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Phage display screening allows the study of functional protein–protein interactions at the 
cell surface, but investigating intracellular organelles remains a challenge. Here we introduce 
internalizing-phage libraries to identify clones that enter mammalian cells through a receptor-
independent mechanism and target-specific organelles as a tool to select ligand peptides 
and identify their intracellular receptors. We demonstrate that penetratin, an antennapedia-
derived peptide, can be displayed on the phage envelope and mediate receptor-independent 
uptake of internalizing phage into cells. We also show that an internalizing-phage construct 
displaying an established mitochondria-specific localization signal targets mitochondria, and 
that an internalizing-phage random peptide library selects for peptide motifs that localize to 
different intracellular compartments. As a proof-of-concept, we demonstrate that one such 
peptide, if chemically fused to penetratin, is internalized receptor-independently, localizes to 
mitochondria, and promotes cell death. This combinatorial platform technology has potential 
applications in cell biology and drug development. 
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For more than a decade, in vivo phage display has allowed 
identification of novel peptide ligands that selectively target 
blood vessels of normal organs or tissues and tumours1,2. Bio-

chemical approaches such as affinity chromatography or genetic 
approaches such as similarity mining of online databases have sub-
sequently identified the corresponding organ- and tissue-selective 
cell surface receptors for such ligands—discoveries which, in turn, 
have revealed novel roles for known proteins and identified addi-
tional proteins that are differentially expressed in the vasculature of 
normal and pathologic tissues3–5. These endothelial surface recep-
tors regulate sophisticated vascular functions as either tissue-spe-
cific or angiogenesis-related ‘ZIP codes’.

This combinatorial selection methodology also proved to be ver-
satile when applied to the cell surface; indeed, the biological diversity 
at the cell membrane level can be probed even when cells have been 
removed from their usual tissue architecture. For example, using a 
single step-phase-separation technique6, we have ligand-profiled 
the membrane receptor diversity of the NCI collection of 60 human 
tumour cell lines and have classified these lines based on expression 
of their putative tumour cell surface receptor proteome7. Moreover, 
from a screen on white adipose tissue-derived stem cells, we have 
identified integrin α5β1 as a receptor for SPARC8, characterized a 
novel ternary complex involving netrin-4 that controls the migra-
tion and proliferation of neural stem cells9, discovered ligand motifs 
that target the macropinocytotic pathway in leukaemia cells10, and 
defined a supramolecular complex, the ‘leukaemia cell invadosome’, 
which is essential for the pericellular proteolysis and migratory 
capacity of acute myelogenous leukaemia cells11. Recently, we have 
generated prototype drugs for the vascular endothelial growth fac-
tor and epidermal growth factor pathways12,13, and have developed 
phage-based hydrogels for three-dimensional tissue culture based 
on magnetic cell levitation14.

Whereas phage library screening in vitro and in vivo has consist-
ently uncovered novel protein–protein interactions at the cell sur-
face, the technology has not yet enabled direct and straightforward 
targeting of intracellular organelles and signal transduction or met-
abolic pathways. Currently, intracellular ligand-directed delivery 
can be accomplished by supercharged proteins or cell-penetrating 
peptides that induce receptor-independent crossing of eukaryotic 
cell membranes; such peptides are usually arginine-rich cationic 
sequences15–19. One of the best characterized of these peptides is 
penetratin (pen), a motif derived from the third helix of the homeo-
domain of Drosophila antennapedia protein20–22. The mechanism 
of pen internalization is energy-dependent, lipid-raft-mediated 
endocytic uptake23. Pen has previously been used to transport 
peptides, recombinant proteins, antibodies, small interfering RNA, 
and micro RNA into cells24–33. Reports that certain cell-penetrat-
ing peptides, such as pen or human immunodeficiency virus type 
1 Tat protein, improve cellular uptake of eukaryotic viruses (such 
as adenoviruses), and enable delivery of prokaryotic viral particles 
(such as λ phage) into mammalian cells34,35 stimulated us to deter-
mine whether combinatorial phage display methodology could 
be adapted for the direct analysis of intracellular protein–protein 
interactions and to discover internalizing homing peptide (iHoPe) 
motifs affecting metabolic pathways.

