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We proposed a highly versatile two-step transfer learning pipeline for predicting the gene
signature defining the intrinsic breast cancer subtypes using unannotated pathological
images. Deciphering breast cancer molecular subtypes by deep learning approaches could
provide a convenient and efficient method for the diagnosis of breast cancer patients. It
could reduce costs associated with transcriptional profiling and subtyping discrepancy
between IHC assays and mRNA expression. Four pretrained models such as VGG16,
ResNet50, ResNet101, and Xception were trained with our in-house pathological images
from breast cancer patient with recurrent status in the first transfer learning step and TCGA-
BRCA dataset for the second transfer learning step. Furthermore, we also trained
ResNet101 model with weight from ImageNet for comparison to the aforementioned
models. The two-step deep learning models showed promising classification results of
the four breast cancer intrinsic subtypes with accuracy ranging from 0.68 (ResNet50) to
0.78 (ResNet101) in both validation and testing sets. Additionally, the overall accuracy of
slide-wise prediction showed even higher average accuracy of 0.913 with ResNet101
model. The micro- andmacro-average area under the curve (AUC) for these models ranged
from 0.88 (ResNet50) to 0.94 (ResNet101), whereas ResNet101_imgnet weighted with
ImageNet archived an AUC of 0.92. We also show the deep learning model prediction
performance is significantly improved relatively to the commonGenefu tool for breast cancer
classification. Our study demonstrated the capability of deep learning models to classify
breast cancer intrinsic subtypes without the region of interest annotation, which will facilitate
the clinical applicability of the proposed models.

Keywords: deep learning, convolutional neural networks, breast cancer intrinsic subtypes, pathology, whole slide
image, PAM50
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INTRODUCTION

Breast cancer is the most common female malignancy in Taiwan,
and treatment outcomes have improved enormously in the past
decade, attributed to the wide application of screening
mammography (early detection at the preclinical stage) and
advances in systemic therapy. The use of adjuvant therapy is
determined by immunohistochemical (IHC) parameters such as
estrogen receptor (ER), progesterone receptor (PR), and human
epidermal growth factor receptor II (HER2) status. These factors
not only determine which systemic therapy should be given but
also predict treatment responses. These pathological factors,
however, fail to provide full explanations regarding prognostic
heterogeneity observed within each clinical stratum (1). One-
fourth of HER2-overexpressing breast tumors eventually develop
resistance to trastuzumab, which is a monoclonal anti-HER2
antibody, and endocrine therapy alone is not sufficient for some
high-risk hormone-receptor-positive breast cancers. Therefore,
an unmet need remains for breast cancer clinic-pathological
subtypes, which may be compensated by gene expression-based
molecular subtypes.

In the past two decades, gene expression assays have
reclassified breast cancers into molecular subtypes based on
whole-transcriptome profiles, such as the “intrinsic subtypes”
proposed by the Stanford/University of North Carolina group.
Perou et al. filtered 476 intrinsic genes from 65 breast cancers
and healthy tissues; four subclasses, namely, basal-like, Erb-B2+,
normal breast-like, and luminal epithelial/ER+, were identified
through clustering analysis (2, 3). The luminal epithelial/ER+
subtype was further subdivided into luminal A and luminal B
types, with the latter exhibiting aggressive tumor behavior and
worse survival (4). “Intrinsic” genes were defined as those with
the highest pair-wise variations between different patients but
with the least variations within the same subject. Distinct
generations of intrinsic genes have emerged, and the latest one,
prediction analysis of microarray 50 gene set (PAM50), was
shown to have prognostic and predictive power independent of
conventional IHC factors (5, 6). IHC surrogates for intrinsic
subtypes using tumor grade instead of Ki-67 were proposed
during the 2011 St. Gallen experts’ panel, which demonstrated
that gene expression-based molecular subtypes could be
approximated by IHC assays (7). However, there was no
pathological morphology-driven predictive algorithm for
molecular taxonomy until the era of machine learning.

