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Abstract
The main objective of this paper is to present an improved neural network algorithm (INNA) for solving the reliability-

redundancy allocation problem (RRAP) with nonlinear resource constraints. In this RRAP, both the component reliability

and the redundancy allocation are to be considered simultaneously. Neural network algorithm (NNA) is one of the newest

and efficient swarm optimization algorithms having a strong global search ability that is very adequate in solving different

kinds of complex optimization problems. Despite its efficiency, NNA experiences poor exploitation, which causes slow

convergence and also restricts its practical application of solving optimization problems. Considering this deficiency and to

obtain a better balance between exploration and exploitation, searching procedure for NNA is reconstructed by imple-

menting a new logarithmic spiral search operator and the searching strategy of the learner phase of teaching–learning-based

optimization (TLBO) and an improved NNA has been developed in this paper. To demonstrate the performance of INNA,

it is evaluated against seven well-known reliability optimization problems and finally compared with other existing meta-

heuristics algorithms. Additionally, the INNA results are statistically investigated with the Wilcoxon sign-rank test and

Multiple comparison test to show the significance of the results. Experimental results reveal that the proposed algorithm is

highly competitive and performs better than previously developed algorithms in the literature.

Keywords Neural network algorithm � Teaching–learning-based optimization � Constrained optimization �
Reliability redundancy allocation problem

List of symbols
n ¼ ðn1; n2; _:::; nmÞ, the redundancy allocation

vector

m Number of subsystems

ni The number of components in subsystem i

ni
max Maximum number of components in subsystem

i

ni
min Minimum number of components in subsystem i

ri The components reliability in subsystem i

b is the vector of resource limitation

ci The component cost in subsystem i

wi The component weight in subsystem i

C Upper limit of the system’s cost

V Upper limit of the system’s volume

W Upper limit of the system’s weight

vi The component volume in subsystem i

gj The jth constraint function

Ri = 1� ð1� riÞni , is the reliability of the ith

subsystem

RS The system reliability

Zþ Set of positive integers in the discrete space

VTV The variables that received the value 2 in opti-

mum stage

Dim Dimensions

slack(g) ¼ ðbk � gkÞ for k ¼ 1; 2; . . .l
Std Standard deviation

MHAs Meta-heuristics algorithms

RRAP Reliability redundancy allocation problems

P1-P7 Reliability issues
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1 Introduction

Since 1950, reliability optimization plays a progressively

crucial role because of its critical requirements on engi-

neering and industrial applications like automotive indus-

tries, military, aerospace, computer and communication

systems, transportation systems, etc. To be more compet-

itive in practical life, the basic goal of reliability engi-

neering is always to improve the reliability of product

components or manufacturing systems. Generally, the

reliability optimization problem can be distinguished into

two classes: integer and mixed-integer reliability problems.

In the integer reliability problem, the main task is to allo-

cate the number of system redundant components while the

reliability of the components is known. On the other hand,

both the redundancy allocation and the reliability of the

component are to be designed together in the mixed-integer

reliability problem. RRAP [1] is such kind of a problem in

which system reliability is maximized through the choices

of redundancy and component reliability. To optimize a

system RRAP, redundancy levels are considered as integer

values and component reliabilities are taken as continuous

values lie between zero and one. Therefore, RRAP is a

mixed-integer problem approach with the objective of

maximizing system reliability under constraints such as the

system cost, volume, and weight [2–8]. Obviously, an

excellent reliability design facilitates a system to run more

safely and reliably. Thus, the study of reliability opti-

mization problems has been achieved great attention and

has become a hot research topic in the engineering field.

Because of complexity, RRAP has been considered to be

an NP-hard combinatorial optimization problem which has

been already considered as the subject of much prior work

in many different formulations and over various opti-

mization approaches. Due to this computational difficulty,

meta-heuristics algorithms (MHAs) have been successfully

applied to a wide range of practical optimization problems

to deal with them. In MHAs, optimization problems are

assumed like a black box which indicates that there is no

need to find the derivative of the mathematical models any

more, rather it can be solved only by detecting the inputs

and outputs. These methods use a random population of

individuals in the search space, apply probabilistic rules

and also approximate the optimal solution rather than

finding the mathematical optimum, which makes these

methods more flexible to find better solutions compared to

deterministic methods for solving optimization problems.

Inspiring by biological phenomena and human charac-

teristics, several authors have been developed a variety of

population-based optimization techniques to address com-

plex optimization and in terms of the inspiring source, this

can be broadly classified into three categories:

evolutionary-based, swarm-based, and human-based algo-

rithms. Evolutionary algorithms (EA) mimic the mecha-

nism of biological evolution, which is initiated with a

population of random individuals. The first ever EA named

Genetic algorithm (GA) based on the Darwinian principle

of natural evolution is proposed by Goldberg and Holland

[9]. Swarm-based algorithms mimic the social behaviours

or intelligence of animals in nature and the main virtue of

such algorithms is their collaborative survive ability. Par-

ticle swarm optimization (PSO) [10], which resembles the

bird flocking social behaviour, is considered as the first

swarm-based algorithm introduced in the literature.

Finally, the human-based algorithms are inspired by some

human nature, activities or perception. A list of some

nature-inspired algorithms with their operators is reported

in Table 1. Further, several researchers have applied some

well-known MHAs to deal with the RRAP, including GA

[11–14], PSO [15–17], CS [18, 19], ACO [20], BBO [21],

ABC [22], HS [23–26] and DE [27]. In addition to the

above mentioned studies, some novel MHAs have also

been introduced to solve RRAP, such as grey wolf opti-

mizer algorithm [28] and cuckoos search algorithm [29].

Again, Qiang et al. [30] presented a novel artificial fish

swarm algorithm which mimic the social behaviours of fish

swarm, for solving large-scale RRAPs. The above-cited

algorithms has been successfully tested to solve various

kinds of real-world optimization problems. Although, there

are some noticeable deficiencies on these algorithms in

solving some optimization problems. For example, ABC

with its simple structure and an advantage of few param-

eters, it has been successfully applied to solve various

kinds of real-world optimization problems. Despite these

efficiencies, the ABC suffers from the problem of local

optima stagnation and also it fails to maintain a proper

balance between exploration and exploitation. Again, for

HHO, it has a good global searching ability and provides

high accuracy in extracting the optimal parameters.

Although HHO experience is satisfactory in exploration but

devoid of exploitation, which forces slow convergence. In

case of the algorithm SSA, it has a powerful neighbour-

hood search ability and it can easily fitted for wide search

space which makes SSA an efficient technique. But, there

are some major drawbacks of SSA in solving some opti-

mization problems like local optima stagnation, poor con-

vergence tendency, lacking of exploitation etc. Like ABC,

HHO and SSA, the other cited algorithms also has some

advantages as well as disadvantages in solving optimiza-

tion problems.

According to the ‘‘No Free Launch (NFL)’’ theorem

[52], there exist no MHAs best fitted to solve all opti-

mization problems. Alternatively, it may happen that a

particular algorithm gives efficient solutions for some

optimization problems, but it may fail to perform well on

20866 Neural Computing and Applications (2022) 34:20865–20898

123



another set of problems. Thus, no MHAs are perfect and its

limitation affects the performance of the algorithm.

Therefore, NFL provokes researchers to develop new

MHAs or upgrade some original methods for solving a

wider range of complex optimization problems (COPs).

The hybridization of two algorithms is one of the

remarkable choice between all strategies to upgrade an

existing algorithm and to overcome shortcomings. For

example, Ghavidel et al. [53] introduces a hybrid LJaya-

TVAC algorithm by combining the Jaya algorithm based

on time-varying acceleration coefficients (TVAC) and the

learning phase of TLBO, for solving various types of non-

linear mixed-integer RRAPs. Juybari et.al. [54] presented a

penalty-guided fractal search algorithm to deal with

RRAPs with cold-standby strategy and the same problem is

solved by a new enhanced nest cuckoo optimization algo-

rithm, which is introduced by Mellal and Zio [55]. Ouyang

et. al. [56] developed an improved PSO algorithm to solve

the RRAP with mixed redundancy strategy. Later, Devi

and Garg [57] presented a new hybrid HGAPSO algorithm

which inherits the advantages of the PSO and the GA for

solving RRAP. An improved GWO algorithm called ran-

dom walk gray wolf optimizer (RW-GWO) is presented by

Gupta et. al. [58] to obtain the optimal redundancies to

optimize the system reliability with several constraints like

volume, weight, and system cost. Recently, Kundu et. al.

