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Abstract
Analytical expressions of the effectiveness factor of a biocatalytic membrane reactor, and

its asymptote as the Thiele modulus becomes large, are presented. The evaluation of the

effectiveness factor is based on the solution of the governing equations for solute transport

in the two regions of the reactor, i.e. the lumen and the matrix (with the biofilm immobilized

in the matrix). The lumen solution accounts for both axial diffusion and radial convective

flow, while the matrix solution is based on Robin-type boundary conditions. The effective-

ness factor is shown to be a function of the Thiele modulus, the partition coefficient, the

Sherwood number, the Peclet number, and membrane thickness. Three regions of Thiele

moduli are defined in the effectiveness factor graphs. These correspond with reaction rate

limited, internal-diffusion limited, and external mass transfer limited solute transport. Radial

convective flows were shown to only improve the effectiveness factor in the region of inter-

nal diffusion limitation. The assumption of first order kinetics is shown to be applicable only

in the Thiele modulus regions of internal and external mass transfer limitation. An iteration

scheme is also presented for estimating the effectiveness factor when the solute fractional

conversion is known. The model is validated with experimental data from a membrane gra-

dostat reactor immobilised with Phanerochaete chrysosporium for the production of lignin

and manganese peroxidases. The developed model and experimental data allow for the

determination of the Thiele modulus at which the effectiveness factor and fractional conver-

sion are optimal.

Introduction
Membrane bioreactors (MBR’s) offer a number of advantages over traditional bioreactors and
their use for various bioconversions have been extensively reported [1–3]. The main challenge
in the use of MBR’s remains the diffusional resistance of the membrane which adversely affects
their performance [4,5]. The effectiveness factor (η), defined as the ratio of the observed rate of
reaction to the hypothetical rate in the absence of mass transfer limitations [6], is generally
used to evaluate the performance of a catalytic reactor. A thorough review of mathematical
methods employed in evaluating exact solutions of this parameter was given by Aris [6]. This
study presented effectiveness factors for single and multiple reactions taking place in various
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shapes of porous catalysts. Webster and co-workers [7,8] presented analytical models for a
membrane bioreactor immobilized with whole cells, based on both Robin-type and Dirichlet-
type boundary conditions. The former boundary type accounts for external mass transfer limi-
tations, while the latter assumes the concentration at the membrane wall is known. Willaert
et al. [9] obtained identical effectiveness factor expressions to Webster and Shuler [7] based on
Dirichlet boundary conditions. In these studies, as well as in the majority of available exact
solutions [10–12], axial diffusion and radial convective flows are neglected and the kinetics are
generally considered linear. These assumptions are not always justified [13] and are imposed
with the intention of attaining closed-form expression of the transport equation. The analytical
solution of the mass balance equation is not always feasible, and a number of numerical
schemes have been developed for this purpose [14–20]. Analytical models however are pre-
ferred for their simplicity.

The current analysis is aimed at developing expressions of the effectiveness factor for an
MBR immobilized with biofilm, based on the model developed by Godongwana et al. [13]. The
asymptotic behaviour as the Thiele-modulus becomes large will be considered. The models are
based on the MBR system shown in Fig 1, and the following conditions of operation are
assumed: (1) the system is isothermal; (2) the flow regime within the membrane lumen is fully
developed, laminar, and homogeneous; (3) the physical and transport parameters are constant;
(4) in the membrane matrix the flow is only one dimensional (i.e. there are no axial compo-
nents of the velocity in the membrane matrix).

