

OPEN access

Crystal structure of 3-amino-1-(4-chlorophenyl)-1*H*-benzo[*f*]chromene-2-carbonitrile

Mehmet Akkurt,^a Peter N. Horton,^b Shaaban K. Mohamed,^{c,d} Sabry H. H. Younes^e and Mustafa R. Albayati^f*

^aDepartment of Physics, Faculty of Sciences, Ercives University, 38039 Kayseri, Turkey, ^bSchool of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, England, ^cChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, ^dChemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt, ^eChemistry Department, Faculty of Science, Sohag University, 82524 Sohag, Egypt, and ^fKirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq. *Correspondence e-mail: shaabankamel@yahoo.com

Received 5 June 2015; accepted 8 June 2015

Edited by J. Simpson, University of Otago, New Zealand

In the title compound, $C_{20}H_{13}CIN_2O$, the chlorobenzene ring is almost perpendicular to the mean plane of the naphthalene ring system, making a dihedral angle of 81.26 (8)°. The 4Hpyran ring fused with the naphthalene ring system has a flattened boat conformation. In the crystal, N-H···N hydrogen bonds generate chains along the *b*-axis direction. Further N-H···N hydrogen bonds link these chains into sheets parallel to (010). The crystal packing also features C- $H \cdots \pi$ interactions. The crystal studied was an inversion twin with a 0.557 (16):0.443 (16) domain ratio.

Keywords: crystal structure; chromene compounds; N-H···N hydrogen bonds; C—H··· π interactions.

CCDC reference: 1405640

1. Related literature

For the synthesis and biological importance of chromene compounds, see, for example: Ellis (1977); Singh et al. (2010); Kidwai et al. (2010); Lácová et al. (2005); Dell & Smith (1993a,b); Al-Soud et al. (2006); Eiden & Denk (1991); Bruhlmann et al. (200); (Kesten et al. (1999); Bruhlmann et al. (2001). For a similar structure, see: Akkurt et al. (2013).

V = 780.2 (8) Å³

Cu Ka radiation

 $0.32 \times 0.12 \times 0.10 \text{ mm}$

11415 measured reflections

2558 independent reflections

2500 reflections with $I > 2\sigma(I)$

 $\mu = 2.23 \text{ mm}^-$

T = 100 K

 $R_{\rm int} = 0.032$

Z = 2

2. Experimental

2.1. Crystal data

C20H13ClN2O $M_r = 332.77$ Monoclinic, P21 a = 10.056 (7) Å b = 6.172 (3) Å c = 12.751 (6) Å $\beta = 99.641 \ (17)^{\circ}$

2.2. Data collection

```
Rigaku AFC11 diffractometer
Absorption correction: multi-scan
  (CrystalClearSM Expert; Rigaku,
  2012)
```

```
T_{\min} = 0.948, T_{\max} = 1.000
```

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.028$ $\Delta \rho_{\rm max} = 0.17 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$ $wR(F^2) = 0.075$ S = 1.06Absolute structure: Refined as an 2558 reflections inversion twin. 219 parameters Absolute structure parameter: 0.443 1 restraint (16)H-atom parameters constrained

Table 1 Hydrogen-bond geometry (Å, °).

Cg2 and Cg3 are the centroids of the C4-C8/C13 and C8-C13 rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1A\cdots N2^{i}$ $N1-H1B\cdots N2^{ii}$ $C6-H6\cdots Cg2^{iii}$ $C11-H11\cdots Cg3^{iv}$	0.88	2.22	3.005 (3)	148
	0.88	2.32	3.129 (4)	152
	0.95	2.60	3.401 (3)	142
	0.95	2.90	3.636 (3)	135

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, -z + 1; (ii) x, y + 1, z; (iii) -x + 1, $y + \frac{1}{2}$, -z + 2; (iv) $-x, y - \frac{1}{2}, -z + 2.$

Data collection: CrystalClearSM Expert (Rigaku, 2012); cell refinement: CrystalClearSM Expert; data reduction: CrystalClearSM Expert; program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: ORTEP-3 for Windows

data reports

(Farrugia, 2012); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

Acknowledgements

The authors would like to express their thanks to the National Crystallography Service (NCS), Southampton, UK, for providing the X-ray data.

Supporting information for this paper is available from the IUCr electronic archives (Reference: SJ5465).