[59] proposed a hybrid salp swarm algorithm with teach-

ing–learning-based optimization (HSSATLBO) for solving

RRAP.

In recent years, neural network technique has been used

to solve various kinds of optimization problems, and which

has been developing very rapidly. Impressively, Sadollah

et. al. [60] first introduced that a neural network technique

can be implemented to design an optimization algorithm

and proposed a novel meta-heuristic method called neural

network algorithm. NNA is one of the newest meta-

heuristic algorithms, which is inspired by artificial neural

networks (ANNs) and biological nervous systems and the

important characteristics like, simple structure, robustness,

and scalability, makes NNA an efficient method for solving

various kinds of real world problems. Compared to other

existing MHAs, the exclusive structure of ANNs guides

NNA to find the global optimum solution and shows strong

global exploration ability with the minimum chance of

getting captured in a local optimum. Despite of these

efficiency, the basic NNA has some noticeable deficiency

in solving some optimization problems. Firstly, the NNA

suffers from the problem of local optima stagnation in

solving some large scale optimization problems such as

large-scale reliability system with higher dimensions and

CEC (Congress of Evolutionary Computation) benchmark

test problems. Secondly, the NNA experience is satisfac-

tory in exploration but it fails to maintain a proper balance

between exploration and exploitation due to lack of

exploitation ability. Finally, it has slow convergence ten-

dency and sometimes, it required more time to evaluate a

new solution for some problems. These shortcomings will

reduce its applications in some optimization problems with

limitations and researchers have applied different search

mechanisms and adopted modified operators to upgrade the

original NNA. To mention a few- Zhang et. al. [61]

introduced a novel hybrid algorithm GNNA combining

GWO and NNA for solving global numerical optimization

problems. The core idea of this work is to make full use of

good global search ability of NNA and fast convergence of

GWO. A new hybrid TLNNA algorithm based on TLBO

and NNA is developed by Zhang et. al. [62] for solving

engineering design optimization problems. In 2022, Kundu

and Garg [63] proposed a new TLNNABC hybrid algo-

rithm to solve reliability and engineering design opti-

mization problems. In this algorithm, the structure of ABC

algorithm has been improved by incorporating the features

of the NNA and TLBO.

Teaching and learning are two common human social

behaviours and are also an important motivating process in

which an individual tries to learn from others. A regular

Table 1 Nature-inspired optimization algorithms

Categories Nature-inspired algorithm

1. Evolutionary algorithms Genetic Algorithm (GA) [9], Differential Evolution (DE) [31], Biogeography-based Optimization (BBO) [32], and

Evolutionary Programming (EP) [33]

2. Swarm intelligence

algorithms

Ant Colony Optimization (ACO) [34], Grey Wolf Optimization (GWO) [35], Artificial Bee Colony (ABC) [36],

Particle Swarm Optimization (PSO) [10], Whale Optimization Algorithm (WOA) [37], Bat Algorithm (BA) [38],

Cuckoo Search (CS) [39], Slime Mould Algorithm (SMA) [40], Crow Search Algorithm (CSA) [41], Jellyfish

Search (JS) [42], Mayfly Algorithm (MA) [43], Harris Hawks Optimization (HHO) [44] and Salp Swarm

Algorithm (SSA) [45]

3. Human-related

algorithms

Passing Vehicle Search (PVS) [46], Fireworks algorithm (FA) [47], Sine Cosine Algorithm (SCA) [48], Teaching–

Learning-Based Optimization (TLBO) [49], b-Hill Climbing (bHC) [50], and Coronavirus Herd Immunity

Optimizer (CHIO) [51]
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classroom teaching–learning environment is motivational

process that allows students to improve their cognitive

levels. Based on this fact, Rao [49] first introduced the

TLBO algorithm in 2011. TLBO has fast convergence

speed and good exploitation ability, which has been used to

solve many real-world optimization problems [64–68].

However, TLBO may tend to convergence to local minima

in solving some complex optimization problems. The main

advantages of the TLBO algorithm is that without any

effort for tuning initial parameters, it leads to first con-

vergence speed and also, the computational complexity of

the algorithm is much better than several existing

algorithms.

Motivated by the advantages of NNA, an improved

algorithm called INNA has been developed in this paper.

Basically, searching processes with similar nature may lead

to the loss of diversity in the search space and also there is

a chance of getting trapped into a local optimum. But, the

different searching techniques of two different algorithms

can maximize the capacity of escaping from the local

optimal. In this proposed INNA, the basic structure of the

NNA has been renovated by embedding the features of the

learner phase of TLBO and a logarithmic spiral search

operator. Therefore, in the search process of INNA, TLBO

and the logarithmic search operator helps to accelerate the

convergence speed of INNA, whereas the excellent global

exploration ability of NNA helps to find a better global

optimal solution and produces efficient and effective

results for solving RRAP. In this study, a population

diversity definition of the proposed method is also intro-

duced and performed the exploration-exploitation evalua-

tion for investigating the search behaviour of both INNA

and NNA. The measurement of exploration and exploita-

tion also help to identify how the proposed INNA performs

better on an optimization problem. The experimental study

shows that the performance of INNA is improved com-

pared to the conventional NNA by the population diversity

enhancement. Finally, being a new optimization method

and there is still much room left for future research. The

main contribution of this paper can be stated as follows-

• A improved neural network algorithm (INNA) is

proposed by combining the features of TLBO and a

new search operator. Proposed algorithm mainly con-

tains the structure of the basic NNA and, meantime, it

has been reconstructed by embedding the searching

strategy of the learner phase of TLBO and a new

logarithmic spiral search operator.

• The proposed method makes a proper balance between

exploration and exploitation in which the basic NNA

looks after the exploration part and the presence of a

new search operator and the searching strategy of

TLBO increases the exploitation capability of the

algorithm.

• To validate the effectiveness and efficiency of the

proposed INNA, it is examined against seven well-

known RRAP that includes series system, series-

parallel system, complex (bridge) system, overspeed

protection system, convex system, mixed series-parallel

system, and large-scale system with dimensions 36, 38,

40, 42 and 50. Section 5 illustrates that the proposed

method gives an effective result and also provide

superior performance compared to other existing MHAs

in terms of best optimal solutions and others.

• In order to check the statistical significance on the

results obtained from the proposed INNA and the

existing algorithms, a number of tests have been carried

out, such as rank-tie, Wilcoxon sign-rank test, Kruskal–

Wallis test, and multiple comparison tests. From these

computed results, it is verified that the proposed

algorithm produces an effective result and also outper-

forms other existing algorithms in terms of the best

optimal solutions and the maximum possible

improvement.

The rest of the papers is organized as follows: Sect. 2

briefly describes the basic NNA and TLBO algorithms.

Section 3 presents a new logarithmic spiral search operator,

the proposed algorithm INNA, and exploration-exploita-

tion measurement. The RRAPs are described in Sect. 4.

Section 5 presents the experimental results of the proposed

INNA and compares them with several existing algorithms.

The results obtained have also been validated through

statistical test analysis. Finally, the conclusions and future

works are drawn in Sect. 6.

2 Background

In this section, the basic NNA and the conventional TLBO

algorithms are briefly described.

2.1 Neural network algorithm

NNA [60] is one of the newest MHAs and is followed by

the nature of ANNs and biological nervous systems. In

most of the cases, ANNs are used for making prediction

and the main feature of this is to receive input data and

predict the relationship between input and target data.