Mathematical Formulation

Governing equations
The governing equations for solute transport in the lumen and matrix of the MBR are respec-
tively:

u1

@c1
@z

þ v1
@c1
@r

¼ D1

1

r
@

@r
r
@c1
@r

� �
þ @2c1

@z2

� �
ð1Þ

D2

r
@

@r
r
@c2
@r

� �
� v2

@c2
@r

¼ VMc2
Km þ c2

ð2Þ

The MBR is considered axisymmetric and the associated boundary conditions to Eqs (1)
and (2) are:

B:C:1 at z ¼ 0 8r c1 ¼ c0 ð3aÞ

B:C:2 at r ¼ 0 8z @c1
@r

¼ 0 ð3bÞ

B:C:3 at r ¼ R1 8z @c1
@z

¼ 2D1

u1R1

@c1
@r

ð3cÞ

B:C:4 at r ¼ R1 8z ka c1b � c1Eð Þ ¼ �D2

@c2
@r

ð3dÞ

B:C:5 at r ¼ R2 8z @c2
@r

¼ 0 ð3eÞ

where u and v are the axial and radial velocity components, respectively; c1 and c2 are the local
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C = c/c0, dimensionless substrate concentration; DAB,
substrate diffusivity (m2 s-1); f = u1/u0, fraction
retentate; Jn(λ), Bessel function of order n of the first
kind; ka, mass transfer coefficient (m s-1); km,
membrane hydraulic permeability (m Pa-1s-1); Km,
saturation (or Monod constant) (g dm-3); km�=km/c0,
dimensionless Monod constant; L, membrane
effective length (m);M(a,b,θ), Kummer function of
the first kind; Peu = u0R1/DAB, axial Peclet number;
Pev = v0R1/DAB, radial Peclet number; r, radial spatial
coordinate (m); R = r/R1, dimensionless radial spatial
coordinate; R1, membrane lumen radius (m); Re =
ρu0R1/μ, Reynolds number; Sc = μ/ρDAB, Schmidt
number; Sh = kaR1/DAB, Sherwood number; u, axial
velocity (m s-1); u0, feed axial velocity (m s-1);
U = u/u0, dimensionless axial velocity; v, radial
velocity (m s-1); v0 = km(p0—pS), permeation velocity
(m s-1); V = v/v0, dimensionless radial velocity; VM,
maximum rate of reaction (g dm-3 s-1); X, average
biofilm density (g dm-3); Yx/s, yield of biofim per unit
substrate; z, axial spatial coordinate (m); Z = z/L,
dimensionless axial spatial coordinate; β,
dimensionless transmembrane pressure; γ,
membrane partition coefficient; δ = Km/c0Cb, modified
dimensionless Monod constant; �=1/ϕ, substitution
variable; η, effectiveness factor for general kinetics;
η0, effectiveness factor for zero-order kinetics; η1,
effectiveness factor for first-order kinetics; θ,
substitution variable; κ=μkmL/R1

2, dimensionless
membrane hydraulic permeability; λm, eigen values,
m = 1, 2, . . .; μ, solution dynamic viscosity (Pa s);
μmax, maximum specific growth rate (s-1); ρ, solution
density (kg m-3); φ = R1/L, aspect ratio; ϕ, Thiele
modulus; ψ, external resistance to mass transfer; Y,
fractional conversion.



substrate concentrations in the lumen and fiber matrix, respectively; c1b is the bulk lumen con-
centration; c1E is the concentration on the internal surface of the membrane; D1 and D2 are the
substrate diffusion coefficients in the lumen and matrix, respectively; ka is the mass transfer
coefficient; Km is the saturation constant; and VM is the maximum rate of reaction.

Boundary condition 1 (B.C.1) corresponds to a uniform inlet substrate concentration; B.C.2
corresponds to cylindrical symmetry at the centre of the membrane lumen; B.C.3 and B.C.4
corresponds to continuity of the substrate flux at the lumen-matrix interface. The partition
coefficient for the transfer from outside the film layer to inside the film is assumed to be unity.
Only the partition for the transfer from the film layer to the matrix is considered, as shown in
Fig 1. B.C.5 implies there is no diffusion across the matrix-shell interface. In single-substrate
limited biofilms, VM in Eq (2) is given by [21]:

VM ¼ mmaxX
YX=S

ð4Þ

where X is the average biofilm density, μmax is the maximum specific growth rate, and Yx/s is
the yield of biofilm per unit substrate.