Artificial intelligence (AI) plays a crucial role in biomedical
image analyses and cancer research (8, 9). Certain breast cancers
behave aggressively, resulting in increased patient morbidity and
poor prognosis (10). There are distinguishable cytological
features from certain breast carcinomas such as aggressive
variants of hereditary breast cancer, poorly differentiated
metaplastic carcinoma (11), and triple-negative breast cancer
(12). BRCA1-associated breast cancers are commonly poorly
differentiated, have “medullary features” (a syncytial growth
pattern with pushing margins and lymphocytic responses), and
are biologically similar to the basal-like subtype defined by gene
expression profiling (13). BRCA2-associated breast cancers also
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tend to be poorly differentiated but are more often ER-positive
than BRCA1 mutant counterparts (14). With the availability of
digitized whole-slide images (WSIs), it is possible to develop an
assisted deep learning based–tool for classification of breast
cancer subtypes using these images.

A machine learning algorithm can be applied to
histopathological images of breast cancer specimens to see if it
can pick out distinguishing features (14). In breast cancer
research, there are several gene expression panels to classify
and/or predict subtypes, outcomes, or patient survival such as
PAM50, which used mRNA expression values of 50 preselected
genes (15), while MammaPrint using 70-gene signatures (16),
BluePrint using 80-gene signatures (17), and Oncotype DX using
21-gene signatures (18). Recently, there is a growing number of
literatures regarding the applications of machine learning and
deep learning to predict the mRNA gene expression values using
hematoxylin and eosin staining (19) or (synthetic) gene signature
prediction using RNA sequencing and clinical information (20).
The capacity in predicting gene expression signature taxonomy is
extremely important due to the high correlation between these
gene panels and patient outcomes or subtypes. The clinical
significance of using a low-cost, rapid, and minimal invasive
data source such as histopathological WSIs in predicting gene
expression signature-based subtype cannot be overemphasized
and has been successfully demonstrated (21–23).

Cancer, particularly breast cancer, is a heterogenous disease.
Each cancer type might require a specific deep learning model to
successfully predict the targets such as subtypes or outcomes
stratification. Consequently, it would be of great interest to
clinicians if gene expression-defined molecular subtypes could
be approximated by computational pattern recognition. In the
current study, we developed a complete pipeline using
pathological images without region of interest annotation to
predict breast cancer PAM50 subtypes. This pipeline comprised
a two-step transfer learning technique using four state-of-the-art
deep learning architectures, namely, ResNet50 (24), ResNet101
(24), Xception (25), and VGG16 (26). The two-step transfer
learning reduced training time and significantly improved the
model prediction capacity in both patch-wise and slide-
wise approaches.
MATERIALS AND METHODS

Overall analytical pipeline is shown in Figure 1A, and we used
patch-based approaches for model training, in which WSIs were
split into thousands of smaller images. Regarding molecular
subtypes, 388 WSIs from TCGA-BRCA dataset (https://portal.
gdc.cancer.gov) were used to classify patients based on mRNA
expression profiles. The PAM50 molecular subtypes of each
patient was retrieved from the original publication (27).
Additionally, we used an in-house dataset containing 294,591
patches from 233 WSIs of 133 breast cancer patients with known
recurrence status (high and low risk) for the first step transfer
learning. These WSIs were from Taiwanese breast cancers.
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Patch Generation
A total of 388 WSIs with distinct molecular subtypes of breast
cancer underwent patch generation with the PyHIST tool (28).
The WSIs of each subtypes are 81, 34, 187, and 86 for Basal,
HER2, Luminal A and luminal B, respectively. The patches from
each WSI were generated at the highest resolution (40X
magnification). The graph method was based on the Otsu
algorithm to select images with full tissue coverage. Patches
(512x512 pixel) with less than 90% tissue coverage were
removed. Tile-crossed image down-sampling and mask down-
sampling were set at default values, with a down-sampling factor
of 16.