Here we introduce a new class of filamentous phage-based rea-
gents that integrate pen36 as a fusion protein with the recombinant 
major coat protein (rpVIII) and thereby enable receptor-independ-
ent phage particle entry into mammalian cells. Moreover, either 
random peptide libraries or specific individual motifs can be simul-
taneously displayed on the minor coat protein (pIII), a feature allow-
ing both intracellular library selection and targeting of organelles. 
We have termed this new family of reagents ‘internalizing phage’ 
(iPhage). In this initial study, our central goal was to identify an 
intracellular targeted peptide that would induce programmed cell 
death as a biological surrogate readout and proof-of-concept for our 

general selection approach. Indeed, we have uncovered an iHoPe 
that induces cell death via ribosomal protein L29 (RPL29), and 
therefore demonstrate that the combinatorial selection of internal-
izing peptides is feasible. One hopes that future studies with this 
enabling platform technology will tackle other biological end points 
in disease-specific settings.

Results
Functional iPhage particles cross mammalian cell membranes. 
The general structure of iPhage was generated on the backbone 
phage vector f88-4 (ref. 37; Fig. 1a) displaying pen (sequence 
RQIKIWFQNRRMKWKK) on rpVIII (Fig. 1b). As controls, we 
used parental phage and site-directed mutant iPhage displaying a 
mutant loss-of-function form of pen (RQIKIAFQNRRMKAKK), in 
which two critical tryptophan (W) residues (required for membrane 
translocation) were mutated to alanine (A) residues (Fig. 1c). We 
observed abundant iPhage production in K91 Escherichia coli, 
indicating that iPhage constructs were correctly assembled and 
non-toxic to the host bacteria.

To demonstrate that iPhage can cross mammalian cell membranes 
through a receptor-independent mechanism, we exposed human 
Kaposi sarcoma (KS) 1767 cells to each of the three individual con-
structs. After 24 h, phage particles were detected in cells exposed to 
iPhage but not in cells incubated with either parental phage or mutant 
iPhage (Fig. 1d). In addition, phage genomic DNA was detected only 
in cells infected with iPhage particles suggesting that all viral compo-
nents were internalized (Fig. 1e). Furthermore, pre-incubation of the 
soluble pen peptide on mammalian cells did not block iPhage parti-
cle internalization, a result indicating that the intracellular uptake is 
receptor-independent and non-saturable (Supplementary Fig. S1). To 
test viability and eliminate the possibility that iPhage particles have 
either affinity or get trapped in the cell surface; we isolated plasma 
membrane and cytosol fractions and recovered the viral pool by infec-
tion of host E. coli; a marked recovery of viable iPhage particles were 
observed in the cytosol after 24 h, in comparison to parental phage and 
mutant iPhage that served as negative controls (Fig. 1f). We did not 
recover parental phage, iPhage, or mutant iPhage from the membrane 
fraction, a result indicative that phage particles were not nonspecifi-
cally trapped within the cell surfaces. Moreover, to account for a pos-
sible uptake of iPhage particles by endocytosis, we have performed a 
series of co-localization studies with markers of early (EEA1) and late 
(mannose 6-phosphate receptor) endosomes. Careful analysis of serial 
confocal images demonstrated that, on cellular intake, iPhage parti-
cles do not totally reside in the endosomal compartment but rather, 
are evenly distributed in the cytosol. Notably, additional co-immu-
nostaining studies with markers of intracellular organelles such as 
Golgi apparatus and mitochondria confirmed these findings; iPhage  
particles showed a random intracellular distribution according to 
different subcellular markers detected by confocal microscopy (that 
is, Golgi apparatus, mitochondria, early and late endosomes) (Sup-
plementary Fig. S2). Furthermore, cell internalization (Fig. 1g-h) was 
not dependent on species (mouse or human, respectively), transfor-
mation status (non-malignant or malignant cells), or tumour type 
(carcinoma (Lewis lung carcinoma), leukaemia (K562), lymphoma 
(Rauscher murine leukaemia virus antigen), melanoma (B16F10), 
or sarcoma (KS)). These results show that pen-display mediates the 
internalization of phage particles into mammalian cells independ-
ently of a cell surface receptor, and the internalized particles in the 
cytosol remain intact, viable and functional within mammalian cells. 
Therefore, it appeared possible to target a specific organelle, or gener-
ate random peptide iPhage libraries to screen for iHoPe in living cells 
(Fig. 2a) with this systematic approach.