MBR lumen (Region 1)
In the lumen-side of the MBR, Eq (1) in dimensionless form becomes:

φPeuU1

@C1

@Z
� φ2 @

2C1

@Z2
¼ 1

R
@C1

@R
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� �
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where:

U ¼ u
u0

; V ¼ v
v0
; C ¼ c

c0
; Z ¼ z

L
; R ¼ r

R1

; φ ¼ R1

L

Fig 1. A cross-section of the membrane bioreactor illustrating the different regions of the MBR (i.e. lumen, film layer, andmatrix). The velocity
distribution and concentration distribution are also shown.

doi:10.1371/journal.pone.0153000.g001
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Peu ¼
u0R1

D1

; Pev ¼
v0R1

D1

ð6Þ

The solution of Eq (5) was given by Godongwana et al. [13] as an asymptotic expansion in
terms of the membrane hydraulic permeability κ:

C1ðy; xÞ ¼
X1
m¼1

XN
n¼0

BmFmðyÞTnðxÞkn ð7Þ

Where

y ¼ � φ2

4Peukb

� �
x2; x ¼ � 2Peukb

φ2

1

ðf � 1Þ þ Z

� �
; and x ¼ lmR ð8Þ

and Fm(θ) in Eq (7) is the Kummer function:

Fm yð Þ ¼ M � l2m
4Peukb

;
1

2
; y

� �
ð9Þ

The zero-order and first-order approximations of Tn(x) in Eq (7) are, respectively:

T0ðxÞ ¼ J0ðxÞ ð10Þ

and

T1ðxÞ ¼ s1

ðxÞ2J2ðxÞ
3‼ þ s2

ðxÞ3J3ðxÞ
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ðxÞ4J4ðxÞ
7‼

" #
ð11Þ

where λm are the eigenvalues, Jn is the Bessel function of the first kind of order n.
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m
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35
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ð12Þ

The eigenvalues are obtained from B.C.3 in Eq (3c), and are roots of the equation [20]:

lmφx
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¼ 4
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M
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The coefficient Bm is obtained by imposing the inlet condition B.C.1 of Eq (3a):

Bm ¼ 2

lmM � l2m
4Peukb

; 1
2
; y0

� � J1ðlmÞ
J20 ðlmÞ þ J21 ðlmÞ

� �
ð14Þ

MBRMatrix (Region 2)
First-order Kinetics. The rate of solute consumption inside the membrane matrix is gov-

erned by Monod kinetics. Assuming the first-order limit, i.e. Km >> c, Eq (2) for the matrix in
dimensionless form becomes:

d2C2

dR2
þ 1

R
� PevV2

� �
dC2

dR
� �2C2 ¼ 0 ð15Þ
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where the first-order Thiele modulus ϕ is defined as:

� ¼
ffiffiffiffiffiffiffiffiffiffiffi
VMR2

1

KmD2

s
ð16Þ

Eq (15) is amenable to an analytical solution by regular perturbation only when the hydrau-
lic permeability is much smaller than unity κ<< 1. For brevity only the zero-order approxi-
mation will be considered, the first order perturbation approximation is given in Appendix A
following the procedure of Godongwana et al. [13]. Eq (15) then reduces to:

d2C2

dR2
þ 1

R
dC2

dR
� �2C2 ¼ 0 ð17Þ

Eq (17) is evaluated subject to B.C.4, which in dimensionless form becomes:

Sh Cb � C2=g

� �
¼ �dC2

dR
jR¼1 ð18Þ

Where γ is the partition coefficient and Sh is the Sherwood number. A good estimate of Sh for
hollow fiber membranes is given by Wickramasinghe et al. [22]:

Sh ¼ 1:11Re0:47Sc0:33 ð19Þ

where Sc = μ/ρDAB is the Schmidt number and Re = ρvR1/μ is the Reynolds number. The
dimensionless bulk lumen concentration is defined as:

Cb ¼ 2

Z 1

0

C1ðy; xÞRdR ¼ 2
X1
m¼1

Bm

lm

�M � l2

m

4Peukb
;
1

2
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� �
� J1ðlmÞ ð20Þ

Eq (17) is the modified Bessel’s equation and has a solution of the form [23]:

C2 ¼ B1I0ðϕRÞ þ B2K0ðϕRÞ ð21Þ

where I0 and K0 are the modified Bessel functions of the first kind and second kind, respec-
tively. The constants B1 and B2 are obtained with the use of B.C.4 and B.C.5 as:

B1 ¼
K1ðϕR2Þ � gCb

½K0ðϕÞ � I1ðϕR2Þ þ I0ðϕÞ � K1ðϕR2Þ� þ c
ð22Þ

and

B2 ¼
I1ðϕR2Þ � gCb

½K0ðϕÞ � I1ðϕR2Þ þ I0ðϕÞ � K1ðϕR2Þ� þ c
ð23Þ

where

c ¼ gϕ
Sh

K1ðϕÞ � I1ðϕR2Þ þ I1ðϕÞ � K1ðϕR2Þ½ � ð24Þ

The effectiveness factor is defined as:

Z ¼ �2pR1LD2
@c2
@r
jr¼R1

pLðR2
2 � R2

1Þ VMcb
Kmþcb

ð25Þ
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In dimensionless form:

Z ¼ �2ðdþ 1Þ
ϕ2
0ðR2

2 � 1Þ
@C2

@R
jR¼1 ð26Þ

where d ¼ K�
m

Cb
and ϕ0 is the zero-order Thiele modulus defined as:

ϕ0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
VMR2

1

c0D2

s
ð27Þ

Assuming first-order kinetics (δ>> 1) Eq (26) reduces to:

Z1 ¼
�2

ϕ2ðR2
2 � 1ÞCb

@C2

@R
jR¼1 ð28Þ

Substituting Eqs (20–24) into Eq (28) gives:

Z1 ¼
2g½K1ðϕÞ � I1ðϕR2Þ � I1ðϕÞ � K1ðϕR2Þ�

ϕðR2
2 � 1Þf½K0ðϕÞ � I1ðϕR2Þ þ I0ðϕÞ � K1ðϕR2Þ� þ cg ð29Þ

The reciprocal of the effectiveness factor is generally considered a mass transfer resistance
[6,8,24]. Thus, the reciprocal of Eq (29) is the sum of the internal resistance and the external
resistance (ψ) to mass transfer. This is explicit in the asymptotic form of Eq (29) given in the
Appendix B:

1

Z1
¼ ϕðR2

2 � 1Þ
2

(
ϕ

Sh
þ 1

g
coth½ϕðR2 � 1Þ�g ; as ϕ ! 1 ð30Þ

The first and second terms inside the curly brackets in Eq (30) represent the external resis-
tance and internal resistance to mass transfer, respectively. The series-of-resistances nature of
Eqs (29) and (30) is a result of using the Robin-type boundary condition, B.C.4, in the evalua-
tion of Eq (17). In both equations the parameters with the greatest influence on the effective-
ness factor are: the Thiele modulus, partition coefficient, Sherwood number, and membrane
thickness. The influence of the Peclet (Peu) number on the effectiveness factor is presented in
Appendix A. By definition η = 1 when the Thiele modulus ϕ becomes zero since this value of
the Thiele modulus corresponds with a reaction rate-controlled transfer with no mass transfer
limitations.