Generally, the input values of the ANNs are obtained by

experiments, calculations, and so on. Thus, it can be con-

cluded that the ANNs are trying to map input data to the

target data to minimize the error between the predicted

solutions and the target solutions by iteratively changing

weight function values. Although, the basic goal of the
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optimization problem is to find a feasible solution which

optimize the objective function using the strategy of the

said MHA. Considering the unique structure of ANNs and

take up for using as an optimization algorithm, NNA

considers the current best solution as the target solution

(i.e., temporal optimal solution) and tries to minimize the

distance between the target solution and the other solutions

present in the population (i.e., moving other predicted

solutions towards the target solution). More details can be

found in the literature [60]. Although, the explanation and

process of NNA are described in the following sections:

1. Generate new solution: In NNA algorithm, a population

matrix X ¼ ðxijÞ ði ¼ 1; 2; . . .;Np; j ¼ 1; 2; . . .;DÞ of size

Np � D is randomly generated in the search space, where,

Np is the population size and D is the number of dimen-

sions. In the algorithm, every individual of the Np solutions

are given by Eq. (1).

xi ¼ ½xi1; xi2; . . .; xiD� for i ¼ 1; 2; . . .;Np ð1Þ

Then for every individual of the population Np, a weight

vector wi ¼ ½wi1;wi2; . . .;wiNp
� is generated which satisfy-

ing Eq. (2)

XNp

j¼1

wij ¼ 1; 0�wij � 1; i ¼ 1; 2; . . .;Np ð2Þ

After forming the weight matrix, a new solution has been

generated using Eqs. (3) and (4), where t is the current

number of iteration. Figure 1 describes the process of

population generation in NNA.

xtþ1
new;j ¼

XNp

i¼1

wt
ij � xti; j ¼ 1; 2; :::;Np ð3Þ

xtþ1
i ¼ xti þ xtþ1

new;j ð4Þ

2. Weight matrix update: Based on the best weight value

known so-called ‘‘target weight’’, the weight matrix can be

updated according to Eq. (5)

wtþ1
i;updated ¼ wt

i þ 2 � d � ðwt
Target � wt

iÞ for i ¼ 1; 2; . . .;Np

ð5Þ

Here d is the random number between 0 and 1. The best

solution obtained in each iteration is considered as the

target solution xtTarget and the associated weight is taken as

the target weight vector wt
Target. The target weight vector

wt
Target and the target solution xtTarget are updated simulta-

neously. If xtTarget is equal to xtkðk 2 ½1;Np�Þ at iteration t,

wt
Target ¼ wt

k.

3. Bias operator: The bias operator in the NNA helps to

explore the search space (exploration process) and per-

forms the same as the mutation operator in the GA. Gen-

erally, the bias operator restricts the algorithm from early

convergence and customizes a number of individuals in the

population. In the bias operator, the modification factor b is

initially set to 1 (i.e. 100 per cent of the chance to recon-

struct all individuals in the population) and its value has

been flexibly reduced at each iteration using the following

reduction formula given in Eq. (6).

btþ1 ¼ 0:99� bt ð6Þ

In NNA, there are two parts in bias operator named bias of

population and bias of weight matrix. Firstly, a random

number NBias
p is generated for bias of population according

to the Eq. (7)

NBias
p ¼ db� De ð7Þ

Then a set Pop is introduced by randomly selecting NBias
p

integers between 0 and D. Let, lb ¼ ðlb1; lb2; . . .; lbNp
Þ and

ub ¼ ðub1; ub2; . . .; ubNp
Þ represents the lower and the

upper bounds of design variables respectively. Then the

bias of population is described by the following Eq. (8)

Fig. 1 The process of population generation in NNA
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xti;PopðkÞ ¼lbPopðkÞ þ r � ðubPopðkÞ � lbPopðkÞÞ;
for k ¼ 1; 2; . . .;NBias

p

ð8Þ

where r is a random number between 0 and 1. Again, in

case of bias weight matrix, a random number NBias
w is firstly

generated, that is equal to db� Npe. Then a new set T is

formed consisting NBias
w randomly selected integers

between 0 and Np and the bias weight matrix is defined

according to Eq. (9)

wt
i;TðlÞ �Uð0; 1Þ; for l ¼ 1; 2; . . .;NBias

w ð9Þ

where U(0, 1) is a random number between 0 and 1.

4. Transfer operator: In the NNA, the transfer function

operator is transferring the current solution to a new

position to upgrade and develop better quality solutions to

the current best solution. Improvement of the solutions is

achieved by moving current new pattern solutions closer to

the target solution, which is expressed as the following

Eq. (10)

xtþ1
i ¼ xti þ 2 � r � ðxtTarget � xtiÞ for i ¼ 1; 2; . . .;Np

ð10Þ

where r is the random number between 0 and 1. Based on

the above descriptions, the pseudo-code of NNA is pre-

sented in Fig. 2.

2.2 Teaching–learning-based optimization
(TLBO)

Like other population-based algorithms, Rao et al. [49]

proposed an algorithm called TLBO based on the con-

ventional teaching–learning aspects of a classroom. In

TLBO, a group of learners is recognised as the population

and various subjects taught to learners represents different

design variables. The fitness value indicates the students

grade after learning and the student with the best fitness

value is witnessed as the teacher. This algorithm describes

two basic modes of learning: (1) through teacher (known as

teacher phase) and (2) interacting with the other learners

(known as the learner phase). The working procedure of the

TLBO algorithm is explained below -

2.2.1 Teacher phase

In the teacher phase, let us assume, at any iteration t, the

number of subjects or course offered to the learners is D

and Np denotes the population size (i.e. number of

Fig. 2 Pseudo-code for NNA
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learners). In this phase, the basic intention of a teacher is to

transfer knowledge among the students and also to

improvise the average result of the class. Here, the

parameter MeanjðtÞ indicates the mean result of the

learners in jth subject (j ¼ 1; 2; . . .;D) and at generation t,

it is given by Eq. (11).

MeanjðtÞ ¼ ½Mt
1;M

t
2; . . .;M

t
D� ð11Þ

Let XTeacherðtÞ indicates the learner with the best objective

function value at iteration t and is recognised as the tea-

cher. The teacher tries to give his/her maximum effort to

increase the knowledge of each student in the class, but

learners will gain knowledge according to their talent and

also by the quality of teaching. Then, the difference vector

between the teacher and the average results of students can

be calculated given by the Eq. (12).

GMean
i;j ðtÞ ¼ c� ½XTeacherðtÞ � TF �MeanjðtÞ� ð12Þ

where c indicates a random number lies between 0 and 1,

TF denotes the teaching factor and its value can be 1 or 2.

Based on the GMean
i;j ðtÞ, the existing solution of the popu-

lation can be updated and is given by the following

Eq. (13)

Xnew
i;j ðtÞ ¼ Xi;jðtÞ þ GMean

i;j ðtÞ ð13Þ

The new solution Xnew
i;j ðtÞ in generation t is accepted if it

found to be a better than the previous one.

2.2.2 Learner phase

In addition to learning from the teacher, interaction with

other students is also an effective way to enhance their

knowledge. A learner can also gain new information from

other learners having more knowledge than him or her. In

this phase, a student Xp randomly select classmate Xq

( 6¼ Xp) to obtain more knowledge. If Xp performs better, Xp

moves towards Xq; otherwise, moves away from it. The

following formulas (14) and (15) can be used to describe

this process:

Xnew
p;j ðtÞ ¼Xp;jðtÞ þ m� ðXq;jðtÞ � Xp;jðtÞÞ;

if f ðXq;jðtÞ\f ðXp;jðtÞÞ
ð14Þ

Xnew
p;j ðtÞ ¼ Xp;jðtÞ þ m� ðXp;jðtÞ � Xq;jðtÞÞ;

if f ðXq;jðtÞ[ f ðXp;jðtÞÞ
ð15Þ

Where m is a random number between 0 and 1 and

f ðXp;jðtÞÞ and f ðXq;jðtÞÞ are fitness values of Xp;jðtÞ and

Xq;jðtÞ respectively. The pseudocode of the basic TLBO is

given in Fig. 3.

2.3 Constraint handling technique

The standard form of the constrained optimization problem

is formulated as follows:

Optimize f ðxÞ
subject to; giðxÞ� 0; i ¼ 1; 2; . . .;M
xLk � xk � xUk ; k ¼ 1; 2; . . .; n

ð16Þ

where f(x) is the objective function, giðxÞ is the set of

inequality and equality constraints and x ¼ ½x1; x2; . . .; xn�
is the decision variables. xLk and xUk are the lower and upper

limits respectively for each xk; ðk ¼ 1; 2; . . .; n:Þ defined in

the search space S.

