
Structural variants identified by Oxford Nanopore
PromethION sequencing of the human genome

Wouter De Coster,1,2 Peter De Rijk,2,3 Arne De Roeck,1,2 Tim De Pooter,2,3

Svenn D’Hert,2,3 Mojca Strazisar,2,3 Kristel Sleegers,1,2

and Christine Van Broeckhoven1,2
1Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, 2610 Antwerp, Belgium; 2Biomedical Sciences,
University of Antwerp, 2610 Antwerp, Belgium; 3Neuromics Support Facility, Center for Molecular Neurology, VIB,
2610 Antwerp, Belgium

We sequenced the genome of the Yoruban reference individual NA19240 on the long-read sequencing platform Oxford

Nanopore PromethION for evaluation andbenchmarking of recently published aligners and germline structural variant call-

ing tools, as well as a comparison with the performance of structural variant calling from short-read sequencing data. The

structural variant caller Sniffles afterNGMLRorminimap2 alignment provides themost accurate results, but additional con-

fidence or sensitivity can be obtained by a combination of multiple variant callers. Sensitive and fast results can be obtained

by minimap2 for alignment and a combination of Sniffles and SVIM for variant identification. We describe a scalable work-

flow for identification, annotation, and characterization of tens of thousands of structural variants from long-read genome

sequencing of an individual or population. By discussing the results of this well-characterized reference individual, weprovide

an approximation of what can be expected in future long-read sequencing studies aiming for structural variant identification.

[Supplemental material is available for this article.]

Structural variants (SVs) are defined as regions of DNA >50 bp
showing a change in copy number or location in the genome, in-
cluding copy number variants (CNVs; deletions and duplications),
insertions, inversions, translocations, mobile element insertions,
expansion of repetitive sequences, and complex combinations of
the aforementioned (Escaramís et al. 2015; Sudmant et al. 2015).
Even though single-nucleotide variants (SNVs) are far more nu-
merous, SVs account for a higher number of variable nucleotides
between human genomes (Conrad et al. 2010). However, the ma-
jority of SVs are poorly assayed using currently dominant short-
read sequencing technologies but can be detected using long-
read sequencing technologies from Pacific Biosciences (PacBio)
and Oxford Nanopore Technologies (ONT) (Chaisson et al. 2015,
2019; De Coster and Van Broeckhoven 2019). Long-read sequenc-
ing technologies have a lower single-nucleotide accuracy of∼85%–

90% but have the advantage of a better mappability in repetitive
regions, further extending the part of the genome in which varia-
tion can be called reliably (Li and Freudenberg 2014).

Sequencing DNA fragments using a protein nanopore is a rel-
atively old concept, which got commercialized by ONT with the
release of the MinION sequencer 5 years ago (Jain et al. 2015;
Loman and Watson 2015; Deamer et al. 2016). A MinION flow
cell has 512 sensors collecting measurements from 2048 pores.
Its minimal initial investment, long reads, and rapid results have
enabled many applications for smaller genomes (Loman et al.
2015; Quick et al. 2015; Risse et al. 2015; Jansen et al. 2017;
Bainomugisa et al. 2018; Miller et al. 2018). Recent runs routinely
reach 8 Gb and currently up to 30Gb, with a big in-field variability
and incremental improvements over the years (Schalamun et al.

2019). Applications for human genomics could only be achieved
by combining multiple flow cells, which is cumbersome and cost-
ly. Early adopters investigated SVs in two genomes from patients
with a congenital disorder owing to chromothripsis by combining
data from 135 flow cells (Cretu Stancu et al. 2017), and a consor-
tium of MinION users sequenced and released data from the hu-
man reference sample NA12878 generated on 39 flow cells
reaching 91.2 Gb or close to 30× coverage (Jain et al. 2018).
Routine human genome sequencing has become possible on
the recently commercially available PromethION sequencer. A
PromethION flow cell has 3000 sensors and 12,000 pores, which
generate on average 70 Gb of data in our hands, with a consider-
able variability (De Roeck et al. 2018), allowing for the sequencing
of a 20× covered human genomeper flow cell. On PromethIONde-
vices, either 24 or 48 flow cells can be run simultaneously on the
machine. Here, we present the characteristics of PromethION
runs and a bioinformatic workflow for identification and charac-
terization of SVs. Finally, we provide a detailed description of the
Yoruban NA19240 reference individual compared with publicly
available variant data and discuss implications for future SV detec-
tion projects from long-read sequencing.

Results

Human genome sequencing on PromethION

We generated a 79× median genome coverage of NA19240 on
PromethION by combining data from five flow cells, which we
comparedwithMinIONdata from the same sample (for data acces-
sion IDs, see Supplemental Table S8). The run metrics are summa-
rized in Table 1 and Supplemental Figure S1. The longest aligned
read we obtained was 331 kb on PromethION and 215 kb on
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MinION. Overall, our results are suggestive of an inverse relation-
ship between yield and read lengths, as higher yields were ob-
tained for libraries for which the input material was sheared to
20-kb fragments.