Zero-order Kinetics. Assuming the zero-order limit, i.e. Km << c, the dimensionless form
of Eq (2) becomes:

d2C2

dR2
þ 1

R
dC2

dR
� ϕ2

0 ¼ 0 ð31Þ

Eq (31), subject to B.C. 4 and B.C.5, has a solution of the form:

C2 ¼
ϕ2
0

4
ðR2 � 1Þ � 2 R2

2lnRþ g
Sh

ðR2
2 � 1Þ

h in o
þ gCb ð32Þ

The dimensionless zero-order effectiveness factor from Eq (26) is:

Z0 ¼ � 2

ϕ2
0ðR2

2 � 1Þ
@C2

@R
jR¼1 ¼ 1 ð33Þ
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Non-linear Kinetics. The effectiveness factor allows for the determination of the overall
reaction rate in terms of the Thiele modulus. However, when the reaction kinetics are not linear
as was assumed in the above analysis Eq (26) is not amenable to an analytical solution. A prac-
tical measure of evaluating the effectiveness factor is attained by making the following approxi-
mation:

dC2

dR
jR¼1 ¼

C2jR¼R2
� C2jR¼1

ðR2 � 1Þ ; ðR2 � 1Þ � 1 ð34Þ

Substituting Eq (34) into Eq (26) gives:

Υ ¼ 1� C2jR¼1 �
Zϕ2

0ðR2
2 � 1ÞðR2 � 1Þ
2ðdþ 1Þ

� �
; ðR2 � 1Þ � 1 ð35Þ

where Y is the fractional conversion. Eq (35) allows for empirical determination of the effec-
tiveness factor when the fractional conversion is known, from the following procedure: (i)
guess the wall concentration (C2jR¼R1

) and obtain the concentration gradient from Eq (34), (ii)

substitute the concentration gradient dC2
dR
jR¼1 into Eq (26) to obtain the effectiveness factor, (iii)

substitute the effectiveness factor η into Eq (35) and compare the experimental conversion to
the attained value, and (iv) repeat the procedure until the experimental conversion is equal to
the value obtained from the iteration.

Results
Fig 2 is a plot of effectiveness factors and corresponding asymptotes, from Eqs (29) and (30)
respectively, as functions of the normalized Thiele modulus F for different values of the Sher-
wood number. The normalized modulus is defined as:

F ¼ ϕ

2
R2
2 � 1

	 
 ð36Þ

Fig 2. Effectiveness factors (—) from Eq (29) and asymptotes (—) from Eq (30) vs Thiele modulus at
different Sherwood numbers.

doi:10.1371/journal.pone.0153000.g002
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Eq (30) provides a simple mathematical approximation to Eq (29) and for F> 1 gives exact
values for the effectiveness factor, as shown in Fig 2. Three regions of Thiele moduli may be
defined from Fig 2, as characterised by the effectiveness factor. In the first region (F< 0.01)
the effectiveness factor is unity, and the rate of solute transport in the MBR is controlled by the
rate of reaction. When the MBR is operated in this region the diffusional resistance offered by
the membrane is negligible. In the second region (0.01< F< 0.1) the rate of solute transport
is limited only by internal diffusion through the membrane, and hence the effectiveness factor
is not a function of the Sherwood number. In the third region (F> 0.1) external mass transfer
limitations control the rate of solute transport through the MBR, and the effectiveness factor is
greatly influenced by the Sherwood number. This result is consistent with the Robin-type
boundary condition.

Fig 2 may suggest operating the MBR at low values of the Thiele modulus for high effective-
ness factors, however substrate conversion at these low values is minimal as can be seen in Fig
3. This figure presents experimental values of conversion and the effectiveness factor for an
MBR used for the production of Lignin and Manganese Peroxidases from Phanerochaete chry-
sosporium. The operating parameters of the MBR and kinetic constants of the biofilm are listed
in Table 1. From Fig 3 an operating Thiele modulus may be found at which both substrate con-
version and the effectiveness factor are optimal. This point corresponds with low effectiveness
factors when the objective is to maximise solute conversion [19].

The experimental effectiveness factor in Fig 3 is obtained from Eq (35) and is plotted against
the first-order model of Eq (29). The two plots exhibit the same trend, with the model underes-
timating the effectiveness factor at values of F< 0.5. This is because at low values of the Thiele
modulus solute transport is reaction rate controlled and the first-order kinetics premise
assumes a lower rate of reaction than the maximum. At higher values of the Thiele modulus
solute transport is limited by internal and external diffusion, and the first-order model approxi-
mately matches the experimental effectiveness factor.