Often, it is very difficult to obtain the optimal solution of

the optimization problems by a MHA because of the

presence of constraints in it, and also some new solutions

generated by these methods may be infeasible which vio-

lates some constraints. To overcome this situation, a pen-

alty function method is introduced, which can convert a

constrained optimization problem to an unconstrained

optimization problem and as a result, a global feasible

solution can be achieved in an equitable time. The basic

goal of a penalty function is to penalize the infeasible

solutions. In this study, an exterior penalty function method

is used to penalize the infeasible solutions by penalizing

the objective value. Dealing with this penalty function, the

maximum constrained problem f(x) can be converted into

minimum problem F(x) as follows

minimize FðxÞ ¼ �f ðxÞ þ k
X

j2S
maxð0; gjðxÞÞ

Here, k represents the penalty coefficient.

2.4 Exploration and exploitation measurement

In this study, an in-depth empirical analysis is performed to

examine the searching behaviour of the proposed INNA in

terms of diversity. Through diversity measurement, it is

possible to measure explorative and exploitative capabili-

ties of the algorithm. In the exploration phase, the differ-

ence expands between the values of dimension D within

the population and hence swarm individuals are scattered

in the search space. On the other hand, in exploitation

phase, the difference reduces and swarm individuals are

clustered to a dense area. These two concepts are ubiqui-

tous in any MHAs. In case of finding the globally optimal

location, the exploration phase maximizes the efficiency in

order to visit unseen neighbourhoods in the search space.

Contrarily, through exploitation, an algorithm can suc-

cessfully converge to a neighbourhood with high possi-

bility of global optimal solution. A proper balance between
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this two abilities is a trade-off problem. For better illus-

tration about the exploration and exploitation concept, see

Fig. 4. According to Hussain [69], diversity in population is

measured mathematically, using the following Eqs. (17)

and (18):

DivjðtÞ ¼
PNp

i¼1 medðxjðtÞÞ � xi;jðtÞ
� �

Np

ð17Þ

DivðtÞ ¼
PD

j¼1 DivjðtÞ
D

ð18Þ

Where, xi;jðtÞ denotes the j-th dimension of i-th swarm

individual in Np population in iteration t, whereas

medðxjðtÞÞ is median of dimension j. DivjðtÞ and Div(t)

indicates the diversity in the j-th dimension and the average

of diversity of all dimensions respectively. After deter-

mining the population diversity Divt for all the iterations, it

is now possible to calculate the exploration and

Fig. 3 Pseudo-code for TLBO

Fig. 4 Candidate population

representation for exploration-

exploitation
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exploitation percentage ratios during search process, using

Eqs. (19) and (20) respectively:

Expl ð%Þ ¼ DivðtÞ
DivmaxðtÞ

� 100 ð19Þ

Expt ð%Þ ¼ jDivðtÞ � DivmaxðtÞj
DivmaxðtÞ

� 100 ð20Þ

where Expl(%) and Expt(%) denotes exploration and

exploitation percentages respectively for iteration t,

whereas DivmaxðtÞ is the maximum population diversity in

all iterations (T).

3 Proposed method: INNA

This section is divided into three subsections. Firstly, a new

logarithmic spiral search operator is introduced in Sect. 3.1.

The design structure and the implementation of INNA are

described in Sect. 3.2. Finally, exploration and exploitation

measurement of the proposed INNA is discussed.

3.1 New search operator

In original NNA, all the individuals followed the same

direction pattern which leads some individuals to move

aside from the promising region of the search space and as

a result, the convergence rate of the NNA decreases.

Therefore, we proposed a new logarithmic spiral search

operator in our proposed algorithm (INNA) to overcome

this issue and that can be expressed by the Eq. (21).

Xtþ1
i ¼ jXt

i � Xt
Targetj � ebh � cosð2phÞ þ Xt

Target ð21Þ

where b is a constant and taken as 1. This parameter

controls the specific shape of the spiral. In addition,

h ¼ 2ð1� t
TÞ � 1, is a parameter that decreases linearly

from 1 to - 1 as the number of iteration increases, where t

and T indicates the current iteration and the maximum

number of iterations, respectively. The updated positions of

obtained solutions in each iteration for the logarithmic

spiral search model are described in Fig. 5 and it is clear

from that figure, as the value of h switches from 1 to - 1,

current solutions pointedly move closer to the target solu-

tion. The exploitation capability of the algorithm is high-

lighted, and the convergence speed is further enhanced.

3.2 The proposed INNA

The detailed framework of the proposed algorithm INNA is

demonstrated in this section. The traditional NNA is simple

and effective swarm optimization technique that has been

used to solve various kinds of practical optimization

problems. Benefiting from the unique structure of artificial

neural networks, NNA has a great exploration ability.

Despite its strong global search ability, NNA has a

noticeable deficiency being its slow convergence speed as

it fails to manage the convenient balance between

exploitation and exploration and these shortcomings will

also reduce its applications in some optimization problems

with limitations. To get rid of these types of insufficiency,

the updating phase of the solution is enhanced by recon-

structing the basic formation of the NNA. During this

Fig. 5 Illustration of the logarithmic spiral search operator
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modification, the searching mechanism of the learner phase

of TLBO (Eqs. (14) and (15)) and a new logarithmic spiral

search operator (Eq. (21)) are implemented into the main

structure of the NNA. Further, CP1 and CP2 are two pre-

determined parameters lie in the range [0,1] which are

introduced in our proposed INNA to control the probability

of selecting the above searching strategies. The TLBO

algorithm having first convergence speed and much better

computational complexity than several existing algorithms

makes it an exceptional search algorithm. Thus, the

inclusion of TLBO and the new search operator adds more

flexibility to the NNA and subsequently, the exploration

and exploitation abilities of the NNA algorithm are also

improved. Therefore, in the search process of INNA,

TLBO and the logarithmic spiral search operator aims on

the local search and NNA accentuate on the global search,

that may help to maintain a convenient balance between

exploration and exploitation.

The process of implementation of the proposed INNA is

described as follows:

Step 1: Initialize the required parameters first, such

as, maximum number of iterations (T), pop-

ulation size (Np), the lower bound (lb) and

upper bound (ub) of the decision variables,

dimension (D) and fitness function f ð�Þ of the
problem. Additionally, initialize the control

parameters CP1 and CP2 with values 0.3 each.

Initially, the bias operator and the number of

iteration is set to 1 and 0 respectively.

Step 2: Based on the initialize parameters, a popula-

tion matrix X of size (Np � D) and a weight

matrix W of size (Np � Np) are generated

randomly and described in the Eq. (22) and

(23).

X ¼ ½xi1; xi2; . . .; xiD�

¼

x11 x12 . . . x1D

x21 x22 . . . x2D

. . . . . . . . . . . .

xNp1 xNp2 . . . xNpD

0
BBB@

1
CCCA

ð22Þ

W ¼ ½wi1;wi2; . . .;wiNp
�

¼

w11 w12 . . . w1Np

w21 w22 . . . w2Np

. . . . . . . . . . . .

wNp1
wNp2

. . . wNpNp

0

BBB@

1

CCCA
ð23Þ

Step 3: The fitness value of each individual of the

population is evaluated and the best one i.e.,

the optimal solution and the optimal weight is

selected.

Step 4: In this step, a new solution is generated and

the weight matrix is updated through Eqs. (3)–

(5).

Step 5: A random number is generated and if it is less

than bt, perform bias operator to update the

current solution. Otherwise, depending on the

controlling parameters CP1 and CP2, current

solution is updated either using the searching

operator of TLBO, or via logarithmic spiral

search operator or using the transfer operator.

Step 6: In this step, bt is updated and the current

population is evaluated. Then, the greedy

search mechanism is performed and the opti-

mal solution xtþ1
Target and the optimal weight

wtþ1
Target are selected.

Step 7: Go to step 3 if the termination criterion is not

satisfied, otherwise stop the process.

The pseudo-code and the detailed flowchart of the pro-

posed INNA has been shown in Figs. 6 and 7 respectively.

To evaluate the computational complexity of the pro-

posed INNA algorithm, the complexity of the algorithm is

calculated according to the worst-case complexity. Thus,

Big-O notation is used here as a common terminology.

Complexity is dependent upon population size (NP),

dimensions (D) and the maximum number of iterations (T).