References

Akkurt, M., Kennedy, A. R., Mohamed, S. K., Younes, S. H. H. & Miller, G. J. (2013). Acta Cryst. E69, 0401.

- Al-Soud, Y. A., Al-Masoudi, I. A., Saeed, S., Beifuss, U. & Al-Masoudi, N. A. (2006). Chem. Heterocycl. Compd, 467, 669–676.
- Brühlmann, C., Ooms, F., Carrupt, P.-A., Testa, B., Catto, M., Leonetti, F., Altomare, C. & Carotti, A. (2001). J. Med. Chem. 44, 3195–3198.
- Dell, C. P. & Smith, C. W. (1993b). Eur. Patent Appl. 537, 949, 1993.
- Dell, C. P. & Smith, C. W. (1993a). Chem. Abstr. (1993), 119, 139102d.
- Eiden, F. & Denk, F. (1991). Arch. Pharm. Pharm. Med. Chem. 324, 353-354.
- Ellis, G. P. (1977). In *The Chemistry of Heterocyclic Compounds*, Vol. 31, *Chromenes*. New York: John Wiley & Sons.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Kesten, S. R., Heffner, T. G., Johnson, S. G., Pugsley, T. A., Wright, J. L. & Wise, D. L. (1999). J. Med. Chem. 42, 3718–3725.
- Kidwai, M., Saxena, S., Rahman Khan, M. K. & Thukral, S. S. (2005). Bioorg. Med. Chem. Lett. 15, 4295–4298.
- Lácová, M., Gašparová, R., Koiš, P., Boháč, A. & El-Shaaer, H. M. (2010). *Tetrahedron*, 66, 1410–1419.
- Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.
- Rigaku (2012). CrystalClearSM Expert. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.
- Singh, O. M., Devi, N. S., Thokchom, D. S. & Sharma, G. J. (2010). Eur. J. Med. Chem. 45, 2250–2257.

supporting information

Acta Cryst. (2015). E71, o481-o482 [doi:10.1107/S2056989015011159]

Crystal structure of 3-amino-1-(4-chlorophenyl)-1*H*-benzo[*f*]chromene-2-carbonitrile

Mehmet Akkurt, Peter N. Horton, Shaaban K. Mohamed, Sabry H. H. Younes and Mustafa R. Albayati

S1. Comment

The chromene moiety is found in natural products and exhibits various biological activities (Ellis, 1977; Singh *et al.*, 2010; Lácová *et al.*, 2010; Kidwai *et al.*, 2005). Fused chromene derivatives are biologically interesting compounds showing antiproliferation activity (Dell & Smith, 1993*a*,*b*), are effective anti-HIV agents (Al-Soud *et al.*, 2006) and impact the central nervous system (*CNS*) (Eiden & Denk, 1991). Moreover, they have been employed in the treatment of Alzheimer's disease (Bruhlmann *et al.*, 2001) and the Schizophrenia disorder (Kesten *et al.*, 1999). In this context, we report in this study the synthesis and crystal structure of the title compound.

In the title compound (Fig. 1), the choloro-benzene ring (C15–C20) is approximately perpendicular to the naphthalene ring system [C4–C13, maximum deviation = 0.012 (2) Å at atom C4] as indicated by the dihedral angle of 81.26 (5)°. The 4*H*-pyran ring (O1/C1–C5) in the title compound is puckered with the puckering parameters of $Q_T = 0.143$ (2) Å, $\theta = 86.4$ (8)° and $\varphi = 167.3$ (9)°. All the bond lengths and angles in the title compound are within normal ranges and comparable with those reported for a similar structure (Akkurt *et al.*, 2013).

In the crystal structure, molecules are linked into sheets parallel to (010) by the N1—H1A···N2 and N1—H1B···N2 hydrogen bonds (Table 1, Figs 2 and 3), which generate chains along [010]. The crystal packing is further stabilized by C —H··· π interactions (Table 1).

S2. Experimental

A mixture of 4-chlorobenzylidenepropanedinitrile (188.5 mg; 1 mmol) and 2-naphthol (144 mg; 1 mmol) was refluxed with stirring for 2 h at 350 K in ethanol (10 ml) in the presence of a catalytic amount of triethylamine. After cooling to room temperature, the solid product was collected by filtration, washed with cold ethanol and dried under vacuum. High quality crystals suitable for X-ray diffraction were obtained in an excellent yield (96%) by recrystallization of the crude product from ethanol. M.p. K.