In the region of internal diffusional limitation (0.01< F< 0.1) radial convective flows can
significantly improve the effectiveness factor, as illustrated in Fig 4. In this figure the relative
increases in the effectiveness factor (Z=ZPe¼0

) are plotted against normalised Thiele moduli for

Fig 3. Effectiveness factor and glucose conversion vs normalized Thiele modulus (Sh = 0.83).

doi:10.1371/journal.pone.0153000.g003
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different values of the radial Peclet number. The effectiveness factors in Fig 4 are obtained
from Eq (A8) in Appendix A. The increase in η with Pev is only restricted to the region of inter-
nal diffusional limitation. The maximum relative increase in the effectiveness factor is obtained
in the transitional region from kinetic to internal-diffusional control (F� 0.01), and minimal
in the boundary region between internal-diffusional control and external mass transfer limita-
tion. Increasing Pev outside this region may drastically reduce the contact time between the
substrate and the biocatalyst, and hence lead to reduced substrate conversions as was shown by
Calabro et al. [17]. In this region (F> 0.1), as previously discussed the effectiveness factor can
be improved by increased Sherwood numbers.

Conclusion
Mathematical models were developed for solute concentration profiles and effectiveness factors
in an MBR, assuming the zero-order and first-order limits of the Michaelis-Menten (or
Monod) equation. The first-order kinetic model was shown to be applicable only when the
MBR is operated at high Thiele moduli. Experimental results show that the effectiveness factor

Table 1. Parameter values used to determine the effectiveness factor in Fig 3 [25].

Model parameter Symbol Unit Basic measured value

Membrane inner radius R1 m 6.98 x 10−4

Membrane outer radius R2 m 9.63 x 10−4

Effective membrane length L m 0.230

Lumen-side entrance velocity u0 ms-1 3.04 x 10−4

Permeation velocity v0 m s-1 8.82 x 10−6

Glucose diffusivity DAB m2 s 1.59 x 10−9

Glucose inlet concentration c0 g dm-3 10.00

Maximum specific growth rate μmax h-1 0.035

Saturation constant Km g dm-3 9.350

Yield of biofilm per substrate Yx/s g/g 0.202

doi:10.1371/journal.pone.0153000.t001

Fig 4. Relative increase in effectiveness factor vs normalized Thiele modulus at different Peclet
numbers.

doi:10.1371/journal.pone.0153000.g004
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decreases with increasing Thiele modulus, while the fractional conversion increases with an
increase in this parameter. The developed model allows for the determination of the operating
point at which both the conversion and effectiveness factor are optimal. It was also shown that
the radial Peclet number can significantly improve the performance of an MBR operating
under internal diffusional limitations.

Appendix A

First-order perturbation approximation of the effectiveness factor
The solution of Eq (15) may be approximated by an asymptotic expansion:

C2 ¼ Cð0Þ
2 þ kCð1Þ

2 þ k2Cð2Þ
2 þ . . . knCðnÞ

n ðA1Þ

The zero-order approximation Cð0Þ
2 was given in Section 2.3 as:

Cð0Þ
2 ¼ B1I0ðϕRÞ þ B2K0ðϕRÞ ðA2Þ

The first-order approximation Cð1Þ
2 is a solution of the equation:

d2Cð1Þ
2

dR2
þ 1

R
dCð1Þ

2

dR
þ ϕ2Cð1Þ

2 ¼ 2Peub R 1� R2

2

� �� �
dCð0Þ

2

dR
ðA3Þ

The modified Bessel function Kv(x) tends to zero as |x|!1 for all values of v. The contri-
bution of this function in Eq (A3) is therefore only significant as x! 0. In this region the limit-
ing form of Kv(x) is [23]:

Kv xð Þ � 1

2
G vð Þ 1

2
x

� ��v

ðv > 0Þ ðA4Þ

where Γ(n) is the Gamma function. The solution of Eq (A3) follows the same procedure as
Godongwana et al. [13], and is of the form:

Cð1Þ
2 ¼ Peubk

ϕ2

3
ffiffiffi
p

p
B1

2

ðϕRÞ2I2ðϕRÞ
22G 2 1

2

	 
 þ a1
ðϕRÞ3I3ðϕRÞ
23G 3 1

2

	 
 þ a2
ðϕRÞ4I4ðϕRÞ
24G 4 1

2

	 

" #

� B2

ϕ2 ½ðϕRÞ2 � 2ϕ2 þ 4�
( )

ðA5Þ

where

a1 ¼ � 20

3ϕ2 ; and a2 ¼ � 35

4ϕ2 ðA6Þ

The effectiveness factor is obtained by substituting the derivatives of Eqs (A2) and (A5) into
Eq (28), making use of the following property of Bessel functions [23]:

1

z
d
dz

� �k

zvIvðzÞf g ¼ zv�kIv�k zð Þ ðA7Þ

This gives:

Z ¼ 2g½K1ðϕÞ � I1ðϕR2Þ � I1ðϕÞ � K1ðϕR2Þ � x�
ϕðR2

2 � 1Þf½K0ðϕÞ � I1ðϕR2Þ þ I0ðϕÞ � K1ðϕR2Þ� þ cg ðA8Þ
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where

x ¼ Peubk
3

ffiffiffi
p

p � K1ðϕR2Þ
8

I1ðϕÞ
G 2 1

2

	 
þ a1

ϕI2ðϕÞ
2G 3 1

2

	 
þ a2
ϕ2I3ðϕÞ
4G 4 1

2

	 

" #

� 2I1ðϕR2Þ
ϕ3

( )
ðA9Þ

Appendix B

Asymptotic solution of the Effectiveness factor (ϕ!1)
Eq (17) may be written as:

�2

R
d
dR

R
dC2

dR

� �
� C2 ¼ 0 ðB1Þ

where:

� ¼ 1

ϕ
ðB2Þ

The solution of Eq (17) may be approximated by an asymptotic expansion when �� 1 as:

C2 ¼ b0 þ �b1 þ �2b2 þ . . . ðB3Þ

In order to keep the second-order derivative in the solution of the coefficient b0 in Eq (B3),
the following variable is defined:

o ¼ 1� R
�

ðB4Þ

Eq (B1) then becomes:

d2C2

do2
� �

ð1� �oÞ
dC2

do
� C2 ¼ 0 ðB5Þ

The leading order term sub-problem is:

d2b0
do2

� b0 ¼ 0 ðB6Þ

The corresponding boundary conditions are B.C.4 and B.C.5 of Eq (3):

db0
do

jo¼0 ¼ �Sh Cb �
b0ð0Þ
g

� �
ðB7aÞ

and

db0
do

jo¼ð1�R2Þ=� ¼ 0 ðB7bÞ

The solution of Eq (B6), subject to the boundary conditions of Eq (B7) is:

b0 ¼ L1e
o þ L2e

�o ðB8Þ

where

L1 ¼
1

ϕ 1þ Sh
ϕg

� � 1� Sh
ϕg

� �
ShCbe

�½ϕðR2�1Þ�

sinh½ϕðR2 � 1Þ� þ Sh
ϕg cosh½ϕðR2 � 1Þ� þ ShCb

8<
:

9=
; ðB9Þ
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And

L2 ¼
1

ϕ

ShCbe
�½ϕðR2�1Þ�

sinh½ϕðR2 � 1Þ� þ Sh
ϕg cosh½ϕðR2 � 1Þ�

( )
ðB10Þ

The effectiveness factor is obtained by taking the derivative of Eq (B8) and substituting into
Eq (28) to obtain:

1

Z1

¼ ϕðR2
2 � 1Þ
2

ϕ

Sh
þ 1

g
coth½ϕðR2 � 1Þ�

� �
ðB11Þ
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