform samples obtained by ACHR and

CHRR, two popular tools implemented in Cobra Toolbox to ex-

plore and infer properties of metabolic networks. The main experi-

ment of this article is application of the Bayesian flux analysis to the

13C analysis of the Clostridium acetobutylicum in Section 3.5,

where we can elucidate fluxes on a genome-scale from a small set of

intracellular flux measurements.

3.1 In silico metabolic models
Table 1 indicates the stoichiometric models that were considered.

We considered four organisms, seven genome-scale metabolic mod-

els and one core model. All models were downloaded from the

BiGG database (http://bigg.ucsd.edu). For all models we run the

Bayesian model in FBA mode—by specifying a growth objective—

with standard exchange flux measurements included as bounds. We

sampled 10 chains of 500 flux vector samples from the full space

containing all intracellular and extracellular fluxes. These 5000 flux

vectors represent possible flux configurations compatible with the

experimental setting. The sampling thinning parameter determines

how uncorrelated successive MCMC samples are. We applied thin-

ning values of 100 and 1000, with linear effect on the running time.

The effective number of independent simulation draws for all

models from Bayesian flux analysis with different thinning param-

eter are shown in Figure 1 using the potential scale reduction factor.

The x-axis corresponds to individual fluxes sorted based on the ef-

fective number of samples. The number of reactions is different for

different models. In all cases majority of the fluxes have over 100 ef-

fective number of independent samples, which indicates that the

samples represent the flux posterior well. A minority of the fluxes

have low effective sample sizes. These are usually central branching

fluxes that are highly dependent across the genome-scale metabol-

ism, and hence converge slowly. The thinning parameter has a large

effect on some models (core, iJR904, iAF1260 and iJO1366) where-

as for some other models there are not much change (CORECO,

iYO844, iMM904, 7.6).

3.2 Bayesian FBA and MFA
We illustrate the characteristics of the Bayesian model using

Escherichiacoli central carbon metabolism model (BiGG model

e_coli_core). The model contains 95 fluxes and 72 metabolites. It

should be noted that the model was not further constrained and do

not represent the native E.coli strain as such, while it allows, e.g.

carbon fixation. The model was rather used to theoretically compare

our modeling approach to conventional FBA methodology. The con-

ventional FBA solution achieves a growth flux vFBA
growth � 0:873 by

limiting the glucose exchange flux with a lbglc ¼ �10. We consider

three cases of Bayesian analysis: (i) 50% growth by defining only

the biomass flux observation 0.436 6 0.0043, (ii) maximal growth

scenario by defining the biomass flux observation 0.873 6 0.0087,

and (iii) maximal growth with additional observations for nine key

exchange fluxes: glucose (GLC), O2, CO2, H2O, Hþ, HPO4, SO4,

NH4 and ethanol that were all set to their conventional FBA solutions

with a SDs of 0.01. In all three experiments the remaining fluxes were

free with only a prior distribution with a SD of 100 specified. We

defined a nearly strict steady-state by defining r _x ¼ 0:01. We sample

a total of 5000 flux vectors with the Gibbs sampler using 10 chains

and 500 samples each. We use 1D kernel density estimates as proxies

of marginal flux posterior distributions. The small jaggedness of the

distributions is an artifact from the MCMC sampling. By considering

longer chains these would eventually smoothen out.

Figure 2 shows the flux distributions of 30 fluxes. The blue color

indicates the 50% growth flux distributions, the green color the

maximal growth distributions, the red color maximal growth with

exchange fluxes specified, and the conventional FBA is shown with

a black line. The Bayesian distributions represent the space of all

allowed steady-state flux configurations given the observations and

objective function. Figure 2 shows that maximal growth can still

support a large variance in many fluxes, with the FBA point estimate

misleading by only considering one flux configuration. Similarly to

conventional FVA our approach elucidates directly the possible vari-

ance in a given flux. For instance, the pentose-phosphate pathway

flux G6PDH2r: D-Glucose 6-phosphate þ NADP () 6-

Phosphogluconolactone þ Hþ þ NADPH can vary between �8 and

�2 in maximal growth. The conventional FBA yields zero flux for

glyoxylate cycle flux malate synhase (MALS): Acetyl-CoA þ
Glyoxylate þ H2O ) CoA þ Hþ þ Malate, while the flux space

indicates that values up to four are possible.