Comparing MinION and PromethION

The obtained read lengths were similar between matched libraries
sequenced on MinION and PromethION (respectively, P1-N and
M1-N, P3-N andM2-N) (Fig. 1A).We observed a higher percentage
of identity after alignment to the human reference genome
GRCh38 for the PromethION data (median identity 88.8%) than
for the MinION data (median identity 84.4%) (Fig. 1B).

Comparing aligners

The characteristics of the alignments using NGMLR (Sedlazeck
et al. 2018), LAST (Kiełbasa et al. 2011), and two parameter settings
of minimap2 (Li 2018) are shown in Table 2, Figure 2, and Supple-
mental Figure S2. LAST generates split alignments, leading tomore,
shorter aligned reads. Percentage of identity comparisons are
roughly equivalent, with medians between 87.6 (LAST) and 89.3
(NGMLR). The longest alignments are obtained by minimap2 us-
ing the pbsv-specific parameters (indicated by minimap2-pbsv),
which have lower gap penalties and, as such, allow longer align-
ments. Minimap2 is by far the fastest and LAST the slowest of the
three aligners, with NGMLR performing intermediate. Median
alignment coverage is approximately equal,with thehighest cover-

age by LAST and minimap2 and the lowest by NGMLR (Supple-
mental Fig. S2).

SV calling

SVswere calledusingSniffles (Sedlazecket al. 2018),NanoSV(Cretu
Stancu et al. 2017), pbsv (https://github.com/PacificBiosciences/
pbsv [accessedNovember28,2018]), andSVIM(HellerandVingron
2019) and inversions additionally with npInv (Shao et al. 2018).
Not all aligners or parameter settings are compatible with the
used SV callers. The number of variants identified and the runtime
per data set are summarized inTable 3, and a detailed overview split
byvarianttypecanbefoundinSupplementalTableS2.Thetruthset
of SVs fromNA19240, based on SVs obtained by integratingmulti-
ple sequencing technologies (see Methods; Chaisson et al. 2019),
contains 29,436 variants (size >50 bp), of which 10,607 deletions,
16,337 insertions, 122 inversions, and2503variantsof other types,
such as repeat expansions. NanoSV consistently identified more
variants, was substantially slower, and required high memory
(>100 GB RAM) per sample. To circumvent this issue in our work-
flow, variant calling is performed per chromosome by NanoSV
in parallel. The other SV callers take a couple of minutes in our
benchmarkonChr21.VariantsareavailableonEuropeanVariation
Archive (EVA) (Supplemental Table S8).

SV accuracy

Variants in the test sets were considered concordant (true positive)
with the truth set if the variants are the same type and the pairwise
distance between breakpointswas <500 bp. Test set variants absent
from the truth setwere considered false positives, and vice versa for
false negatives. We evaluated the precision, recall, and F-measure
of the identified SVs for combinations of the described aligners
and SV callers using surpyvor, a wrapper around SURVIVOR
(Jeffares et al. 2017) (see Methods) (Table 4; Fig. 3; Supplemental
Table S3). As NanoSV does not identify the SV type for all variants,
we also evaluated the performance when ignoring the SV types
(Supplemental Table S4). Because the version of SVIM at the
time of writing does not provide genotypes, all its identified vari-
ants were assumed to be heterozygous.

Overall, the highest F-measure, the harmonic mean of preci-
sion and recall and as such a measure showing accuracy, is

Table 1. Library characteristics

Library
identifier

Yield
(Gb)

Number of reads
(millions)

Median read
length (kb)

N50
(kb)

P1-N 63.0 4.0 14.1 21.4
P2-S 71.5 5.8 12.2 14.4
P3-N 31.5 1.7 14.8 29.5
P4-N 30.7 1.7 14.7 29.2
P5-S 59.1 6.2 9.8 11.8
M1-N 4.1 0.4 9.6 18.2
M2-N 7.6 0.3 20.3 32.1

(N) Nonsheared/native; (S) sheared before library preparation.

Figure 1. Comparison of PromethION andMinION libraries. (A) Read lengths capped at 100 kb. (B) Percentage of identity after minimap2 alignment to
the reference genome. (P) PromethION; (M) MinION; (N) nonsheared/native; (S) sheared before library preparation. Plots were made using NanoPack
(De Coster et al. 2018).
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obtained using Sniffles after NGMLR or minimap2 alignment,
with NGMLR resulting in a higher precision but minimap2 result-
ing in a higher recall. The performance of SVIM turns out to be
largely indifferent to the aligner, and this caller reaches the highest
recall at a cost of lower precision than Sniffles. pbsv can be used af-
ter NGMLR alignment, but the results are suboptimal and contain
many false-positive variants based on comparison with the truth
set. For comparison with short-read sequencing data, we per-
formed a similar analysis using SVs called by Manta (Chen et al.
2016) and LUMPY (Layer et al. 2014) after BWA-MEM alignment
(Li 2013) of Illumina reads from the same individual. Manta iden-
tified 15,122 variants with a precision of 0.55, recall of 0.28, and
F-measure of 0.37, whereas lumpy only reached 0.18 precision, re-
call of 0.4, and F-measure of 0.07with 6100 identified SVs.We also
evaluated the accuracy of the zygosity determination of Sniffles,
NanoSV, and pbsv with, respectively, the optimal aligner (Table
5). This shows that Sniffles often misclassified heterozygous vari-
ants as homozygous and that heterozygous as well as homozygous
variants from the truth set are missed by each SV caller. Both
NanoSV and pbsv called thousands of false-positive heterozygous
variants.