Targeting mitochondria with a localization signal peptide. To 
test whether a defined localization signal peptide displayed by 
iPhage would target a distinct cellular compartment, we produced 
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an iPhage construct carrying the mitochondria localization signal 
(MLS), and used this construct to validate the predicted intracellu-
lar trafficking of targeted iPhage particles38. First, we confirmed that 
both iPhage and MLS-iPhage were equally efficiently internalized 
compared with the negative control (parental phage) as observed 
in the cytosol fraction (Fig. 2b). Indeed, MLS-iPhage was detected 
and enriched by transducing unit (TU) recovery specifically within 
their corresponding organelle-targeted fraction compared with the 
nuclear fraction (Fig. 2b), and demonstrated by confocal microscopy 
(Fig. 2c). To minimize or eliminate the possibility of an off-target 
effect, we repeated this proof-of-concept experiment with reduced 
Mitotracker concentration (fivefold less) and/or shorter incubation 
time (twofold less); we observed similar target results (Supplemen-
tary Fig. S3). Moreover, co-localization index analysis revealed that 

MLS-iPhage co-localizes to mitochondria tenfold more compared 
with non-targeted-iPhage particles and 1,000-fold more compared 
with parental phage (Supplementary Fig S4). Finally, transmission 
electron microscopy studies revealed that cells treated with MLS-
iPhage and the controls (parental and non-targeted-phage) showed 
MLS-iPhage have clearly entered the target cells, and bound to the 
mitochondria membrane, but it remains to be determined if they 
penetrate the organelle under the experimental conditions used; 
future studies should shed light on whether the sheer size of phage 
particles or other attributes might preclude or mediate entry into 
mitochondria. We concluded that iPhage constructs displaying lig-
and-directed signal peptides penetrated mammalian cells, reached 
an intracellular equilibrium, and targeted specific compartments 
within mammalian cells.
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Figure 1 | Display of pen on rpVIII mediates receptor-independent cell internalization. (a) upper: parental f88-4 phage vector contains two capsid 
genes encoding a wild-type (wt) protein VIII (pVIII, depicted in grey) and a recombinant protein VIII (rpVIII; depicted in green). The recombinant gene 
VIII contains a foreign DnA insert with a HindIII and a PstI cloning site (depicted in red). TetR, tetracycline resistance gene. Lower: representation of the 
assembled phage particle expressing only the wt major coat protein pVIII (grey); pIII, minor coat protein (orange); pVI protein (blue); pVII protein (red), 
and pIX protein (yellow). (b) upper: annealed oligonucleotides encoding the pen peptide were cloned in frame with the recombinant gene VIII. Lower: 
iPhage particles displaying the pen peptide motif (RQIKIWFQnRRmKWKK) at the amino terminus of the rpVIII (green). (c) upper: the mutant iPhage 
genome has nucleotide substitutions in the pen sequence replacing tryptophan (W) by alanine (A) residues (underlined in red). Lower: representation of 
the assembled mutant iPhage displaying mutant pen on rpVIII protein (purple). (d) Immunofluorescence of Ks1767 cells shows internalized viral particles 
only in cells incubated with iPhage. The nuclear stain DAPI emits blue fluorescence, and internalized phage particles were detected with conjugated 
antibodies (red fluorescence). scale bar, 100 µm. (e) Phage genomic DnA was detected only in Ks1767 cells incubated with iPhage particles (southern 
blot, upper panel). Total genomic DnA stained with ethidium bromide served as a loading control (lower panel). (f) iPhage particles are internalized and 
viable in the cytosol and undetected in the membrane fraction of Ks1767 cells. Bars represent mean values for Tu recovered from the cytosol ± s.e.m.,  
from triplicates. Phage internalization by various types of cultured cells (g) mouse and (h) human. RmA (Rauscher murine leukaemia virus antigen) 
lymphoma, LLC (Lewis lung carcinoma), B16F10 (melanoma), HuVEC (human umbilical vein endothelial cell), leukaemia (K562), 293HEK (human 
embryonic kidney) and HeLa cell lines. Internalization assays were run in triplicate; bars represent mean values for phage Tu recovered from the  
cytosol-enriched fraction ± s.e.m. from triplicates.
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iPhage library screening yields a new ligand receptor. Having 
demonstrated targeting with a defined intracellular signal peptide, 
we attempted to identify iHoPe sequences that disrupt cellular  
viability as a convenient readout for biological activity. Thus, we  
reasoned that targeting of organelles such as mitochondria and 
endoplasmic reticulum (ER) would likely be the most suitable way 
to select and identify candidate pathways involved in cell death39. 
We constructed a random peptide iPhage library [that is, pen dis-
played on rpVIII and the combinatorial motif arrangement X4YX4 
(X, any residue; Y, tyrosine) displayed on pIII] and selected it on live 
KS1767 cells (Fig. 3a). After 24 h, we isolated the mitochondria/ER-
enriched fraction and recovered the pool of iPhage through infec-
tion of host E. coli. After three rounds of selection, we observed an 
enrichment of different iPhage clones in the subcellular fraction  
(Fig. 3b). DNA sequencing and bioinformatic analysis revealed a 
large amount of single peptide iPhage clones in the mitochondria/
ER-enriched fraction. Next, we randomly selected ten peptide-
iPhage clones and tested their biological activity (disruption of cell 
viability). The KS1767 cell line was starved overnight and was incu-
bated with each peptide-iPhage clone; as negative control we used 
insertless parental iPhage in complete MEM media. One should note 
that the concentration of each peptide-iPhage clone (that is, 109 TU 
per 100 µl) corresponds to only ~60 nM of peptide—an extremely 
low molar concentration if compared with the amount of synthetic 
peptide utilized in subsequent cell death experiments (30 µM). After 
24 h, we observed morphological alterations and reduced cellular 
viability only with the YKWYYRGAA-iPhage clone (Fig. 3c-e).