Bayesian flux analysis i551
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The red distributions indicate how the intracellular fluxes get

more and more specified as the model is better specified by inclusion

of exchange measurements. Variance of almost all fluxes reduces by

more than half. For instance, the flux FUM: Fumarate þ H2O ()

Malate is specified to a range of ½�5:1;�4:9� from a range of

½�6:5;4:4� without exchange measurements.

The blue color indicates the cellular flux state when the cell is

only growing at 50% of the maximum growth rate. Most fluxes

have a higher variance in this scenario. Interestingly the glucose in-

take is still kept at a relatively high rate. Instead of biomass produc-

tion, the excess carbon from glucose can be diverted to other carbon

sinks, such as formate and ethanol production. The ethanol and for-

mate effluxes can grow up to 3 and 15, respectively. The carbon di-

oxide exchange decreases by over half into a range of ½�15;�3�
from maximal growth exchange range of ½�25;�23�.

3.3 Flux couplings
The flux variations are in general not independent from each other.

To understand the intracellular flux space, we need to consider

higher-order flux dependencies. The flux sample covariances indi-

cate flux couplings, where the variation in one flux is constrained by

other fluxes. Figure 3 highlights nine example flux pair patterns out

of the total of 95�94
2 ¼ 4465 in the core model. Blue points represent

50% growth, green points maximal growth, red points maximal

growth with nine exchange fluxes specified, and the conventional

FBA solution is a black dot.

The flux covariations become consistently more constrained

while traversing from the loose 50% growth model (blue) towards

Table 1. Metabolic models analyzed by Bayesian flux analysis by sampling 500 samples from the flux posteriors

Organism Model n M Runtime

thin 100 thin 1000

E.coli core 95 72 2 min 20 min

E.coli iJR904 1075 761 2 hr 1 day 9 h

E.coli iAF1260 2382 1668 7 hr 4 days 12 h

E.coli iJO1366 2583 1805 9 hr 4 days 16 h

Bacillus subtilis iYO844 1250 992 3 hr 1 day 11 h

C.acetobutylicum Wallenius (2013) 592 444 23 min 3 h

Saccharomyces cerevisiae iMM904 1577 1226 3 hr 2 days

S.cerevisiae 7.6 3493 2220 10 hr 5 days 15 h

Trichoderma reesei CORECO 4008 3292 8 hr 4 days 15 h

Note: The runtime is shown for thinning rate 100 and 1000. n denotes the number of reactions and M the number of metabolites in the model.

Fig. 1. The effective number of independent simulation draws for individual

fluxes for a subset of models from Bayesian flux analysis with different thin-

ning parameters. The x-axis corresponds to individual fluxes sorted based on

the effective number of samples

Fig. 2. Posterior flux distributions of E.coli core model. The blue color indi-

cates fluxes in 50% growth, the green color maximal growth, the red color

maximal growth with nine exchange fluxes specified, and the conventional

FBA solution is a black line. Reaction abbreviations and names are listed in

Supplementary Table S1

Fig. 3. Examples of flux covariance distributions of E. coli core network. Blue

points represent 50% growth, green points maximal growth, red points max-

imal growth with nine exchange fluxes specified and the conventional FBA

solution is a black dot. Scatter plots represent pair-wise (2D) marginal poster-

ior distributions as obtained from the MCMC samples. Reaction abbreviations

and names are listed in Supplementary Table S1
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100% maximal growth (green). By measuring the exchange fluxes

(red), we can already pinpoint most flux patterns very closely

around the theoretically optimal flux pattern as defined by the con-

ventional FBA (black).