Inversions, including those identified by the specifically tai-
lored variant caller npInv, were evaluated separately. As their
breakpoints are typically in highly repetitive sequences, leading
to inaccurate alignments, we allowed a larger distance between
pairs of breakpoints up to 5 kb to be considered concordant.
Overall, the identification of inversions is less accurate than other
types of SVs (Supplemental Table S5; Supplemental Fig. S3). The

highest precision, but low recall, is obtained using pbsv. npInv, de-
veloped specifically for inversions, does not perform exceptionally
well compared with the general SV callers at this coverage. For all
call sets, variants with loss of sequence (deletions) weremore accu-
rately identified than a gain of sequence (insertions and duplica-
tions) (Supplemental Table S6).

We also evaluated the accuracy of SVs relative to their length
(Fig. 4). The peaks at 300 and 6000 bp correspond to SVs involving
Alu and L1 elements, respectively. The largest group of variants are
between 50 and 100 bp, which also contains a substantial number
of false-negative (missed) events. Most of the variants correctly
identified by Manta were <300 bp, and compared with the long-
read SV callers, more variants were missed in each length category
(Supplemental Fig. S4).

Combining call sets

For each aligner, high-confidence and high-sensitivity variant sets
were generated using the three or four compatible SV callers based
on, respectively, the intersection and union of the variants from
the individual call sets. No combined call sets were made for the
LAST alignment because only one SV caller is compatible. As pair-
wise combinations are less computationally demanding, we also
evaluated those, omitting NanoSV due to its long runtimes. The
obtained precision and recall of the combined sets compared
with the truth set are shown in Figure 5. Combining all callers after
alignment using NGMLR yields both the highest precision in the
high-confidence set (87.7% of the variants are correctly identified)
and the highest recall in the high-sensitivity set (identifying 77%
of the variants in the truth set). The pairwise high-sensitivity com-
bination of SVIM and Sniffles after minimap2 alignment is the
fastest combination, which reaches a recall of 76% at a precision
of 51%, which, as such, is nearly as sensitive as the combination
of all callers after NGMLR alignment, at a better precision.

We furthermore analyzed overlaps between call sets with the
truth set using an upset plot for theminimap2 (Fig. 6) andNGMLR
alignment (Supplemental Fig. S5). With the exception of pbsv var-
iant calling after NGMLR alignment, the largest overlap is shared
and true positive. For both, there is a considerable number of
SV calls overlapping between the SV callers but absent from the
truth set.

Table 2. Metrics of aligners

Aligner
Gigabases
aligned

Median
length

Median
coverage

Median
identity

Runtimea

(sec/
100,000
reads)

NGMLR 233.5 13,055 77 89.3 1289
LAST 239.6 8787 79 87.6 3392
minimap2 249.6 12,277 79 88.8 178
minimap2-

pbsv
243.9 13,106 78 88.6 219

aAverage of three measurements aligned using 12 threads.

Figure 2. Comparison of aligners. (A) Aligned read lengths, plot limited to 100 kb. (B) Read percentage identity compared with the reference genome.
Plots were made using NanoPack (De Coster et al. 2018).
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Parameter optimization

A crucial parameter of Sniffles determines the minimum number
of reads supporting an SV before it gets reported, with 10 as the
default. Testing multiple values for this showed a clear trade-off
between precision and recall, as shown in Figure 7A and Supple-
mental Table S7. When less support for a candidate SV is consid-
ered sufficient, the recall was the highest, but precision was low
and vice versa. An appropriate middle ground appeared to be
around one-fourth or one-third of the median genome coverage
to maximize precision and recall, in our case minimally supported
by 20–26 reads.

By randomly down-sampling the alignment from minimap2
to various fractions of the original data set, we evaluated the influ-
ence of the median genome coverage on the precision and recall
(Fig. 7B). Sniffles was used with default parameters (i.e., minimal
support = 10). We conclude that increasing the coverage above
40× did not substantially increase the recall. The reduction in pre-
cision above that value originated in a suboptimal selection of the
minimal support parameter as described earlier.