In the initialization phase, the computational complexity of

INNA is OðNPÞ after initializing the population of NP

individuals. After that, the fitness of each individual is

evaluated in the main loop of the INNA algorithm, so the

computational complexity in this stage becomes OðT � NPÞ.
Finally, the current position of each search agent is updated

via different searching strategy in the population update

stage, so the computational complexity in this stage is

OðT � NP � DÞ. After complete analysis, the computational

complexity of INNA is calculated as follows:

OðINNAÞ ¼ OðInitializationÞ þ OðFitness evaluationsÞ
þ OðPopulation updateÞ

i.e., OðINNAÞ ¼ OðNPÞþ
OðT � NPÞ þ OðT � NP � DÞ ¼ OðT � NP � DÞ.

4 Problem formulation

In the present-day scenario, the demands for highly reliable

products and equipment are increasing day by day.

Therefore, in recent years, the requirement of reliability

analysis to evaluate the performance of products, equip-

ment, and several engineering systems is also increasing.

Reliability optimization can figure out these issues and

capable of finding a high-quality system that performs

efficiently and safely in a given period. In this section,
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Fig. 6 Pseudo-code for the proposed INNA

Fig. 7 Flowchart of the proposed INNA
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RRAPs are considered to explore the performance of the

INNA algorithm. Before introducing the RRAPs, we define

the following assumptions:

4.1 Assumptions

(1) The failure of a component of any subsystem is

independent of that of others i.e., the entire system

will not be damaged.

(2) There is only two states of the components and the

system i.e., operating or failure.

(3) All redundancy are considered as active redundancy

and are not repaired.

(4) Component associates like reliability, weight, cost,

volume etc. are fixed.

The system consists of m subsystems and in each subsys-

tem i, the least number active components required to

function is given by ni
min which constitutes the pre-speci-

fied lower bound of the redundancy level for that particular

subsystem. On the other hand, the upper bound of the

redundancy level for the i-th subsystem is denoted by ni
max,

which is either supplied in advance or can be produced by

solving the system constraints, if linear. The goal of the

problem is to maximize system reliability by computing the

number of redundant components ni and the components

reliability ri in each subsystem satisfying the given

resource constraints. The general form of the reliability–

redundancy problem can be formulated as the non-linear

integer-programming problem given by Eq. (24).

max RSðr1; r2; . . .; rm; n1; n2; . . .; nmÞ
s:t; gkðnÞ ¼

Pm

i¼1

gkiðnÞ� bk; for k ¼ 1; 2; . . .; l

0:5� ri � 1; nmin
i � ni � nmax

i ; i ¼ 1; 2; . . .;m:
nmin
i ; nmax

i ; ni 2 Zþ; i ¼ 1; 2; . . .;m:

ð24Þ

In this study, seven benchmark problems of the RRAP have

been considered such as series system, series-parallel sys-

tem, complex (bridge) system, overspeed protection sys-

tem, convex quadratic system, mixed series-parallel system

and large scale system with dimensions 36, 38, 40, 42 and

50. All the above problems are shown to maximize the

system’s reliability under different non-linear constraints

and can be stated as the mixed integer linear problems. For

each problem both the component reliability and the

redundancy allocation are to be examined simultaneously

and are formulated as follows.

P1. Series System [Fig. 8a] The series system is a nonlinear

mixed-integer programming problem, which has been used

in [14, 17, 18, 22, 70–73]. The problem formulation is

given as follows:

(b)

(c) (d)

(a)

Fig. 8 Layout of the series, series-parallel, bridge and overspeed protection systems
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maxRSðr; nÞ ¼
Y5

i¼1

Ri

s:t; g1ðnÞ ¼
X5

i¼1

vin
2
i � V � 0;

ð25Þ

g2ðnÞ ¼
X5

i¼1

ai
�1000

lnðriÞ

� �bi

ni þ exp
ni
4

� �h i
� C� 0; ð26Þ

g3ðnÞ ¼
X5

i¼1

wini exp
ni
4

� �
�W � 0;

0:5� ri � 1;1� ni � 5; ni 2 Zþ; i ¼ 1; 2; . . .; 5

ð27Þ

The parameters ai and bi are physical features of system

components. Constraints g1ðnÞ, g2ðnÞ, and g3ðnÞ represents
volume, cost and weight constraint respectively. The

coefficients of the series system are shown in the literature

[18] and Table 2.

P2. Series-Parallel System [Fig. 8b] The Series–parallel

system has been studied in many recent publications study

such as [14, 17–19, 21, 22, 70–79]. The mathematical

formulation is as follows:

maxRSðr; nÞ ¼ 1� ð1� R1R2Þ
½1� ð1� ð1� R3Þð1� R4ÞÞR5�

subject to, the same constraint given by the Eqs. (25), (26)

and (27) respectively. And also,

0:5� ri � 1; 1� ni � 5; ni 2 Zþ; i ¼ 1; 2; . . .; 5: The

coefficients of the series-parallel system are shown in the

literature [18] and Table 2.

P3. Complex (bridge) system [Fig. 8c] Complex (bridge)

system consists of five subsystems, which is a classical

reliability-redundancy problem, and it has been investi-

gated in [14, 17, 18, 21, 25, 70–72, 74, 77, 79, 80]. The

formulation of the complex (bridge) is described as

follows:

maxRSðr; nÞ ¼
R1R2 þ R3R4 þ R1R4R5 þ R2R3R5 � R1R2R3R4 � R1R2R3R5

� R1R2R4R5 � R2R3R4R5 þ 2R1R2R3R4R5

subject to, the same constraint given by the Eqs. (25), (26)

and (27) respectively. And also,

0:5� ri � 1; 1� ni � 5; ni 2 Zþ; i ¼ 1; 2; . . .; 5: The

coefficients of the complex system are shown in the liter-

ature [18] and Table 2.

P4. Overspeed protection system for a gas turbine [Fig. 8d]

The fourth problem is considered for the RRAP of the

Overspeed protection system for a gas turbine. Overspeed

detection is continuously provided by the electrical and

mechanical systems. It is necessary to cut off the fuel

supply in case of an overspeed occurs and thus, 4 control

valves (V1-V4) must be closed. The control system is

modeled as a 4-stage series system. This problem has been

considered in [14, 17, 18, 21, 71, 72, 76, 77, 79, 80]. This

reliability problem is formulated as follows:

Table 2 Values of parameters used in the literature

i 105ai bi vi wi C V W

Parameter used for P1 and P3

1 2.330 1.5 1 7 175 110 200

2 1.450 1.5 2 8

3 0.541 1.5 3 8

4 8.050 1.5 4 6

5 1.950 1.5 2 9

Parameter used for P2

1 2.500 1.5 2 3.5 175 180 100

2 1.450 1.5 4 4.0

3 0.541 1.5 5 4.0

4 0.541 1.5 8 3.5

5 2.100 1.5 4 3.5

Parameter used for P4

1 1.0 1.5 1 6 400 250 500

2 2.3 1.5 2 6

3 0.3 1.5 3 8

4 2.3 1.5 2 7
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maxRSðr; nÞ ¼
Y4

i¼1

Ri

s:t; g1ðnÞ ¼
X4

i¼1

vin
2
i � V � 0;

g2ðnÞ ¼
X4

i¼1

ai
�1000

lnðriÞ

� �bi

½ni þ exp
ni
4

� �
� � C� 0;

g3ðnÞ ¼
X4

i¼1

wini exp
ni
4

� �
�W � 0

0:5� ri � 1; 1� ni � 5; ni 2 Zþ; i ¼ 1; 2; . . .; 5

The coefficients of the overspeed protection system are

shown in the literature [18] and Table 2.