Multiple patterns of covariation can be immediately identified.

There is an exact coupling between pentose-phosphate pathway

reactions GND: 6-Phospho-D-gluconate þ NADP ) CO2 þ
NADPH þ D-Ribulose 5-phosphate and TALA: Glyceraldehyde 3-

phosphate þ Sedoheptulose 7-phosphate () D-Erythrose 4-phos-

phate þ D-Fructose 6-phosphate, as expected from the stoichiom-

etry. Glycolysis related FBA: D-Fructose 1, 6-bisphosphate ()
Dihydroxyacetone phosphate þ Glyceraldehyde 3-phosphate and

pentose-phosphate pathway related G6PDH2r have also a strong,

but not exact, negative correlation. The flux PGI: D-Glucose 6-phos-

phate () D-Fructose 6-phosphate and carbon dioxide exchange

have no correlation, but the maximal growth still pinpoints to a car-

bon dioxide exchange value of approximately �21. The dependency

of glyoxylate cycle related MALS and citric acid cycle (TCA) cycle

related SUCOAS: ATP þ CoA þ Succinate () HPO�2
4 þ ADP þ

Succinyl-CoA on maximal growth requirement can be observed in

Figure 3. Under maximal growth a negative correlation between the

two fluxes emerges. The conventional FBA solution pinpoints opti-

mal values as zero MALS with SUCOAS around 5, while the

Bayesian model reveals that MALS can still have a flux value of

around 4 as long as SUCOAS tends towards 1.5 simultaneously.

The patterns of G6PDH2r and FBA and FUM indicate a linear

inequality for these fluxes. Especially with FUM this is natural since

the pentose-phosphate pathway flux G6PDH2r limits the TCA cycle

flux FUM. The same effect is also seen with G6PDH2r and ICDHyr:

Isocitrate þ NADP () 2-Oxoglutarate þ CO2 þ NADPH, an-

other TCA cycle flux.

To get more insight into the biology behind the flux couplings,

the flux pair patterns can also be illustrated in the metabolic net-

work (Fig. 4). Figure 4 shows the samples of the flux distributions

for several example pairs of reactions. These scatter plots indicate

the dependency of the flux configurations between two reactions

Fig. 4. Pair-wise marginal posterior fluxes presented together in the metabolic network map. The visualized fluxes are highlighted. Blue points represent flux val-

ues in 50% growth, green points in maximal growth, red points in maximal growth with nine exchange fluxes specified and the conventional FBA solution is a

black dot. Reaction abbreviations and names are listed in Supplementary Table S1
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across the reaction. There is natural correlation between adjacent or

subsequent fluxes but also correlation between fluxes in different

pathways, such as glycolysis and TCA cycle (See the SUCOAS and

TKT1 pair).

3.4 Comparison to hit-and-run samplers
We compare our Bayesian model and the Gibbs sampler to the com-

peting flux sampling methods of ACHR and CCHR. The CCHR

sampler has the ability to sample uniformly from the optimal flux

solution space, while both samplers have the ability to relax the op-

timality. The CCHR draws hard FVA bounds around all fluxes,

while ACHR can deviate softly from the optimal flux solution. We

run ACHR and CCHR methods on the E.coli core model around

the conventional FBA solution. For Bayesian FBA, the biomass flux

observation distribution has its mean in the center point of FVA so-

lution that gives at least 95% of the optimal growth. The distribu-

tion has mean 0.852 and variance 0.01. For ACHR experiments, the

lower and upper bounds for biomass flux were set as the 95% FVA

bounds. In CHRR experiments, random draws were obtained from

FVA solution that gives at least 95 or 99% of the optimal growth.

ACHR and CHRR were run with their default parameters, 10

independent chains were drawn for all samplers, thinning was 10

and the number of samples per chain was 1000.