S3. Refinement

All H atoms were placed geometrically and treated as riding on their parent atoms with N—H = 0.88 Å, C—H = 0.95 Å (aromatic CH), C—H = 1.00 Å (methine CH), and with $U_{iso}(H) = 1.2U_{eq}(C,N)$. The crystal studied was an inversion twin with a 0.557 (16):0.443 (16) domain ratio.

Figure 1

View of the title compound with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Figure 2

Crystal packing of the title compound viewed along the *a* axis, with hydrogen bonds drawn as dashed lines.

Figure 3

A view of the packing showing molecules stacked along the *b* axis.

3-Amino-1-(4-chlorophenyl)-1*H*-benzo[*f*]chromene-2-carbonitrile

Crystal data C₂₀H₁₃ClN₂O $M_r = 332.77$ Monoclinic, P2₁ Hall symbol: P 2yb a = 10.056 (7) Å b = 6.172 (3) Å c = 12.751 (6) Å $\beta = 99.641$ (17)° V = 780.2 (8) Å³ Z = 2

F(000) = 344 $D_x = 1.416 \text{ Mg m}^{-3}$ Cu K\alpha radiation, $\lambda = 1.54178 \text{ Å}$ Cell parameters from 1130 reflections $\theta = 21.5-68.7^{\circ}$ $\mu = 2.23 \text{ mm}^{-1}$ T = 100 KBlock, light brown $0.32 \times 0.12 \times 0.10 \text{ mm}$ Data collection

Rigaku AFC11 diffractometer Radiation source: Rotating Anode Detector resolution: 22.2222 pixels mm ⁻¹ profile data from ω -scans Absorption correction: multi-scan (<i>CrystalClearSM Expert</i> ; Rigaku, 2012) $T_{\min} = 0.948, T_{\max} = 1.000$ Refinement	11415 measured reflections 2558 independent reflections 2500 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 66.6^{\circ}, \theta_{min} = 3.5^{\circ}$ $h = -11 \rightarrow 11$ $k = -7 \rightarrow 7$ $l = -15 \rightarrow 15$
Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.075$ S = 1.06 2558 reflections 219 parameters 1 restraint Hydrogen site location: mixed	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0548P)^2 + 0.1146P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.17 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.22 \text{ e } \text{Å}^{-3}$ Absolute structure: Refined as an inversion twin. Absolute structure parameter: 0.443 (16)

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cl1	-0.24323 (5)	0.55572 (12)	0.52362 (5)	0.0334 (2)	
01	0.45126 (15)	1.1239 (3)	0.79232 (11)	0.0189 (5)	
N1	0.55640 (19)	1.0368 (4)	0.65748 (14)	0.0214 (6)	
N2	0.4506 (2)	0.4950 (3)	0.57819 (16)	0.0257 (6)	
C1	0.4675 (2)	0.9698 (4)	0.71956 (16)	0.0166 (6)	
C2	0.4046 (2)	0.7754 (4)	0.71666 (16)	0.0156 (6)	
C3	0.3043 (2)	0.7152 (4)	0.78878 (16)	0.0149 (6)	
C4	0.3101 (2)	0.8809 (4)	0.87613 (16)	0.0144 (6)	
C5	0.38290 (19)	1.0685 (4)	0.87480 (15)	0.0156 (6)	
C6	0.3992 (2)	1.2209 (4)	0.95817 (16)	0.0174 (6)	
C7	0.3399 (2)	1.1839 (4)	1.04481 (17)	0.0180 (6)	
C8	0.2613 (2)	0.9965 (4)	1.05160 (17)	0.0175 (6)	
C9	0.1991 (2)	0.9560 (4)	1.14178 (17)	0.0212 (7)	
C10	0.1240 (2)	0.7733 (5)	1.14784 (18)	0.0240 (7)	
C11	0.1072 (2)	0.6218 (4)	1.06388 (17)	0.0214 (7)	
C12	0.1664 (2)	0.6555 (4)	0.97558 (17)	0.0175 (6)	
C13	0.24556 (19)	0.8423 (4)	0.96678 (16)	0.0149 (6)	