Description of detected variants

Sniffles after NGMLR alignment detected 22,457 SVs. Of those,
11,522 overlapped with genes, of which 1464 were in coding se-
quences; 3069 variants overlap with segmental duplications.
Because these are known to lead to inaccurate alignments and
therefore false-positive SV inference, removing variants in seg-
mental duplications increases the precision of Sniffles after
NGMLR alignment to 0.81. The profiles of lengths of SVs in the
truth set and after SV calling with Sniffles (Fig. 8; Supplemental
Fig. S6) were comparable, showing a peak ∼300 bp corresponding
to SVs involving Alu elements and ∼6 kb corresponding to L1 ele-
ments, an observation also reported in other studies (Cretu Stancu
et al. 2017; Huddleston et al. 2017). Other variant callers obtain
similar length profiles.

Discussion

Human genome sequencing on PromethION

Long-read sequencing has important implications for human ge-
nomics, especially in the area of structural variation, which re-

mains hard to detect with short-read sequencing approaches
(Chaisson et al. 2015, 2019; Loose 2017; Ardui et al. 2018;
Pollard et al. 2018; De Coster and Van Broeckhoven 2019). For
benchmarking and characterization of the Oxford Nanopore
PromethION, commercially released a year ago, we sequenced
the genome of NA19240, a well-characterized Yoruban reference
individual. We observed substantial variability in the yield of the
PromethION, which can partially be attributed to using sheared
or unsheared DNA, variability on flow cell quality, and differences
in loading concentration of the final library. Further optimizations
of the library preparation will point to the optimal balance be-
tween yield and read length. Our initial focus was on improving
the sequencing yield. Although the longest reads in this project
were up to ∼300 kb, much longer reads have been reported by oth-
er users on MinION (Payne et al. 2018). The accuracy of
PromethION data turned out to be modestly higher than the
matchedMinION results, which can probably be explained by dif-
ferences in library preparation and variant calling algorithm. Our
work focuses on germline structural variation results, and as
such, it is worth noting that somatic ormosaic variantswill require
a different approach.

SV calling

Modern read aligners such as minimap2 and NGMLR explicitly
take larger SVs into account, using, respectively, a concaveandcon-
vex gap cost (Li 2018; Sedlazeck et al. 2018). The aligner LAST was
not developed recently but was suggested to be highly accurate for,
e.g. NanoSV (Kiełbasa et al. 2011; Cretu Stancu et al. 2017). Its
speed, improved by window-masking repeats in the reference ge-
nome, is not on par with the other aligners in our comparison.
The general SV callers in our comparison—Sniffles, NanoSV, pbsv
and SVIM, and npInv, a tool tailored to inversions—are all specifi-
cally developed for long-read sequencing (Cretu Stancu et al. 2017;
https://github.com/PacificBiosciences/pbsv [accessed November
28, 2018]; Sedlazeck et al. 2018; Shao et al. 2018; Heller and Ving-
ron 2019). By using a subset of our data (Chromosome21),we eval-
uated runtimes of aligners and variant callers, showing that the
alignerminimap2 and the SV callers Sniffles and SVIM are the fast-
est tools. These runtimes are dependent on computer architecture
and input data and are therefore only indicative.

The accuracy of SV calling

Wecomparedmultiple long read aligners and SV callers by evaluat-
ing their performance against an independent truth set based on
the integration of multiple technologies. With the combination
of short read, long reads, linked reads, and Strand-seq in the truth
set, both shorter and longer SVs and more challenging inversions
have been characterized (Chaisson et al. 2019). We, however,

Table 3. Metrics of SV callers

Aligner
SV

caller
Number of variants

(>50 bp)
Runtimea

(min)

minimap2 Sniffles 26,100 3.73
NanoSV 61,302 131.94
SVIM 363,245 1.33
npInv 69 3.72

minimap2-
pbsv

pbsv 25,022 7.02
SVIM 304,738 1.86
NanoSV 64,242 145.94
npInv 69 3.52

NGMLR Sniffles 22,457 3.73
NanoSV 47,558 81.34
pbsv 21,294 7.90
SVIM 130,682 1.40
npInv 141 23.83

LAST NanoSV 39,917 107

aAverage of three measurements, tested using 12 threads on Chr 21
using an average of three measurements.

Table 4. F-measure of aligners and variant callers

Structural variant caller

Aligner NanoSV Sniffles pbsv SVIM

LAST 0.59 NA NA NA
NGMLR 0.66 0.70 0.53 0.66
minimap2 0.66 0.69 NA 0.67
minimap2-pbsv 0.66 NA 0.64 0.66

(NA) Incompatible aligner or parameter settings for this structural
variant caller.