Figure 5 compares the flux distributions of BayesFBA, ACHR

and CCHR with 95% FVA bounds, and CHRR with 99% FVA

bounds. The samples obtained by ACHR and CHRR for the

Biomass flux concentrate near the lower bound of the 95 or 99%

FVA solution, whereas BayesFBA gives wide Normal-like distribu-

tion with mean 0.83. Similar effect is also seen on the scatter plots

with both ACHR and CCHR inducing hard bounds on the phos-

phate exchange EX_pi(e). BayesFBA is not constrained on FVA

bounds of relaxed growth, thus we avoid specifying the growth re-

laxation. Instead, BayesFBA uses the uncertainty in the measured

biomass production. The variances of distributions obtained by

BayesFBA are larger than for the samples obtained by ACHR and

CHRR; ACHR and CHRR likely underestimate the variance. We do

not find significant differences in the samples obtained by ACHR

and CHRR. Moreover, the dependencies between reactions obtained

by different sampling methods are similar, for example, as seen in

Figure 5b for reactions ICDHyr and G6PDH2r.

3.5 Intracellular flux elucidation of C.acetobutylicum
We consider the results obtained from 13CMFA of C.acetobutylicum

grown in chemostat, i.e. in continuous cultivation maintaining

steady-state, with reference condition, glucose limited condition and

butanol stimulus with the goal of inferring the internal fluxes. We

effectively repeat the study of Wallenius et al. (2016), where FBA

and FVA were performed and constrained on 12 intracellular fluxes

determined by 13CMFA and 7 exchange fluxes. The model for

C.acetobutylicum consists of 451 metabolites and 604 reactions,

and is given as an.xml file in the Supplementary Material of

Wallenius et al. (2016).

The data of measured fluxes in glucose limited condition are

shown in Table 2. For the reference and the butanol stimulated con-

ditions, see Supplementary Table S2. The internal fluxes are

obtained from 13CMFA analysis, whereas the exchange fluxes were

measured by chromatographical methods or transferred from the
13CMFA results. Flux values were normalized to the specific growth

rate which was given the value of 1, except for the reference condi-

tion, the measured growth is 0.95. Exchange fluxes measured from

the cultivations were given to Bayesian MFA as mean vo and stand-

ard deviations X0 ¼ 0:05 � vo and fluxes obtained from 13CMFA

were given as ranges. In all Bayesian MFA experiments, the steady-

state relaxation was r _x ¼ 0:01. Finally, 500 samples were drawn

from the posterior with thinning 1000.

To study the FBA’s FVA’s and BMFA’s performance in predict-

ing the measured ranges for 12 internal fluxes obtained by 13CMFA,

three sets of models were generated: (A) a model with reaction direc-

tions for the 12 13CMFA determined internal fluxes set according to

the data (bounds in Table 2), (B) a set of 12 models, each model

defined as unconstraining 1 of 12 13CMFA determined internal flux

at a time, (the reaction direction is still constrained) while the rest

11 fluxes are constrained according to the measurements, this is the

leave-one-out (LOO) setting. Finally, we define model (C) with all

12 13CMFA determined internal fluxes constrained to their meas-

ured values. Model (A) is the most relaxed with only reaction direc-

tions specified, and for model set (B) we tested how well we can

estimate the true flux value for 1 internal reaction while the rest 11

reactions specified (LOO setting). In all three cases, we constrain the

model with measured values for the six exchange reactions and the

measured growth. For each set of models, the standard MFA with

Taxicab penalty, FVA, and Bayesian MFA were performed. The

Fig. 5. Sampler comparison on the E.coli core model around the FBA solution

(black). The ACHR (green), CCHR 95% (red), CCHR 99% (purple) and

BayesFBA (blue) distributions are shown for six example flux distributions

(a), and for four example pairwise flux distributions (b). The green and red

overlap heavily
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MFA and FVA were performed by The Cobra Toolbox’s

optimizeCbModel and fluxVariability functions by maxi-

mizing growth with the growth lower and upper bounds set to the

measured value 1.