C14	0.4305 (2)	0.6224 (4)	0.63990 (16)	0.0179 (6)	
C15	0.1641 (2)	0.6784 (4)	0.72333 (16)	0.0150 (6)	
C16	0.1348 (2)	0.4796 (4)	0.67440 (16)	0.0174 (6)	
C17	0.0094 (2)	0.4409 (4)	0.61165 (17)	0.0202 (7)	
C18	-0.0858 (2)	0.6031 (4)	0.60027 (16)	0.0204 (7)	
C19	-0.0595 (2)	0.8037 (4)	0.64830 (17)	0.0201 (7)	
C20	0.0667 (2)	0.8403 (4)	0.70949 (16)	0.0176 (6)	
H1A	0.53650	0.97850	0.59340	0.0260*	
H1B	0.55280	1.17950	0.65130	0.0260*	
H3	0.33450	0.57400	0.82330	0.0180*	
H6	0.45110	1.34820	0.95390	0.0210*	
H7	0.35150	1.28550	1.10150	0.0220*	
H9	0.20980	1.05740	1.19860	0.0250*	
H10	0.08300	0.74830	1.20870	0.0290*	
H11	0.05460	0.49540	1.06840	0.0260*	
H12	0.15400	0.55200	0.91960	0.0210*	
H16	0.20090	0.36820	0.68370	0.0210*	
H17	-0.00980	0.30510	0.57740	0.0240*	
H19	-0.12630	0.91410	0.63960	0.0240*	
H20	0.08640	0.97750	0.74210	0.0210*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0198 (3)	0.0457 (4)	0.0312 (3)	-0.0081 (3)	-0.0061 (2)	-0.0053 (3)
01	0.0234 (8)	0.0193 (9)	0.0146 (7)	-0.0026 (6)	0.0054 (6)	-0.0006 (6)
N1	0.0250 (9)	0.0222 (11)	0.0189 (9)	-0.0033 (9)	0.0088 (7)	0.0002 (8)
N2	0.0313 (11)	0.0258 (12)	0.0233 (10)	-0.0026 (9)	0.0146 (8)	-0.0028 (9)
C1	0.0160 (10)	0.0226 (12)	0.0110 (9)	0.0030 (9)	0.0016 (8)	0.0005 (8)
C2	0.0135 (10)	0.0219 (12)	0.0113 (9)	0.0010 (9)	0.0019 (7)	-0.0013 (8)
C3	0.0146 (11)	0.0167 (12)	0.0132 (9)	0.0009 (8)	0.0020 (8)	0.0009 (8)
C4	0.0122 (9)	0.0183 (11)	0.0117 (10)	0.0041 (9)	-0.0009 (7)	0.0001 (8)
C5	0.0139 (9)	0.0206 (12)	0.0118 (9)	0.0024 (9)	0.0010(7)	0.0023 (9)
C6	0.0152 (11)	0.0182 (12)	0.0172 (10)	0.0019 (8)	-0.0021 (8)	-0.0006 (9)
C7	0.0190 (11)	0.0195 (12)	0.0137 (9)	0.0032 (9)	-0.0021 (8)	-0.0044 (9)
C8	0.0158 (10)	0.0228 (13)	0.0131 (9)	0.0045 (9)	0.0000 (8)	-0.0005 (8)
C9	0.0228 (12)	0.0261 (13)	0.0152 (10)	0.0025 (10)	0.0044 (9)	-0.0047 (10)
C10	0.0257 (13)	0.0302 (14)	0.0181 (11)	0.0012 (11)	0.0091 (9)	-0.0003 (10)
C11	0.0201 (11)	0.0249 (13)	0.0207 (11)	-0.0013 (9)	0.0078 (9)	0.0004 (9)
C12	0.0169 (10)	0.0192 (12)	0.0163 (10)	0.0012 (9)	0.0021 (8)	-0.0017 (9)
C13	0.0125 (10)	0.0176 (12)	0.0138 (10)	0.0035 (8)	0.0003 (8)	0.0006 (8)
C14	0.0176 (10)	0.0200 (13)	0.0170 (10)	-0.0005 (8)	0.0058 (8)	0.0019 (9)
C15	0.0151 (10)	0.0213 (12)	0.0089 (9)	-0.0017 (9)	0.0032 (7)	0.0011 (8)
C16	0.0180 (11)	0.0197 (12)	0.0155 (10)	-0.0005 (9)	0.0056 (8)	-0.0008 (9)
C17	0.0242 (12)	0.0228 (13)	0.0145 (10)	-0.0083 (10)	0.0060 (8)	-0.0034 (9)
C18	0.0165 (10)	0.0325 (15)	0.0119 (9)	-0.0063 (9)	0.0018 (8)	-0.0008 (9)
C19	0.0179 (11)	0.0248 (13)	0.0175 (11)	0.0003 (10)	0.0023 (8)	0.0016 (9)
C20	0.0189 (11)	0.0187 (12)	0.0149 (10)	-0.0007 (9)	0.0022 (8)	-0.0011 (9)