Having shown that MLS-iPhage targets its respective organelle, 
and the combinatorial selection of YKWYYRGAA-iPhage in 
mitochondria/ER fraction, we next evaluated the ability of iPhage 
particles to compete against non-targeted-iPhage particles. First, we 
show that iPhage particles displaying an organelle-targeting peptide 
(that is, MLS-iPhage and YKWYYRGAA-iPhage) were selectively 

enriched in the mitochondria/ER fraction even in the presence  
of a 10,000-fold molar excess of non-targeted-iPhage particles (Sup-
plementary Fig. S5). Next, to rule out the possibility that particle 
selection might simply be an artefact (that is, phage binding after 
the cell fractionation process), we compared an immediate versus 
a 24-h post-incubation phage-cell fractionation. We observed that 
iPhage clones (that is, MLS and YKWYYRGAA) were enriched 
in the respective organelle fraction after overnight post-incuba-
tion compared with immediate cell fractionation (Supplementary  
Fig. S6). Moreover, we detected high amounts of phage in the 
cytosol when the cell lysate was immediately fractionated compared 
with fractionation 24 h after incubation (Supplementary Fig. S6), a 
result indicative of an intracellular steady-state equilibrium. Taken 
together, these results show that MLS-iPhage and YKWYYRGAA-
iPhage particles are retained in the mitochondria/ER fraction irre-
spective of a competing non-targeted-iPhage, and that they target 
organelles before cell fractionation. Finally, internalizing versions 
of the YKWYYRGAA peptide and controls were generated through 
carboxy-terminal chemical fusions to pen (Merrifield synthesis) 
and were subsequently evaluated for their intracellular entry and 
biological activity.

RPL29 is a receptor for the internalizing YKWYYRGAA peptide. 
We used affinity chromatography to purify candidate receptors for 
the YKWYYRGAA peptide and subsequently probed the eluted and 
immobilized fractions for specific binding of iPhage displaying this 
ligand peptide (Fig. 4a). SDS–PAGE identified a single protein with 
a relative molecular weight (Mr) of 22,000 Da only in target fraction 
number 43. Mass spectrometry revealed peptides corresponding 
unequivocally to the RPL29 (Fig. 4b).

To confirm the candidate receptor RPL29 as a target for the 
internalized YKWYYRGAA peptide, we generated a recombinant 
glutathione S-transferase (GST) fusion with RPL29 and performed 
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binding assays with the YKWYYRGAA-displaying iPhage con-
struct. Consistently, the YKWYYRGAA-displaying iPhage bound 
to RPL29 but not to control proteins that included a closely related 
recombinant GST–RPL30 fusion (Fig. 4c). Moreover, YKWYYR 
GAA, but not controls, mediated concentration-dependent inhibi-
tion of binding (Fig. 4d).