We study how the flux variances from Bayesian MFA results de-

crease when adding 13CMFA constraints. The Figure 6 shows the re-

duction of standard deviations of flux distributions of all fluxes of

C.acetobutylicum in glucose limited condition when all 12 13CMFA

constraints are added to the model (model set C). When adding the
13CMFA constraints, the variance of most unmeasured internal

fluxes decreases, demonstrating how Bayesian MFA propagates the

information about 12 measured fluxes to several tens of other

internal fluxes. The reduction of standard deviations of flux distri-

butions for the reference and butanol stimulated conditions are

shown in Supplementary Figures S2 and S3.

To quantify the performance of FVA and Bayesian MFA to pre-

dict the 13CMFA measured range of flux values, precision, recall and

the F1 score were computed for each reaction and model set (see

Supplementary Methods). The F1 score values are shown in Table 2

as percentage and the precision and recall values are shown in the

Supplementary Table S3. From Table 2 and Supplementary Table

S3, it can be concluded that in the glucose limited condition, the

Bayesian MFA outperforms FVA, as for model (A) 9 of 12 reactions

has higher precision and F1 score, and for both models (A) and

Table 2. The 6 exchange flux, the growth and exopolysaccharide (EPS) production and the 12 internal flux measurements

Reaction KEGG ID Bounds Glucose limited

Exchange fluxes

Glucose exchangea C00031 	 0 �73:3 6 3.7

Acetate exchangeb C00033 0 	 ½12:96 :: 13:016�
Acetone exchangea C00207 0 	 12.5 6 0.06

Butanol exchangeb C06142 0 	 ½29:62 :: 30:67�
Butyrate exchangeb C00246 0 	 ½0 :: 3:23�
Ethanol exchangea C00469 0 	 6.13 6 0.31

EPS productionb 0 	 ½10:01 :: 10:26�
Growtha 0 	 1.00 6 0.05

F1 scores %

ex only LOO ex þ 13C

FVA BMFA FVA BMFA FVA BMFA

Malate DHase R00342 ½�112 ::�5:94� 19 7 65 19 68 23

3P-glycerate DHase R01513 0 	 ½1:53::4:85� 1 53 12 59 100 100

Acetaldehyde DHase R00228 ½�27:4 :: 50:3� 8 56 12 73 95 92

Triosephosphate DHase R01061 0 	 ½77:2 :: 132� 10 95 5 75 63 85

Acetolactate synthase R04672 ½�95:2 :: 99:4� 17 67 17 68 68 68

Aspartate transaminase R00355 	 0 ½�8:95 ::�0:80� 1 32 14 29 69 69

5, 10-CH¼THF hydrolyase R01655 ½�2:24 :: 0:05� 0 3 0 3 100 100

Malate hydrolyase R01082 	 0 ½�10:2 ::�0:78� 2 83 59 54 62 67

Ribulose-5P epimerase R01529 ½�4:39 ::�1:27� 1 0 1 0 100 100

Pyruvate carboxylase R00344 0 	 ½13:6 :: 119� 19 36 65 33 66 26

Carbonate hydrolyase R10092 ½26:2 :: 75:7� 10 57 97 31 100 53

C-acetyl transferase R00212 0 	 ½66:3 :: 154� 16 2 84 13 100 81

Average 9 41 36 38 83 72

Note: Measurements from the cultivations include SDs, while fluxes determined by 13CMFA are given as a range. The unit for flux ranges, flux means and flux

SD is: g�1(CDW).
aMeasured by chromatographic methods.
bObtained from 13CMFA.

EPS, exopolysaccharide.