P5. Convex quadratic reliability problem This problem is

an integer programming with convex quadratic constraints,

which has been investigated by [14, 77, 81, 82]. The

detailed mathematical formulation of this problem is as

follows:

maxRSðr; nÞ ¼
Y10

i¼1

ð1� ð1� riÞniÞ

s:t; gjðnÞ ¼
Y10

i¼1

ðajini2 þ CjiniÞ� bj

ni 2 ½1; 6�;i ¼ 1; 2; . . .; 10: j ¼ 1; 2; 3; 4

The parameters ri, aji and Cji are generated from uniform

distributions that lies between [0.80, 0.99], [0,10] and

[0,10] respectively. A randomly generated set of values of

these coefficients are given as follows: ri = [0.81, 0.93,

0.92, 0.96, 0.99, 0.89, 0.85, 0.83, 0.94, 0.92] ;

bj = (2.0 �1013, 3.1�1012, 5.7�1013, 9.3�1012);

a =

2 7 3 0 5 6 9 4 8 1

4 9 2 7 1 0 8 3 5 6

5 1 7 4 3 6 0 9 8 2

8 3 5 6 9 7 2 4 0 1

0
BB@

1
CCA;

C =

7 1 4 6 8 2 5 9 3 3

4 6 5 7 2 6 9 1 0 8

1 10 3 5 4 7 8 9 4 6

2 3 2 5 7 8 6 10 9 1

0

BB@

1

CCA

P6. Mixed series-parallel system The mixed series-parallel

system is studied in [14, 77, 81, 82] and formulated as

follows.

maxRSðr; nÞ ¼
Y15

i¼1

ð1� ð1� riÞniÞ

s:t; g1ðnÞ ¼
X15

i¼1

cini � 400� 0

g2ðnÞ ¼
X15

i¼1

wini � 414� 0

ni � 1; ni 2 Zþ; i ¼ 1; 2; . . .; 15:

The coefficients of the mixed series-parallel system are

taken from the literature [12] and are listed in Table 3.

P7.Large-scale system reliability problem Large-scale

system reliability problem has been studied by

[17, 26, 70, 73, 77, 78, 81] and the detailed mathematical

formulation of this problem is as follows.

maxRSðr; nÞ ¼
Ym

i¼1

Ri ð28Þ

s:t; g1ðnÞ ¼
Xm

i¼1

ain
2
i � 1þ h

100

� �Xm

i¼1

ail
2
i � 0 ð29Þ

g2ðnÞ ¼
Xm

i¼1

bi exp
ni
2

� �
� 1þ h

100

� �Xm

i¼1

bi exp
li
2

� �
� 0

ð30Þ

g3ðnÞ ¼
Xm

i¼1

cini � 1þ h
100

� �Xm

i¼1

cili � 0 ð31Þ

Table 3 Parameter used for P6
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ri 0.90 0.75 0.65 0.80 0.85 0.93 0.78 0.66 0.78 0.91 0.79 0.77 0.67 0.79 0.67

ci 5 4 9 7 7 5 6 9 4 5 6 7 9 8 6

wi 8 9 6 7 8 8 9 6 7 8 9 7 6 5 7

Table 4 Available system resources for each system for P7

n i 1 2 3 4

36 bi 391 257 738 1454

38 bi 416 278 778 1532

40 bi 435 289 823 1621

42 bi 458 306 870 1712

50 bi 543 352 1040 2048
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g4ðnÞ ¼
Xm

i¼1

di
ffiffiffiffi
ni

p � 1þ h
100

� �Xm

i¼1

di
ffiffiffi
li

p
� 0

1� ni � 10; ni 2 Zþ; i ¼ 1; 2; . . .;m

ð32Þ

Here, li indicates the lower bound of ni. The parameter h
indicates the tolerance error that implies 33% of the min-

imum requirement of each available resource li. The

average minimum resource requirements for the reliability

system with m subsystems is given by
Pm

i¼1 gjiðliÞ; ðj ¼
1; . . .; 4Þ and the average values of which is given by

bj ¼ 1þ h
100

	 
Pm
i¼1 gjiðliÞ. In this way, we set the available

system resources [26] for reliability systems with

36, 38, 40, 42, and 50 subsystems, respectively, as shown

in Tables 4 and 5.

5 Experimental results and discussions

This section presents the results of all of the above-men-

tioned reliability optimization problems analysed by the

proposed INNA algorithm. It is divided into the following

four parts. Section 5.1 introduces the experiment settings

including parameters settings and maximum possible

improvement (MPI). Section 5.2 describes the results

obtained by the proposed algorithm and compared the

performance with a number of existing approaches that are

presented Table 6. The performance in terms of population

diversity and the exploration-exploitation measurement of

INNA and the conventional NNA are described in Sect.

5.3. Finally, the statistical analysis of the proposed algo-

rithm and all compared algorithms are illustrated in Sect.

5.4.

5.1 Experiment settings

5.1.1 Parameter settings

The proposed algorithm is implemented in MATLAB

(2015a) on the personal laptop with AMD Ryzen 3 2200 U

with Radeon Vega Mobile Gfx 2.50GHz and 4.00 GB of

RAM in Windows 10. In this study, to compare the results

by INNA statistically with the other existing optimizers

like, ABC, NNA, TLBO, SSA, HHO, SMA, and SCA, the

initial population sizes were set as 100 for each algorithm

and also the parameters of these compared algorithms are

considered as: ABC (Maximum number of trials i.e., limit

= 100), NNA (modification factor, b = 1), TLBO (teaching

factor, TF = 1 or 2), HHO (b = 1.5), SMA (control

parameter, z = 0.03), SCA (parameter, a = 2); Due to the

stochastic nature of metaheuristics algorithms, it might be

unreliable if one considers the results obtained in a single

run. Therefore, 30 independent runs were performed for allTa
bl
e
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applied algorithms ABC, NNA, TLBO, SSA, HHO, SMA,

SCA and INNA for solving every reliability optimization

problems. In our experiment, for every independent run,

the maximum number of iterations for each algorithm is

taken as 1500.

5.1.2 Maximum possible improvement (MPI)

For each reliability optimization problem, the system reli-

ability is to be maximized by computing both the compo-

nents reliability ri and number of redundant components ni
for each subsystem. During the computational procedure,

the redundant components ni are firstly considered as real

variables and after completion of the optimization process,

the real values are converted to their respective nearest

integer values. In this study, we introduce the maximum

possible improvement (MPI) index to evaluate the perfor-

mance of INNA and is expressed by the Eq. (33).

MPI ¼ RS ðINNAÞ � RS ðOthersÞ
1� RS ðOthersÞ

ð33Þ

Where RSðINNAÞ denotes the best optimal solution

obtained by the proposed algorithm and RSðOthersÞ implies

the best result obtained by the other compared approaches

and the greater MPI indicates greater improvement.

5.2 INNA comparison with existing optimizers

This section describes the performance evaluation of pro-

posed INNA in terms of best solution and the maximum

possible improvement value. The results obtained by the

proposed algorithm is compared with the other existing

optimizers and the results of the compared algorithms are

taken from their respective papers. The comparative anal-

ysis for solving the reliability problems are presented in

Tables 7, 8, 9, 10, 11, 12.

For the series system (P1), Table 7 shows that the best

optimal solution obtained by the proposed INNA is

0.931682387907051, which is preferable to all compared

algorithms GA [14], SCA [70], SAA [72], IA [22], ABC1

[79], IPSO [17], CS2 [18], PSO [71], NAFSA [84], SSO

[71], PSSO [71], MICA [85] with the improvements 3.24E-

01 %, 3.50E-03 %, 4.65E-01 %, 7.01E-05 %, 5.68E-04 %,

3.50E-03 %, 4.13E-04 %, 3.87E?01 %, 1.76E-04 %,

2.63E-01 %, 1.33E-04 %, and 4.39E-03 % respectively.

Table 8 presents that the best result for the series-parallel

system (P2) obtained by the proposed method is

0.9999844228326 and also better than the algorithms given

by GA [14], SCA [70], IA [22], ABC1 [79], and PSO [71]

by the improvement 5.02E?01 %, 39.7%, 34.2%, 31.3%

and 89.0% respectively. Again, for the rest of the

Table 6 Some existing meta-

heuristic algorithms for solving

reliability optimization

problems

Algorithms Methods Authors and published year

1. SCA Soft computing approach Gen and Yun [70]

2. SAA Simulated annealing algorithm Kim et al. [72]

3. GA Genetic algorithm (GA) Yokota et al. [14]

4. IA Immune based two-phase approach Hsieh and You [22]

5. ABC1 Artificial bee colony algorithm Yeh and Hsieh [79]

6. IPSO Improved particle swarm optimization Wu et al. [17]

7. CS1 Cuckoo search (CS) algorithm Valian and Valian [73]

8. CS2 Cuckoo search algorithm Garg [18]

9. PSO/SSO/PSSO Particle-based swarm optimization algorithm Huang [71]

10. ICS Improved CS algorithm Valian et al. [78]

11. CS-GA Hybrid CS and genetic algorithm Kanagaraj et al. [19]

12 ABC2 Artificial bee colony Garg et al. [74]

13. INGHS Improved novel global harmony search Ouyang et al. [83]

14. MPSO Modified particle swarm optimization Liu and Qin [76]

15. EBBO Efficient biogeography-based optimization Garg [21]

16. EGHS Effective global harmony search algorithm Zou et al. [25]

17. NMDE Novel modified DE Zou et al. [80]

18. NGHS Novel global HS algorithm Zou et al. [26]

19. CPSO Co-evolutionary PSO He and Wang [75]

20. IABC Improved ABC algorithm Ghambari and Rahati [81]

21. NAFSA Novel artificial fish swarm algorithm He et al. [84]

22. MICA Modified imperialist competitive algorithm Afonso et al. [85]
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algorithms SAA [72], IPSO [17], CPSO [75], CS1 [73],