Geometric parameters (Å, °)

Cl1—C18	1.740 (2)	C10-C11	1.410 (4)
01—C1	1.358 (3)	C11—C12	1.375 (3)
O1—C5	1.392 (3)	C12—C13	1.416 (3)
N1—C1	1.354 (3)	C15—C20	1.390 (3)
N2—C14	1.154 (3)	C15—C16	1.386 (3)
C1—C2	1.354 (3)	C16—C17	1.396 (3)
N1—H1B	0.8800	C17—C18	1.376 (3)
N1—H1A	0.8800	C18—C19	1.387 (4)
C2—C14	1.415 (3)	C19—C20	1.392 (3)
C2—C3	1.520 (3)	С3—Н3	1.0000
C3—C4	1.506 (3)	С6—Н6	0.9500
C3—C15	1 530 (3)	С7—Н7	0.9500
C4-C13	1.330(3) 1 437(3)	С9—Н9	0.9500
C4-C5	1 372 (3)	C10—H10	0.9500
C_{5}	1.372(3) 1 408(3)	C11—H11	0.9500
C6-C7	1 360 (3)	C12H12	0.9500
C7-C8	1.300(3) 1 412(3)	C16—H16	0.9500
C_{8} C_{13}	1.412(3) 1 429(3)	C17H17	0.9500
$C_8 = C_{13}$	1.429(3) 1.420(3)	C_{10} H_{10}	0.9500
C_{0}	1.420(3) 1.367(4)	C20 H20	0.9500
C9—C10	1.307 (4)	0.20-1120	0.9300
C1—O1—C5	118.39 (19)	C3—C15—C20	121.9 (2)
O1—C1—N1	110.6 (2)	C16—C15—C20	119.17 (19)
O1—C1—C2	122.03 (19)	C15—C16—C17	120.9 (2)
N1—C1—C2	127.3 (2)	C16—C17—C18	118.8 (2)
H1A—N1—H1B	109.00	Cl1—C18—C19	119.09 (17)
C1—N1—H1A	110.00	Cl1—C18—C17	119.23 (18)
C1—N1—H1B	110.00	C17—C18—C19	121.7 (2)
C1—C2—C3	123.7 (2)	C18—C19—C20	118.7 (2)
C1—C2—C14	118.10 (19)	C15—C20—C19	120.8 (2)
C3—C2—C14	118.2 (2)	С2—С3—Н3	107.00
C2—C3—C4	109.51 (19)	С4—С3—Н3	107.00
C4—C3—C15	114.97 (18)	С15—С3—Н3	107.00
C2—C3—C15	110.51 (17)	С5—С6—Н6	120.00
C5—C4—C13	117.6 (2)	С7—С6—Н6	120.00
C3—C4—C5	121.25 (18)	С6—С7—Н7	120.00
C3—C4—C13	121.0 (2)	С8—С7—Н7	120.00
O1—C5—C4	123.29 (19)	С8—С9—Н9	120.00
Q1—C5—C6	113.4 (2)	С10—С9—Н9	120.00
C4—C5—C6	123.33 (19)	C9—C10—H10	120.00
C5—C6—C7	119.3 (2)	C11—C10—H10	120.00
C6-C7-C8	120.9 (2)	C10—C11—H11	120.00
C9—C8—C13	119.2 (2)	C12—C11—H11	120.00
C7—C8—C9	121.4 (2)	C11—C12—H12	120.00
C7—C8—C13	119.43 (19)	C13—C12—H12	120.00
C8-C9-C10	120 9 (2)	C15—C16—H16	120.00