Fig. 6. Global flux standard deviation reduction due to addition of twelve 13CMFA internal flux measurements in glucose limited condition. The green points indi-

cate the standard deviation of fluxes given only exchange measurements. The red points indicate the corresponding standard deviations after inclusion of twelve
13CMFA intracellular flux measurements. The blue circles highlight the 13CMFA measured fluxes
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model set (B), the average precision and F1 score is higher for

BMFA than for FVA. Similar results are obtained for butanol stimu-

lated (Supplementary Table S4) and reference condition

(Supplementary Table S5). In butanol stimulated condition, BMFA

has for 8 out of 12 reactions higher precision, and for 7 out of 12

reactions higher F1 score for model set (A), for 10 out of 12 reac-

tions higher precision and for 7 out of 12 reactions higher F1 score

for model set (B). For reference condition, BMFA has for 8 out of 12

reactions higher precision and F1 score for model set (A), and for

half of the reactions higher precision for model set B). The average

F1 score and precision over all 12 reactions are always higher for

BMFA than FVA.

The 13CMFA measured ranges, together with FVA, FBA and

BMFA predictions for model sets (A), (B) and (C) are shown for the

12 13CMFA determined reactions in Figure 7. In Figure 7, for the

model sets (A) and (B), the FVA gives a wide range of solutions as it

doesn’t take into account the flux couplings, whereas the distribu-

tion from BMFA is narrower, and closer to the range of true fluxes;

this is also seen in the higher precision and F1 scores for BMFA com-

pared with FVA (see Table 2). For example, Figure 7b shows the

results for the model set (B): for reactions 3P-glycerate dehydrogen-

ase, Acetaldehyde dehydrogenase, Triosephosphate dehydrogenase

and Acetolactate synthase the posterior distribution obtained by

BMFA resembles more the range obtained by 13CMFA, whereas the

FVA gives wider ranges. In Figure 7c, the resulting flux ranges for

FVA and BMFA distributions are always within the true measured

range, but the Bayesian MFA captures the probability in the flux

values. Similar results are obtained for the butanol stimulated and

reference conditions (see Supplementary Tables S4 and S5 and

Supplementary Figs S4 and S5).

4 Discussion

The conventional FBA formalism is a powerful framework for flux

analysis that however assumes several unrealistic simplifying model

approximations. Several approaches from robust flux analysis and

sampling to flux variability analyses indicate the need to alleviate

the approximations towards a more principled model.

We proposed the Bayesian flux analysis formalism that considers

fluxes as distributions instead of point estimates. The model learns a

posterior distribution of fluxes given prior information, flux meas-

urements, upper and lower bounds and steady-state assumptions

into account. The degree of belief in the measurements and steady-

state can be adjusted via measurement noise variances and biological

knowledge as encoded in (subjective) priors. The model character-

izes the complete space of possible flux configurations by modeling

the uncertainties of fluxes and flux combinations. The Bayesian for-

malism can be seen as a drop-in replacement for deterministic flux

analysis tools—such as FBA and FVA—at the cost of added running

time necessary to properly characterize the flux distributions. The

runtime can be effectively alleviated by only considering the core

parts of the metabolic model or by running multiple MCMC chains

in parallel.

Our results show that the conventional FBA and FVA tools

provides an overly simplistic view of the flux capabilities of the

cellular system under study, while the Bayesian model expresses

the full variance in the flux configurations. The Bayesian model of

metabolism opens doors for building flux analysis models in a

Bayesian way. We will leave experimental design, knock-outs and

strain design using the Bayesian modeling basis for future work. In

future we expect the Bayesian formalism to provide an alternative

statistical approach for majority of current FBA- and MFA-based

Fig. 7. For the glucose limited condition, flux distributions of the 12 internal fluxes predicted solely from exchange fluxes (a), and distributions after seeing
13CMFA data in LOO experiment (b) and after seeing all 12 internal reactions (c)
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tools with the benefit of rigorous uncertainty modeling and

improved interpretation.
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