Disruption of RPL29 promotes apoptosis induced by a caspase 
activation pathway in mammalian cells40. Therefore, we asked 
whether the YKWYYRGAA-pen peptide would disrupt RPL29 
function and promote cell death. Cell viability assays revealed that 
YKWYYRGAA-pen, but not control (Fig. 5a) or non-conjugated 
admixtures of pen plus YKWYYRGAA peptides (Supplementary 
Fig. S7), reduced cell survival; these results were not dependent on 
transformation status (non-malignant versus malignant cells), spe-
cies of origin (mouse versus human), or pathological tumour cell 
type (carcinoma, leukaemia, lymphoma, melanoma, or sarcoma), 
data suggestive of a general cellular mechanism of cell death (Sup-
plementary Fig. S8). We first analysed the cell surface expression of 
the established apoptotic marker phosphatidylserine. KS1767 cells 
were incubated with synthetic YKWYYRGAA-pen, pen alone, or 
YKWYYRGAA, and were stained with annexin V-fluorescein iso-
thiocyanate (FITC), an early cell death marker. After 6 h, fluores-
cence-activated cell sorting and fluorescence microscopy revealed 
that most cells treated with YKWYYRGAA-pen had undergone cell 
death (Fig. 5b,c). To show activation of the intracellular apoptotic 

pathways, we evaluated the processing of caspase-7 and caspase-
9 from inactive zymogen to active protease and observed caspase 
activation only in the presence of YKWYYRGAA-pen (Fig. 5d). 
Moreover, we detected histone-associated DNA fragments in the 
cytosol of cells treated only with the YKWYYRGAA-pen peptide; 
these results suggest that chromatin fragmentation is activated by 
YKWYYRGAA-pen peptide via RPL29 (Fig. 5e). To understand 
the molecular mechanism(s) of cell death in this new experimen-
tal system, we subsequently evaluated biochemical markers related 
to autophagy and necrosis. In addition to apoptosis, we observed 
that the marker beclin-1 was upregulated only in cells exposed to 
YKWYYRGAA-pen peptide, a result suggestive of specific activa-
tion of an autophagy-dependent pathway (Fig. 5f). Finally, we also 
investigated cellular necrosis by means of extracellular release of the 
high mobility group protein B1 (HMGB1). We detected HMGB1 
in the supernatant of cells treated only with YKWYYRGAA-pen, 
a result indicative of necrosis activation pathway (Fig. 5g). Taken 
together, these results show that YKWYYRGAA-pen activates dif-
ferent molecular pathways including apoptosis, autophagy, and 
necrosis and suggest a complex mammalian cell death mechanism 
ultimately resulting in morphological alterations consistent with a 
late stage phenomena illustrated in KS1767 cells by transmission 
electron microscopy (Fig. 5h). After 6 h with the control peptides 
YKWYYRGAA or pen, the cells remained morphologically normal; 
in contrast, over 90% of the cells treated with YKWYYRGAA-pen 
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showed the classical morphological signs of cell death (for example, 
cytoplasmic vacuoles, swollen mitochondria, and chromatin con-
densation). Notably, during the cell death process, we observed an 
increasingly translucent cytoplasm, swelling of organelles, and con-
densation of nuclear chromatin into small, irregular, circumscribed 
patches through different time points (that is, 0.5, 1 2, and 4 h); 
these findings were only observed in cells treated with YKWYYR 
GAA-pen peptide (Fig. 6a). We noticed normal and normal-vesic-
ular mitochondria as early as 30 min. However, at 1–2 h, most of 
the mitochondria showed vesicular-swollen and swollen forms on 
exposure to the YKWYYRGAA-pen peptide (Fig. 6b). These initial 
functional and morphologic studies indicate that the internalizing 
RPL29-binding YKWYYRGAA peptide simultaneously activates 
several mammalian cell death pathways.

Discussion
The signal hypothesis and the existence of intracellular ZIP codes 
are both well-recognized fundamental concepts in cell biology41–43. 
However, in contrast to ligand-directed targeting of cell membranes 
in vitro6,26 or in vivo1–3,44,45, combinatorial phage display-based 
technology has not yet been extended to the analysis of intracel-
lular organelles and signalling or metabolic pathway targets in live 
cells. We have approached this methodological gap through the 
display of established internalizing peptides46,47. We chose pen, an 
internalizing peptide, which is derived from the homeodomain of 

the Drosophila melanogaster antennapedia protein21,36. We have 
shown that expression of pen as a fusion recombinant protein on 
the major capsid rpVIII allows passage into cultured mammalian 
cells of viable, functional internalizing phage (named iPhage), with-
out the participation of cell surface receptors. Fusing a known signal 
peptide38 to the phage pIII protein directs intact iPhage particles to 
the predicted intracellular location; the simultaneous display of a 
random peptide on iPhage results in the selection and differential 
distribution of iPhage among the subcellular compartments, and 
peptides displayed in the iPhage particles can mimic their func-
tion with synthetic peptide counterparts. We further demonstrate  
the power of this methodology by identifying an iHoPe and its  
corresponding receptor mediating mammalian cell death.