ICS [78], CS-GA [19], ABC2 [74], MPSO [76], INGHS

[77], CS2 [18], DE [86], EBBO [21], and NAFSA [84], the

proposed INNA gives better results with MPI 33.3% for

each. Further, the optimal redundant component by INNA

for this problem P2 is (3,2,2,2,4) which is completely

different from the other approaches. It can be observed

from Table 9 that the optimal solution for the complex

system (P3) produced by INNA is 0.9998896373034 which

is better than the best result given by the other compared

algorithms and also have most symbolic improvement

8.67%, 1.78%, 47.6%, 0.259% and 66.4% over the results

given by GA [14], SCA [70], SAA [72], IA [22], and PSO

[71] respectively.

It can be noticed in Table 10, the best optimal solution

for overspeed protection system (P4) is

0.9999546746307478 that is obtained by INNA. In fact, the

proposed algorithm has succeeded to improve considerably

the best known solution found so far by the ten competitive

algorithms. By implementing the new search operator,

INNA provide more accurate solutions as well as makes

the search balance in favour of exploitation behaviour.

Table 10 depicts that the improvement indices

1.76E?01%, 1.78E-04%, 1.02E-02%, 1.02E-0%, 7.30E-

04%, 1.39E-03%, 1.39E-03%, 5.24E?01%, 1.02E-02%,

and 3.60E-03% over the results by SAA [72], IA [22],

IPSO [17], NMDE [80], INGHS [77], CS2 [18], EBBO

[21], PSO [71], DE [86] and MICA [85] respectively.

Table 11 indicates that INNA executes the same or better

than the other existing algorithms given in this literature for

solving the convex quadratic reliability problem (P5) and

the mixed series-parallel system (P6) in terms of best

results. Table 12 reports the test results of the problem P7.

It can be seen that the INNA algorithm gives equal or better

results compare to other algorithms in terms of the best

objective function value for the large-scale problems of

dimensions 36,38,40,42 and 50. But in case of dimension

40 and 42, it comes with weaker objective value than two

existing algorithms INGHS and IABC. It should be

observed that even very small up-gradation in the relia-

bility is important and valuable for the efficiency of the

system and it is generally a difficult task to do in real-life

applications.

In order to show the convergence performance of the

stated algorithm over several existing algorithms like SSA,

SCA, SMA, HHO, ABC, TLBO, and NNA, we vary the

best solution for each considered problem and the results

are plotted in Fig. 9. From this convergence analysis, we

can conclude that, as the iteration number increases, the

proposed INNA algorithm also shows better performance

than the existing algorithms.
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5.3 Diversity and exploration-exploitation
analysis

For an effective in-depth performance analysis, the popu-

lation diversity and the exploration-exploitation measure-

ment in INNA and the conventional NNA are presented in

Table 13 while solving the reliability optimization prob-

lems. A graphical presentation on comparison of diversity

measurement and the exploration-exploitation phases

between the proposed INNA and the basic NNA are also

given in Figs. 10 and 11 respectively. According to

Table 13, the proposed INNA algorithm keeps the popu-

lation diversity high compared to the conventional NNA

for all the reliability problems. In case of solving P1 to P6,

INNA maintained population diversity value 14.4026,

14.2185, 14.4711, 12.5628, 20.1557, and 38.7695 which is

Table 12 Comparison of results for the Large scale system (P7) with other results in the literature

Dim Methods VTV RSðr; nÞ Slackðg1Þ Slackðg2Þ Slackðg3Þ Slackðg4Þ

36 SCA (5, 10, 15,21, 33) 0.519976 � � � �
NGHS (5, 10, 15, 21, 33) 0.519976 � � � �
IPSO (5, 10, 15, 21, 33) 0.519976 � � � �
ICS (5, 10, 15, 21, 33) 0.519976 � � � �
CS1 (5, 10, 15, 21, 33) 0.51997597 � � � �
INGHS (5, 10, 15, 21, 33) 0.51997597 1 49.125763 109 301.353247

IABC (5, 10, 15, 21, 33) 0.51997597 1 49.125763 109 301.353247

INNA (5, 10, 15, 21, 33) 0.51997597 1 49.125763 109 291.353247

38 SCA (10,13,15,21 ,33) 0.510989 � � � �
NGHS (10,13,15,21 ,33) 0.510989 � � � �
IPSO (10,13,15,21 ,33) 0.510989 � � � �
ICS (10,13,15,21 ,33) 0.51098860 � - � �
INGHS (10,13,15,21 ,33) 0.5109885965 1 53.638551 115 317.039538

IABC (10,13,15,21 ,33) 0.5109885965 1 53.638551 115 317.039538

INNA (10, 13, 15, 21, 33) 0.5109885965 1 53.638551 115 317.039538

40 SCA (5, 10, 13, 15, 33) 0.503292 � � � �
NGHS (5, 10, 13, 15, 33) 0.503292 � � � �
IPSO (5, 10, 13, 15, 33) 0.503292 � � � �
ICS (5, 10, 13, 15, 33) 0.5032926 � � � �
CS1 (4, 10, 11, 21, 22, 33) 0.50599242 � � � �
INGHS (4, 10, 11, 21, 22, 33) 0.50599242 0 51.047142 119 333.240549

IABC (4, 10, 11, 21, 22, 33) 0.50599242 0 51.047142 119 333.240549

INNA (5, 10, 13, 15, 33) 0.503292493 3 58.534065 128 330.282179

42 SCA (4, 10, 11, 15, 21, 33) 0.479664 � � � �
NGHS (4, 10, 11, 15, 21, 33) 0.479664 � � � �
IPSO (4, 10, 11, 15, 21, 33) 0.479664 � � � �
ICS (4, 10, 11, 15, 21, 33) 0.479664 � � � �
CS1 (4, 10, 11, 15, 21, 33) 0.47966355 � � � �
INGHS (4, 10, 11, 15, 21, 33) 0.47966355 2 52.718250 129 354.583694

IABC (4, 10, 11, 15, 21, 33) 0.47966355 2 52.718250 129 354.583694

INNA (5, 10, 13, 15, 42) 0.47663109 2 61.274735 137 351.211111

50 SCA (4, 10, 15, 21, 33, 45, 47) 0.405390 � � � �
NGHS (4, 10, 15, 21, 33, 45, 47) 0.405390 � � � �
IPSO (4, 10, 15, 21, 33, 45, 47) 0.405390 � � � �
ICS (4, 10, 15, 21, 33, 42, 45) 0.40695474 � � � �
CS1 (4, 10, 15, 21, 33, 42, 45) 0.40695474 0 61.955982 154.0 433.914647

INGHS (4, 10, 15, 21, 33, 42, 45) 0.40695474 0 61.955982 154.0 433.914646

IABC (4, 10, 15, 21, 33, 42, 45) 0.40695474 0 61.955982 154.0 433.914647

INNA (4, 10, 15, 21, 33, 42, 45) 0.40695474 0 61.955982 154.0 433.914647
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Fig. 9 Comparison of Convergence curve of INNA with SSA, SCA, SMA, HHO, ABC, TLBO and NNA
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relatively higher than diversity values 9.5045, 9.6495,

9.5714, 8.5150, 13.2548 and 21.6344 in NNA respectively.

Moreover, Table 13 also reveals that mostly INNA main-

tained exploration percentage lower than exploitation and

maintain a proper balance between exploration and

exploitation on all of the reliability problems. During the

search process, it is necessary to keep the value of popu-

lation diversity at a large number and this could help the

solutions jump out a local optima. The above discussed

experimental study shows that the performance of the

proposed INNA is improved compared to existing NNA by

the population diversity enhancement. This discussion can

be further assimilated via Fig. 10 for diversity measure-

ment and Fig. 11 for exploration and exploitation beha-

viours in the proposed algorithm.