C9—C10—C11	120.1 (2)	C17—C16—H16	120.00
C10-C11-C12	120.6 (2)	C16—C17—H17	121.00
C11—C12—C13	121.0 (2)	C18—C17—H17	121.00
C8—C13—C12	118.33 (19)	C18—C19—H19	121.00
C4—C13—C12	122.3 (2)	С20—С19—Н19	121.00
C4—C13—C8	119.4 (2)	C15—C20—H20	120.00
N2—C14—C2	178.9 (2)	C19—C20—H20	120.00
C3—C15—C16	119.0 (2)		
C5 01 C1 N1	1(9.57 (17)	C12 C4 C5 O1	170 21 (10)
C_{3}	-108.3/(1/)	C13 - C4 - C3 - O1	1/9.31 (19)
$C_{3} = 0_{1} = C_{1} = C_{2}$	8.9 (3)	01 - 05 - 06 - 07	-1/8.62(19)
C1 = 01 = C5 = C6	105.88 (18)	C4 - C5 - C6 - C7	-0.4(3)
C1 = 01 = C5 = C4	-12.3(3)	$C_{5} = C_{6} = C_{7} = C_{8}$	-0.7(3)
01 - C1 - C2 - C14	-1/8.26(19)	$C_{6} - C_{7} - C_{8} - C_{9}$	1/9.9 (2)
01-C1-C2-C3	3.8 (3)	C6-C7-C8-C13	0.9 (3)
NI-CI-C2-C14	-1.2(3)	C/C8C9C10	-179.5 (2)
NI-CI-C2-C3	-179.1 (2)	C13—C8—C9—C10	-0.5 (3)
C1—C2—C3—C15	115.5 (2)	C7—C8—C13—C4	0.0 (3)
C1—C2—C3—C4	-12.1 (3)	C7—C8—C13—C12	179.9 (2)
C14—C2—C3—C4	169.96 (19)	C9—C8—C13—C4	-179.0 (2)
C14—C2—C3—C15	-62.4 (3)	C9—C8—C13—C12	0.9 (3)
C2—C3—C4—C5	8.7 (3)	C8—C9—C10—C11	-0.1 (3)
C15—C3—C4—C13	67.1 (3)	C9—C10—C11—C12	0.3 (3)
C2—C3—C15—C16	82.1 (3)	C10-C11-C12-C13	0.1 (3)
C2—C3—C15—C20	-96.3 (2)	C11—C12—C13—C4	179.2 (2)
C4—C3—C15—C16	-153.4 (2)	C11—C12—C13—C8	-0.7 (3)
C4—C3—C15—C20	28.3 (3)	C3—C15—C16—C17	-178.31 (19)
C2—C3—C4—C13	-167.82 (19)	C20-C15-C16-C17	0.1 (3)
C15—C3—C4—C5	-116.4 (2)	C3—C15—C20—C19	179.08 (19)
C3—C4—C5—O1	2.7 (3)	C16—C15—C20—C19	0.7 (3)
C13—C4—C5—C6	1.3 (3)	C15—C16—C17—C18	-0.9 (3)
C3—C4—C13—C8	175.60 (19)	C16—C17—C18—Cl1	-179.20 (16)
C3—C4—C13—C12	-4.3 (3)	C16—C17—C18—C19	0.8 (3)
C5—C4—C13—C8	-1.1 (3)	Cl1—C18—C19—C20	-180.00 (17)
C5-C4-C13-C12	179.1 (2)	C17—C18—C19—C20	-0.1 (3)
C3—C4—C5—C6	-175.4 (2)	C18—C19—C20—C15	-0.7 (3)

Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C4–C8/C13 and C8–C13 rings, respectively.

D—H···A	<i>D</i> —Н	H··· <i>A</i>	$D \cdots A$	<i>D</i> —H··· <i>A</i>
N1—H1A····N2 ⁱ	0.88	2.22	3.005 (3)	148
N1—H1 <i>B</i> ···N2 ⁱⁱ	0.88	2.32	3.129 (4)	152
С6—Н6…Сg2 ^{ііі}	0.95	2.60	3.401 (3)	142
C11—H11···· $Cg3^{iv}$	0.95	2.90	3.636 (3)	135

Symmetry codes: (i) -x+1, y+1/2, -z+1; (ii) x, y+1, z; (iii) -x+1, y+1/2, -z+2; (iv) -x, y-1/2, -z+2.