Structural variants identified by PromethION

Genome Research 1181
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.244939.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.244939.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.244939.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.244939.118/-/DC1
https://github.com/PacificBiosciences/pbsv
https://github.com/PacificBiosciences/pbsv
https://github.com/PacificBiosciences/pbsv
https://github.com/PacificBiosciences/pbsv


cannot exclude that any variants were missed. For this evaluation,
we assumed this set to be sufficiently complete, which is supported
by the observation that the majority of the identified variants are
shared by the truth set and all variant callers. However, a substan-
tial proportion of variants is shared by all variant callers but absent
from the truth set, suggesting at least some of these could be true
positive but missing in the truth set. We calculated the precision
(positive predictive value), recall (sensitivity), and F-measure (har-
monicmeanof precision and recall). These accuracymetrics can be
incomparable with those published by others because our assess-
ment is genome-wide and not limited to a subset of the genome
with relatively lower repetitive sequencecontent.Otherdifferences
may include the maximum allowed distance between pairs of
breakpoints to consider a variant concordant, which in our evalu-
ation was put on 500 bp. Other evaluations require a certain
reciprocal overlap between variants, which we did not use to not
penalize smaller variants.

We observe the highest precision with Sniffles after NGMLR
alignment, at a cost of lower sensitivity. In terms of F-measure,
also Sniffles after minimap2 alignment performs well, which
shows a higher recall with a modest reduction in precision, with
a faster alignment. Although the other variant callers are reason-
ably fast, NanoSV requires further software optimizations to han-
dle these large volumes of data and, as such, limit runtime and
memory usage. In our workflow, we execute NanoSV per chromo-
some in parallel to keep the runtime reasonable, with the limita-
tion that interchromosomal variants cannot be detected.
However, for our application of germline SV detection in a healthy
individual, we expected these to be less relevant. LAST is the rec-
ommended aligner by the investigators of NanoSV; however, in

our comparison, faster aligners lead tomore accurate identification
of SVs. pbsv expects specific parameter settings in the minimap2
alignment step, which turn out to be suboptimal for the other var-
iant callers. pbsv calling is compatible withNGMLR alignment but
leads to many false-positive variants. SVIM produces highly simi-
lar results for both minimap2 and NGMLR. Its results are mainly
characterized by high sensitivity and lower recall, which can pre-
sumably be circumvented by further filtering. It is worth noting
that Sniffles and pbsv can be used in a two-pass mode, in which
variants identified in the first stage can be used to force genotyping
in a second stage. As such, this shifts the burden of “discovery” of
SVs to “genotyping” known SVs, potentially increasing the sensi-
tivity in larger cohorts and at lower coverage. In our comparison
with SVs called from short-read sequencing data using Manta
and Lumpy, a clear advantage for long reads was shown, with sub-
stantially higher recall and precision values.

Because of its speed, we could evaluate relevant parameters
for Sniffles and concluded that adding more than 40× coverage
did contribute little to the identification of novel variants.
Presumably longer reads might reveal more hidden variation in
highly repetitive sequences. We suggest using a minimal support-
ing number of reads of one-fourth to one-third of the median ge-
nome coverage to optimize precision and recall. Ultimately,
setting stringency filters is a trade-off between sensitivity and spe-
cificity, for which the applications at hand determine if it is appro-
priate to tolerate false positives or rather to accept that some
genuine calls can be missed.

We explored improving the confidence and sensitivity of SV
identification by creating, respectively, intersections and unions
of call sets. This shows that precision can be increased to 0.87 or
sensitivity to 0.77, a choice that has to be made depending on
the application. Combining the fastest tools in our comparison,
Sniffles and SVIM variant calling after minimap2 alignment leads
to a sensitive variant set with a recall of 0.76 and would be the ad-
visable combination for a research setting in which false-positive
calls can be tolerated.

Shortcomings of the current tools

Inversions, which are copy neutral with breakpoints commonly in
long and highly repetitive sequences, are generally challenging or
impossible to identify using traditional methods such as compar-
ative genome hybridization, PCR-based approaches, or short-read
sequencing. For comprehensive detection, Strand-seq is currently
the only applicable protocol, although it also does not offer nucle-
otide-level breakpoint accuracy (Chaisson et al. 2019). Long-read
sequencing could offer an advantage, as these might provide
more accurate alignments in repetitive sequences. However, for
the tested aligners and variant callers, we observe a generally low
accuracy with an F-measure no higher than 0.31. It is possible
that additional inversions events were not recognized as such

Figure 3. Precision-recall comparison. Aligners are tagged with sym-
bols, variant callers with colors.

Table 5. Accuracy of zygosity of SV callers with their optimal aligner

Sniffles (NGMLR) NanoSV (minimap2) pbsv (minimap2-pbsv)

No call het hom No call het hom No call het hom

Truth set No call 0 1587 3859 0 9453 1865 0 10,630 959
het 4229 4865 5494 3366 10,147 1088 4152 9732 707
hom 4486 516 5845 4559 224 4065 4828 1672 4347

(het) Heterozygous variant; (hom) homozygous variant.
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and were only included as SV breakends. We hypothesize that
even longer read lengths might be beneficial, together with algo-
rithmic improvements.