RPL29 is a conserved protein involved in the assembly of the 60S 
ribosomal subunit, and studies in yeast have demonstrated that inac-
tivation or mutation of the RPL29 gene retards protein synthesis48. 
RPL29 gene inactivation in mice showed an alteration in the cell cycle, 
and as a result, RPL29-null newborn pups were reduced to half in size49. 
One may speculate that YKWYYRGAA-pen disrupts RPL29 function 
in ribosome assembly and protein synthesis, and thereby promotes cell 
death. Notably, the productive assembly of YKWYYRGAA-displaying 
iPhage particles indicates that this peptide is non-toxic to host bacteria 
and therefore does not appear to affect bacterial ribosomes, but rather 
targets eukaryotic ribosomes selectively. The YKWYYRGAA-pen pep-
tide shows a remarkable activation of multiple mammalian cell death 
pathways at the biochemical level including apoptosis, autophagy and 
necrosis50–53. However, future studies will be required to dissect the 
inherent, biologically complex death mechanism of the YKWYYR-
GAA-pen peptide via RPL29 in mammalian cells beyond the scope of 
this initial communication.

The relevance of subcellular targeting for drug delivery to 
improve drug efficiency, via the release of compounds within 
organelles, has recently been recognized54. The iPhage technology 
originally reported here has not only the potential for subcellular 
delivery, but might also unveil iHoPe sequences relevant to intra-
cellular trafficking in live cells. Finally, this internalizing strategy 
could also be combined with adeno-associated virus phage--based 
vectors for improved mammalian cell expression55. In summary, 
this new combinatorial approach employing internalizing peptides 
enables ligand-directed discovery of signal peptides and targeting 
of organelles or molecular pathways within live cells, with potential 
applications ranging from cell biology to drug development.

Methods
Reagents. The following antibodies were obtained from commercial sources:  
anti-bacteriophage antibody (1:1000, Sigma), anti-caspase-7, anti-caspase-9,  
anti-atg-5, anti-atg-7, anti-beclin-1 (1:2000, Cell Signaling Technology),  
anti-HMG-B1 (1:2000, Millipore), anti-actin antibody (1:5000, Novus Biologicals), 
anti-rabbit Cy3, anti-mouse FITC, anti-goat FITC (1:300, Zymed), anti-mouse  
HRP (1:5000, Bio-Rad), Alexa Fluor 488 goat anti-rabbit (1:500, Invitrogen),  
goat and mouse pre-immune sera (1:300, Jackson Immunoresearch). The following 
fluorescence probes were used: 4,6-diamidino-2-phenylindole (DAPI) (Vector  
Laboratories), ProLong Gold antifade reagent, Orange MitoTracker (Invitrogen), 
and annexin V-FITC (BD Biosciences). Molecular biology reagents included 
restriction enzymes (New England Biolabs and Roche), T4 DNA ligase  
(Invitrogen), Taq DNA polymerase (Promega, Stratagene and Invitrogen);  
gel extraction, PCR purification, and plasmid isolation kits (Qiagen), isopropyl b-d- 
1-thiogalactopyranoside (IPTG; Fisher Scientific). We used commercial  
recombinant ribosomal protein L30 (RPL30; Novus). All the synthetic peptides 
were produced to our specifications (PolyPeptide Laboratories).

Cell culture. Human Kaposi sarcoma (KS1767) cells were maintained in MEM 
containing 10% FBS, MEM-vitamins, non-essential amino acids, penicillin G (100 
units), streptomycin SO4 (100 mg ml − 1), and 2.7 mM. l-glutamine (Invitrogen) at 
37 °C in a 5% CO2-humidified incubator.