5.4 Statistical analysis

In addition, to analyze whether or not the results obtained

by the proposed INNA algorithm are statistically signifi-

cant, here we consider the following quality indices

described below:

I. Value-based method and tied ranking: The solution

quality in terms of standard deviation and mean value is

described here. The lower mean value and standard devi-

ation indicates that the algorithm has a stronger global

optimization capability and more stability. Also, Tied rank

(TR) [87] is used here to compare intuitively the perfor-

mance between the considered methods. In this study, the

algorithm with the best mean value is assigned to rank 1;

the second-best get rank 2, and so on. Besides, two algo-

rithms having same results share the average of ranks. The

algorithm with the smaller rank indicates that it is better

than the compared algorithms.

In view of the above two quality parameters, the sta-

tistical results achieved for INNA and all other existing

algorithms (like SSA, SCA, SMA, HHO, ABC, TLBO,

NNA) are computed and summarized in Table 14 for the

considered problems. In this table, the mean, Std and

median of the best fitness value after the 30 independent

runs of each algorithm is reported. From this table, it is

observed that the proposed algorithm is rank 1 followed by

the other algorithm, which shows its stability and conver-

gence for all of the reliability issues. Also, we can sort the

ranking, as per their achievement, in the order: INNA,

TLBO, SMA, SSA, NNA/ABC, HHO and SCA.

The ranking order in Table 14 indicates that the TLBO

algorithm shows strong competitiveness and is the second-

best on all test issues except Overspeed system. It can

therefore be argued that INNA is an efficient and effective

method for solving various kinds of optimization problems.

Figure 12 provides a better visualization of the ranking of

all compared algorithms for solving RRAPs.

Apart from this analysis, a statistical test named Wil-

coxon signed-rank test is performed to check the statistical

significance of the results obtained from the proposed

algorithm.

II. Wilcoxon signed-rank test This statistical test-based

method [88] is used to compare the performance of the

proposed INNA with the other algorithms. Also, it has

several advantages, compared to the t-test, such as: (1)

normal distributions is not considered here for the sample

tested; (2) It’s less affected and more responsive than the t-

test. This advantages makes it more powerful test for

comparing two algorithms [89–91]. Wilcoxon signed-rank

test is performed here with a significance level a ¼ 0:05

and the obtained results are shown in Table 15. In this

table, ‘‘H ’’ scored ‘‘1’’ if there is a symbolic difference

between INNA and the existing algorithm and also ‘‘H’’ is

labelled as ‘‘0’’ if there is no significant difference. Again,

the sign of ‘‘S’’ is taken as ‘‘þ’’ if the proposed algorithm is

superior to the compared algorithm and ‘‘-’’ is assigned to

‘‘S’’ if INNA is inferior to the compared algorithm. It is

noted that the proposed algorithm INNA dominates all

compared algorithms on all reliability problems. Thus,

from this analysis, we conclude that the proposed INNA

can obtain better solutions than the comparative algo-

rithms, which means that the proposed method has a better

global performance optimization capability than the com-

parable algorithms.

III. Kruskal-Wallis and Multiple Comparison Test The

multiple comparison test (MCT) test is performed here to

justify whether the proposed INNA algorithm is better than

the other optimizers (e.g., SSA, SCA, SMA, HHO, ABC,

TLBO, NNA). For this purpose, we perform a non-para-

metric Kruskal-Wallis test (KWT) between the best values

obtained for each problem considered. This test was used to

investigate the hypothesis that the different independent

samples of the distributions had or did not have the same

Table 13 Diversity and Exploration-Exploitation measurement on

reliability problems

Problems INNA NNA

Diversity Expl%:Expt% Diversity Expl% : Expt%

P1 14.4026 48:52 9.5045 35:65

P2 14.2185 48:52 9.6495 36:64

P3 14.4711 48:52 9.5714 35:65

P4 12.5628 46:54 8.5150 36:64

P5 20.1557 49:51 13.2548 35:65

P6 38.7695 51:49 21.6344 35:65
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estimates. On the other hand, the MCT is used to determine

the significant difference between the different estimates

by performing multiple comparisons using one-way

ANOVA. To addressed this, the significance of the pro-

posed INNA algorithm results are compared with the

compared algorithms results. The optimized results

Fig. 10 Comparison on Diversity measurement between NNA and INNA on reliability problems (P1–P7)
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Fig. 11 Exploration-exploitation measurement of NNA and INNA on reliability problems (P1–P7)
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between the pairs of the different algorithms are summa-

rized in Table 16. In this table, the first column represents

the problem considered, while the second column indicates

the indices between the pairs of the different samples. The

third and fifth column describes the boundary of the true

mean difference between the samples considered at a 5%

level of significance. At the end of the last column, the

p-value of the test obtained by KWT corresponds to the

null hypothesis of equal means.

The box-plot and the MCT graphs for the problems (P1 -

P6) considered are shown in Fig. 13. In this figure, the left

graph describes the boxes with the values of the 1st, 2nd

and 3rd quarters, while the vertical lines that extend the

boxes are called the whisker lines that provide information

on the re-imagining values. On the other hand, on the right

side of this figure, the MCT makes a multiple comparison

between the different pairs and makes a significant differ-

ence between them. The blue line on these graphs repre-

sents the proposed INNA results and the red line indicates

which algorithm results (such as SSA, SCA, SMA, HHO,

ABC, TLBO, NNA) are statistically significant from the

proposed INNA. For example, in case of series system

(P1), as shown in Fig. 13 we calculate that the existing

algorithms (SSA, SCA, SMA, HHO, and ABC) have sta-

tistically significant resources from the INNA algorithm.

Furthermore, the vertical lines (right/left, shown in black

colour) shown around the INNA results (displayed in blue

colour) describe the marginal area to show which method is

statistically better or not considered to be problematic.

From this analysis and the results are shown in Fig. 13 and

Table 16, we conclude that the performance of the pro-

posed algorithm is statistically significant with the other

algorithms. The best results are therefore provided by the

INNA.

6 Conclusions and future work

In practical life, we have to handle various types of com-

plex optimization problems that appears in the field of

engineering and as a result, an efficient and accurate

methods are required to deal with them. This paper intro-

duces an improved neural network algorithm (INNA) for

Fig. 11 continued
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solving some RRAP with non-linear resource constraints.

In this study, INNA is proposed by implementing a new

logarithmic spiral search operator and the searching strat-

egy of the learner phase of TLBO to the basic NNA to

make a proper balance between exploration and exploita-

tion. Here, the basic NNA looks after the exploration part

and the presence of a new search operator and the

searching strategy of TLBO increases the exploitation

capability of the algorithm, which makes the proposed

algorithm an efficient, effective, and more acceptable for

solving COPs.

A comprehensive set of seven well-known reliability

optimization problems consist of series system, series-

parallel system, complex systems, overspeed protection

systems, convex quadratic system, mixed series-parallel

system and large scale system are employed to examine the

performance of INNA and compared with several reported

algorithms in the literature. All of these problems consid-

ered are mixed variables – discrete, continuous and integer.

The results are also compared statistically with 7 compet-

itive MHAs including SSA, SCA, SMA, HHO, ABC,

TLBO, and NNA. According to the experimental results,

the proposed INNA outperforms the compared algorithms

for all reliability issues in terms of best and mean values. In

addition, in order to eliminate the stochastic nature of the

algorithm, we perform several statistical tests, namely a

Tied-rank test and a Wilcoxon signed-rank test for P1 to

P6. All of the above discussions and evaluations in this

Fig. 12 Graphical illustration of overall ranking of compared algorithms for solving reliability problems
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Fig. 13 Box plot of objective function using the reported optimizers
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study ensure that the proposed algorithm is a competitive

approach, not only that it performs well but also that it can

effectively achieve the best results for all reliability

problems.

In future work, we will broaden the proposed INNA to

solve more complex design and constraint optimization

problems. We are also trying to expand the approach by

using the neural network and applying it to solve different

kinds of problems, such as the stock market, finance,

decision-making, etc. Further, we will try to improve the

other MHAs by the proposed reinforcement searching

mechanism.
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