Our evaluation of the accuracy of the zygosity of the identi-
fied SVs showed that these are highly unreliable, owing to the
complexity of a diploid genome. We also observed that the tested
SV callers performed less accurately in the groupwith themost var-
iants, those with a length between 50 and 100 bp. Thousands of
variants in this group were either missed (not identified) or false
positively called as SV. Partially, this can be attributed to ourmeth-
od of evaluation, as variants <50 bp were removed from the test
sets prior to the evaluation, as the truth set did not contain any var-
iants <50 bp.Wealso cannot fully exclude inaccuracies in the truth
set or in the length determination of variants, requiring further re-
search. Nevertheless, algorithmic improvements in this size range,
or more specialized SV callers, are definitely welcome.

Description of identified SVs

After the identification of SVs, we also annotated these with infor-
mation about overlapping genes, segmental duplications, and
known variants in Database of Genomic Variants (DGV)
(MacDonald et al. 2014). Obviously, overlapping genes are rele-
vant to judge the potential pathogenicity of the identified vari-
ants, whereas the impact of SVs in noncoding regions is
currently less well understood. The annotation of SVs localized
in a segmental duplication plays a double role, as these regions
are known to be a hotspot for SV formation but simultaneously
are troublesome for alignments and, as such, can give rise to
false-positive variant calls (Stankiewicz et al. 2003; Sharp et al.
2005; Bailey and Eichler 2006).

Here we provided an estimate of what can be expected in fu-
ture long-read whole-genome sequencing data. Although SVs can
contribute to disease, it is clear that, just as with the better under-

stood SNVs, the majority will be mostly
harmless. To distinguish pathogenic SVs
from polymorphisms, we will need com-
prehensive catalogs across multiple
populations.

Recommendations for SV detection

from long-read sequencing

We have developed a scalable workflow
for SV detection from long-read seq-
uencing (https://github.com/wdecoster/
nano-snakemake, Supplemental Code 1)
using the popular workflow language
Snakemake (Koster and Rahmann 2012).
The aligners and variant callers described
in this study are included, together with
a “fast mode” that uses minimap2 for
alignment and SVIM and Sniffles for var-
iant calling, resulting inahighlysensitive
detection of SVs at a reasonable precision
and with the lowest computational bur-
den. In our workflow, Sniffles will reuse
the SVs identified in all samples for geno-
typing these in the rest of the cohort, as
such increasing sensitivity. We suggest
the “fast mode” for a research setting, in
which false-positive variants can be toler-

ated and in which results frommultiple individuals are combined.
Furthermore, we have developed surpyvor (https://github.com/
wdecoster/surpyvor, Supplemental Code 2), a Python wrapper
around the SURVIVOR tool (Jeffares et al. 2017) with additional
convenience functions for creating high confidence (intersection)
and high sensitivity (union) of variant sets, among others.

Methods

Sample preparation

The lymphoblastic cell line (LCL) GM19240 was ordered from the
Coriell Cell Repository and cultured as specified by the Coriell

Figure 4. SV validation status per length SVs identified using Sniffles after NGMLR alignment, com-
pared with truth set. The top panel has SVs up to 2 kb binned per 10 bp; the bottom panel, up to 20
kb, binned per 100 bp with a log-transformed number of variants.

Figure 5. Precision-recall comparison of combined variant sets.
Combination of all compatible variant callers per aligner are tagged with
plus signs, pairwise combinations of variant callers with dots.
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Institute for Medical Research (Camden, NJ, USA). DNA from
GM19240 (NA19240) was extracted using both a manual
QIAamp DNA Blood mini kit (Qiagen) and a robotic extraction
platform (Magtration system 8LX, PSS), as specified by the suppli-
ers. As specified in the QIAamp protocol, RNase A treatment was
performed during the extraction, whereas robotically extracted
DNA was treated additionally with RNase A (RNase A, 10 mg/mL,
using 1 µL RNase A per 100 µL template, Thermo Fisher
Scientific) to remove RNA.

Extractions of 5 million LCL cells, resuspended in 200 µL
of PBS, as well as extraction with 8LX (PSS, JP), yielded between
15 and 17 µg of gDNA per extraction, with an average A260/280
of 1.86, A260/230 of 2.50, and average gDNA size between 38
and 41 kb. Information on the five aliquots used for library prepa-
ration is supplied in Supplemental Table S1. The fifth aliquot (P5)
was a pool from DNA of automated PSS and manual QIAamp
extraction.

As we wanted to evaluate the efficiency of different library
preparations, two out of five aliquots were sheared using
Megaruptor (Diagenode) to an average size of 20 kb, and three al-
iquots were nonfragmented. All aliquots were purified and size se-
lected using a high pass protocol and the S1 externalmarker on the
BluePippin (on 0.75% agarose gel, loading 5 µg sample per lane)

(Sage Science). The size selection cutoff differed between fragment-
ed and unfragmented samples (Supplemental Table S1). The aver-
age recovery of the size-selected DNA aliquot was between 40%
and 70% of the initial input. After size selection, all aliquots
were purified using AMPure XP beads (Beckman Coulter) using ra-
tio 1:1 (v:v) with DNA mass recoveries between 88% and 99%. All
fragment analyses were performed on a fragment analyzer with a
DNF-464 high-sensitivity large-fragment 50-kb kit, as specified
by the manufacturer (Advanced Analytical, Agilent).