Phage internalization assay. For mammalian cell internalization, KS1767 cells 
were grown in 8-well tissue-chamber slides and incubated with 109 TU of iPhage, 
mutant iPhage, or parental insertless phage in MEM containing 1% bovine serum 
albumin (BSA) at 37 °C. After 24 h of incubation, cell membrane-bound phage 
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was removed by acidic washing (20 mM glycine, pH 2.3). Cells were washed with 
PBS and fixed with 4% paraformaldehyde in PBS at room temperature for 15 min. 
After washes with PBS, fixed cells were rendered permeable with PBS containing 
0.1% Triton X-100 (Sigma), blocked with PBS containing 1% BSA, and incubated 
with anti-bacteriophage (1:200 dilution) in PBS containing 1% BSA for 2 h at room 
temperature. Next, Cy3-conjugated anti-rabbit (1:200 dilution) was added, and 
incubated at room temperature for 1 h. Finally, cells were washed with PBS, fixed 
with PBS containing 4% paraformaldehyde, mounted in the presence of DAPI 
(Invitrogen), and visualized under a fluorescence or confocal microscope.

Generation of the iPhage peptide display library. To generate iPhage constructs, 
we transformed the M13-derived vector f88-4 (AF218363) into MC1061 E. coli. 
Single colonies were selected on Luria-Bertani (LB) agar plates with tetracycline 
(40 mg ml − 1) and streptomycin (50 mg ml − 1) and cultured overnight. Each  
plasmid DNA was first isolated by standard plasmid purification kit (Siegen)  
and was subsequently re-purified through a CsCl gradient. Next, annealed  
oligonucleotides encoding the penetratin peptide, sense 5′-cacaagctttgccaacgtccctc 
gacagataaagatttggttccaaaacggcgcatgaagtggaagaagcctgcagcaca-3′; antisense 5′-tgtgc 
tgcaggcttcttc cacttcatgcgccggttttggaaccaaatctttatctgtcgagggacgttggcaaagcttgtg-3′), 
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and f88-4 plasmid were digested with HindIII and PstI restriction endonucleases. 
DNA fragments were gel-purified (Qiagen) and ligated at various vector: insert 
molar ratios. Restriction enzyme-digested and sequence-verified individual 
clones were electroporated into MC1061 E. coli; iPhage particles were cultured in 
LB media containing 1 mM IPTG, tetracycline (40 mg ml − 1), and streptomycin 
(50 mg ml − 1), and were purified by the polyethylene glycol-NaCl method56. To 
produce an iPhage library displaying the peptide insert in the minor pIII coat 
protein (general arrangement X4YX4), we fused the iPhage construct (described 
above) and fUSE5 genomes to create a chimeric vector. Both plasmids were  
digested with BamHI and XbaI restriction enzymes, and the products were  
resolved on a 0.8% agarose gel. A DNA fragment of 3,925 bp from fUSE5  
(containing the rpIII) and another 5,402 bp fragment of iPhage (containing the 
rpVIII) were gel-purified and ligated overnight at 16 °C. Ligated products were 
precipitated in ethanol and electroporated into MC1061 E. coli; these bacteria  
were plated on LB-agar and selected with tetracycline and streptomycin. Next,  
we performed a CsCl plasmid purification of the iPhage/fUSE5 chimeric vector, 
which was digested with SfiI restriction endonuclease. In parallel, we performed  
a PCR amplification of the degenerate oligonucleotide (5′-cactcggccgacggggctnn 
knnknnknnktatnnk nnknnknnkggggccgctggggccgaa-3′) insert sequence with  
BglI restriction sites at both DNA ends57. The PCR products were purified on 
Qiagen columns, digested with BglI, and gel-purified. SfiI-linearized iPhage/fUSE5 
and double-stranded oligonucleotide inserts were prepared for large-scale ligations. 
After overnight incubation, ligated products were precipitated in ethanol and  
reconstituted in sterile water. We performed over 250 electroporations in  
MC1061 E. coli and transferred them into super optimal broth with catabolite  
repression medium at 37 °C for 1 h. Finally, the bacterial culture was amplified  
in LB medium (4 l) containing 1 mM IPTG, tetracycline (40 mg ml − 1), and  
streptomycin (50 mg ml − 1); phage particles were recovered to yield an X4YX4-
iPhage display library.