Library preparation

The recommended protocol for library preparation on
PromethION was followed with minor adaptations. In short, po-
tential nicks in DNA and DNA ends were repaired in a combined
step using a NEBNext FFPE DNA repair mix and NEBNext Ultra II
End Repair/dA-Tailing Module (New England Biolabs) followed
by AMPure bead purification and ligation of sequencing adaptors
onto prepared ends. Four libraries were constructed using the
1D DNA ligation sequencing kit SQK-LSK109 following the
PromethION protocol (GDLE_9056_v109_rev E_02Feb2018),
and one (P4) was made using the ligation sequencing kit
SQK-LSK108 following the SQK-LSK108-PromethION protocol
(GDLE_9002_V108_ revO_28Mar2018) because LSK109 consum-
ables were depleted at that time. The main differences between
the SQK-LSK109 and SQK-LSK108 protocols are increased ligation
efficiency, a different clean-up step, the combined FFPE repair, and
end-repair. These modifications, making sequencing of long reads
more efficient, were used for both protocols.

Additionally, to consumables supplied with the sequencing
kit, several steps were performed using NEB enzymes (NEBNext
FFPE DNA repair mix, NEBNext Ultra II End Repair/dA-Tailing
Module and NEBNext quick ligation module; all New England
Biolabs) as recommended in 1D genomic ligation protocols
(SQK-LSK109 and SQK-LSK108). Overall, ONT protocols were fol-
lowed, with slight increases in incubation times during DNA tem-
plate end-preparation, purification, and final elution. The final
mass loaded on the flow cells was determined based on the molar-
ity, depended on average fragment size, and was chosen based on
our prior experience and communication with specialists at
Oxford Nanopore Technologies.

Two aliquots of the unfragmented NA19240 were used for
library preparation and sequencing on MinION using R9.4.1

Figure 7. Precision and recall with parameter variation. (A) Specifying minimally supporting reads. (B) Influence of the median genome coverage after
down-sampling to various fractions. Both sets use Sniffles SV calling and minimap2 alignment.

Figure 6. Upset plot of variant calls obtained after alignment usingmini-
map2. The height of the vertical bars indicates the number of variants in
this set overlap, as indicated by the colored dots and connecting lines in
the bottom panel. The height of the horizontal bars indicates the total
number of variants per set.
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flow cells as quality control for library preparation (Oxford
Nanopore Technologies) (Supplemental Table S1). TheMinION li-
braries M1-N and M2-N were prepared identically to PromethION
libraries “P1-N” and “P3-N,” respectively.

Data processing

Base calling of the raw nanopore reads was performed using the
Oxford Nanopore base caller Guppywith the “flipflop” algorithm,
using v2.3.1 for MinION and v2.2.3 for PromethION on the
PromethION compute device. Run metrics were calculated, sum-
marized and compared with each other using NanoPack (De
Coster et al. 2018). Reads were aligned to GRCh38 from NCBI,
without alternative contigs and including a decoy chromosome
for the Epstein–Barr virus (https://lh3.github.io/2017/11/13/
which-human-reference-genome-to-use [accessed July 4, 2018];
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCA/000/001/405/GCA_
000001405.15_GRCh38/seqs_for_alignment_pipelines.ucsc_ids/
GCA_000001405.15_GRCh38_no_alt_analysis_set.fna.gz). Reads
were aligned with NGMLR (v0.2.6) (Sedlazeck et al. 2018), LAST
(v876) with repeat window masking as recommended by the de-
velopers of LAST (Morgulis et al. 2006; Kiełbasa et al. 2011), and
two parameter settings of minimap2 (v2.11-r797) (Li 2018), of
which one is specifically tailored to pbsv variant calling (for
commands and parameters, see Supplemental Methods). The sub-
stitution matrix for alignment with LAST was determined using
LAST-TRAIN (Hamada et al. 2017). Coverage was assessed using
mosdepth (Pedersen and Quinlan 2018). Processes were parallel-
ized using GNU Parallel (Tange 2011).

Comparison of SV calls

SV calling was performed using Sniffles (v1.0.8) (Sedlazeck
et al. 2018), NanoSV (v1.2.0) (Cretu Stancu et al. 2017), pbsv
(v2.0.2) (https://github.com/PacificBiosciences/pbsv [accessed
November 28, 2018]), and SVIM (Heller and Vingron 2019)

with default parameters. Alignment
with minimap2 prior to pbsv was per-
formed using specific parameters as rec-
ommended by the pbsv documentation
(see Supplemental Methods). Variants
identified by SVIM were filtered on a
minimum quality score of 40 as recom-
mended. Inversions were called with
the specific tool npInv (Shao et al.
2018). Alignment with LAST turned
out to be incompatible with Sniffles,
SVIM, pbsv, and npInv. We were unsuc-
cessful at using Picky (Gong et al. 2018)
and reported several issues to the inves-
tigators, which remained unanswered
and unresolved. It is worthy of note
that both Sniffles and NanoSV report
SVs from at least 30 bp, whereas the for-
mal definition and the truth set use
50 bp as the lower limit. Therefore, all
accuracy calculations are performed for
variants ≥50 bp. As a gold standard
truth set of SVs in NA19240, we used
haplotype-resolved SVs that were identi-
fied by combining PacBio long-read
sequencing, Bionano Genomics optical
mapping, Strand-seq, 10x Genomics,
Illumina synthetic long reads, Hi-C,
and Illumina sequencing libraries

(Chaisson et al. 2019). This set of variants will be called the “truth
set” from here on.

For comparison with short-read data, we also evaluated the
short-read SV callers Manta (Chen et al. 2016) and LUMPY
(Layer et al. 2014) after BWA-MEM alignment (Li 2013) of
Illumina data of the same individual (Chaisson et al. 2019).

SURVIVOR (v1.0.5) was used to merge and combine SV call
sets (Jeffares et al. 2017). We developed surpyvor (https://github
.com/wdecoster/surpyvor), a Python wrapper around SURVIVOR
with additional convenience functions for creating a high-
confidence and high-sensitivity set for calculation of precision-
recall-F-measure metrics and for visualizations using parsing
with cyvcf2 (Pedersen and Quinlan 2017) and plotting with
Matplotlib (Hunter 2007). Precision is defined as the ratio of the
number of true-positive variants to the number of identified vari-
ants (fraction of variants that are rightfully identified), whereas re-
call is defined as the ratio of the number of true-positive variants to
the number of the variants in the truth set (fraction of true variants
that are identified). The F-measure is the harmonic mean of preci-
sion and recall, calculated using (2 × precision × recall)/(precision+
recall). For combining SVs, a distance of 500 bp between pairs of
start and end coordinates was allowed to take inaccurate break-
point inferences into account, which was extended to 5000 bp
for inversions to accommodate inaccuracies in breakpoint delinea-
tion in repetitive sequences. We normalized duplications to inser-
tions because not all variant callers identify the same types of
variants, and SVs involving the EBV decoy contig were ignored.

By default, Sniffles requires 10 supporting reads to call an
SV. We also tested alternative minimum numbers of supporting
reads to see the effect on accuracy. In addition, we performed a
down-sampling experiment of the alignment to see how it affects
the performance of Sniffles. No parameter variation experiments
were performed for NanoSV owing to its long running times.
We also evaluated the accuracy of the zygosity determination
and investigated the difference in accuracy between “gain” and
“loss” CNVs.

Figure 8. Length profile of SV calls made by Sniffles after minimap2 alignment. The top panel has SVs
up to 2 kb; the bottom panel, up to 20 kb with a log-transformed number of variants.
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SV analysis workflow

We generated a workflow for SV analysis based on the Snakemake
engine (Koster and Rahmann 2012), combining minimap2 (Li
2018) and NGMLR (Sedlazeck et al. 2018) for alignment followed
by sorting and indexing BAM files using SAMtools (Li et al. 2009)
and SV calling using Sniffles (Sedlazeck et al. 2018) and NanoSV
(Cretu Stancu et al. 2017). Per aligner, we took the union of the
SV calls from Sniffles and NanoSV to form a high-sensitivity set,
and the intersection of both callers to form a high-confidence set.
Resulting variant files are processed using VCFtools and BCFtools
(Danecek et al. 2011; Li 2011), combined using SURVIVOR
(Jeffares et al. 2017) and annotated with information of segmental
duplications, overlapping genes, and known variants in the DGV
(MacDonald et al. 2014) using vcfanno (Pedersen et al. 2016).
Read depth is calculated using mosdepth (Pedersen and Quinlan
2018). Plots were generated using Python scripts with themodules
Matplotlib (Hunter 2007), pandas (McKinney 2011), seaborn
(https://zenodo.org/record/824567), cyvcf2 (Pedersen and Quinlan
2017), and UpSetPlot (https://github.com/jnothman/UpSetPlot
[accessed January 15, 2019]). The Snakemakeworkflow is available
on https://github.com/wdecoster/nano-snakemake/. A graphical
representation of the workflow can be found in Supplemental
Figure S7.

Data access

All raw and base called sequencing data generated in this
study have been submitted to the European Nucleotide Archive
(ENA; https://www.ebi.ac.uk/ena/) under accession number
PRJEB26791. Structural variants identified using the tools dis-
cussed in this study have been submitted to the European
Variation Archive (EVA; https://www.ebi.ac.uk/eva) under acces-
sion number PRJEB29523. All scripts for evaluation and plotting
of our results are available on https://github.com/wdecoster/
nano-snakemake/ and https://github.com/wdecoster/surpyvor
and as Supplemental Code 1 and 2, respectively.
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