iPhage library intracellular selection. KS1767 cells were incubated with 
5×1011 TU of the X4YX4 iPhage library overnight at 37 °C. The next day, cells were 
washed extensively with pre-warmed PBS and were subsequently detached with 
trypsin. Cells were washed with ice-cold PBS, incubated with hypotonic buffer 
(10 mM NaCl, 1.5 mM MgCl2, 10 mM Tris–HCl (pH 7.5)) for 15 min, and placed 
in a standard Dounce homogenizer to disrupt cell membranes. Next, we added sta-
bilization buffer (525 mM mannitol, 175 nM sucrose, 2.5 mM EDTA (pH 7.5), and 
12.5 mM Tris–HCl (pH 7.5)). The organelle suspension obtained was centrifuged 
at 1,300g for 5 min at 4 °C; the supernate was transferred to a new tube, and cen-
trifuged at 17,000g for 15 min; this pellet contained the mitochondria-/ER-enriched  

fraction. The subcellular fraction-bound phage population was recovered through 
infection of log-phase k91kan E. coli for 1 h at room temperature. Serial dilutions of 
the infected bacteria were plated on LB plates containing tetracycline (40 mg ml − 1) 
and kanamycin (100 mg ml − 1) to determine the recovery phage titre. In addition, 
infected bacteria were grown overnight in LB containing tetracycline and kan-
amycin, and phage was recovered by polyethylene glycol/NaCl precipitation56,57. 
After 3 rounds of selection, 96 bacterial colonies from each round were randomly 
selected for DNA sequencing.

Confocal imaging. The cells were imaged with an inverted Olympus FV1000 
(Olympus, Center Valley, Pennsylvania, USA) laser scanning confocal microscope 
using a ×60 O3 PLAPO oil objective. The imaging and 3D reconstruction was 
performed by taking a series of horizontal scans through the cells, arranged as a 
vertical stack/z-stack by means of image analysis software (FV1000 version 1.6, 
Olympus Inc). Optical sections were acquired at 0.44 µm intervals, with an imaging 
stack consisting of 22 optical sections. The image size was an 800×800 pixel matrix 
per image (132×132 µm) with a colour depth of 12 bits per pixel. In this study, we 
used the UV LD405 nm laser (Olympus America, Center Valley, Pennsylvania, 
USA) as well as the Argon ion 488 nm and green HeNe 543 nm lasers (Melles Griot, 
Albuquerque, New Mexico,USA) and suitable filter sets.

Binding assay and ligand receptor purification. By coupling the selected 
synthetic peptide to a Sepharose column (Carboxy-link kit, Pierce) and exposing 
the columns to KS1767 cell-derived lysates, we purified a candidate receptor. After 
extensive washing, the receptor was eluted with the corresponding competitive 
peptide at a concentration of 5 mM. Eluted fractions were analysed by absorbance 
(optical density at 280 nm), dialysed, and concentrated at 4 °C. Equal amounts of 
protein (5 µg per well in 50 µl PBS) were immobilized on a 96-well plate overnight 
at 4 °C. Wells were washed twice with PBS, blocked with PBS containing 2% BSA 
for 2 h at room temperature, and incubated with targeted iPhage or parental insert-
less iPhage (109 TU each) in 50 µl PBS containing 0.1% BSA. After 2 h at room 
temperature, wells were washed ten times with PBS, and each phage population 
was recovered by host bacterial infection.

Cell death assays. KS1767 cells grown in 48-well plates were maintained for 24 h 
in non-supplemented MEM. The medium was subsequently supplemented with 
10% FBS plus each respective test peptide. Cellular viability was assessed by meas-
urement of cellular metabolism by the MTT (Roche), and WST-1 (Roche) assays 
at 37 °C, according to standard protocols. Staining for annexin V (Clontech) was 
performed to monitor early stages of apoptosis. KS1767 cells grown in 8-well slide 
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Figure 6 | The YKWYYRGAA-pen peptide induces ultrastructural alterations leading to cell death. (a) Electron microscopy analysis of Ks1767 cells 
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chambers were incubated with the peptides for 6 h. Next, cells were incubated with 
annexin V-FITC, washed, and analysed under a fluorescence microscope. For flow 
cytometry analysis, cells were detached and washed twice with cold PBS and then 
resuspended in binding buffer (Clontech) at a concentration of 106 cells ml − 1. We 
transfer 100 µl of the solution to a 5-ml culture tube and added annexin-V-FITC 
and incubated for 15 min room temperature. The cells were washed twice with 
binding buffer and analysed by flow cytometry.

Statistical analysis. Student’s t-tests were used for statistical analysis as indicated. 
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