Images Normalization
The patches generated from PyHIST tool were then normalized
for hematoxylin and eosin staining using the Macenko method
(29). The original python script was obtained and modified from
https://github.com/schaugf/HEnorm_python.
Blurry Image and Non-Cell Cluster
Image Removal
We applied the Laplacian algorithm to remove blurry images
using a customized script that calculated variance thresholding
for blurry ones. To obtain the suitable kernel size of Laplacian
operator, we tried different kernel size from 3x3 pixels to 15x15
pixels. 13x13 pixels was selected as the most suitable kernel size
with variance threshold >1e-15 and <1e-14. This process was
done using OpenCV tool (30). After blurry and pixelated images
were removed, we applied the same procedure to remove images
that contained no cells and/or only contained extracellular
matrix and cytoplasm, with a threshold of variance >1e24 and
kernel size = 21×21.
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General Design for Two-Step
Transfer Learning
The concept of the two-step transfer learning is displayed in
Figure 1B. The general design of two-step transfer learning
techniques took advantage of state-of-the-art pretrained
models such as ResNet50, ResNet101 (24), Xception (25), and
VGG16 (26) as potential useful feature extractors. The first step
of transfer learning used the weights of these pretrained models
on the ImageNet dataset (31), which is commonly known as a
benchmark dataset for deep learning model performance
evaluation. These models were trained on our in-house dataset
of breast cancer WSIs and took advantage of transfer learning for
TCGA-BRCA dataset, which contained similar features for the
second step. The two-step process improved model performance
and saved training time compared to one-step transfer learning.
Finally, gradient-weighted class activation mapping (Grad-
CAM) (32) was used for model prediction visualization.

Transfer Learning Procedure
The first step of transfer learning with ResNet50, ResNet101,
Xception, and VGG16 was carried out. The top layers of these
models were not included in the feature extraction process, and
only convolutional layers were used with weights from
ImageNet. These final convolutional layers were connected
with a flattened layer and another batch-normalization layer.
This layer was then connected to another two fully connected
layers of 1,024 neurons and 256 neurons with rectified linear unit
(ReLU) activation. This fully connected layer was then linked to
the final hidden layer using the sigmoid activation function with
one neuron. These models were trained with 50% of our in-house
dataset for 50 iterations. The best weight from each of the models
was saved using checkpoint and used for second step transfer
learning using TCGA-BRCA dataset.
A B

FIGURE 1 | The study design and details of the two-step transfer learning process with pretrained models. (A) The overall analysis pipeline. The diagnostic tissue
slides of the TCGA-BRCA dataset were downloaded from the TCGA-GDC data portal. Afterward, to retrieve the PAM50 information for each patient, we used the
information from the Cancer Genome Atlas Network study, and the cancer subtypes from patients were matched to the image slides for basal, HER2, luminal A, and
luminal B These whole slides were then processed for segmentation to select the tiles (patches) with tissue content over 90%. The tiles were then normalized using
the Macenko algorithm. Next, blurry tiles and non-cell cluster tiles were removed using Laplacian algorithm. The remaining tiles were then used for two-step transfer
learning training. The trained models were then evaluated with the validation set for model selection. The model prediction was visualized using Grad-CAM
techniques. (B) The two-step transfer learning scheme. Four models, namely, ResNet50, ResNet101, VGG16, and Xception, were used to develop the two-step
transfer learning framework. The first step transfer learning was done with weights from the ImageNet dataset for the aforementioned models. These models were
trained with our in-house dataset of breast cancer comprising two classes of low and high risk of recurrence. The highest accuracy weights from each model were
then used for the second step of transfer learning with the TCGA-BRCA dataset, which includes four classes (subtypes basal, HER2, luminal A, and luminal B).
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The second step of transfer learning was performed using the
same concept as the first step; however, instead of using weights
from ImageNet, we loaded the models with the weights obtained
from the first step. The last convolutional layers of the loaded
models were flattened connected to another two dense layers with
1,024 (D1 layer) and 256 neurons (D2) each. The D2 layer was
then connected to the final dense (D3) layer with four neurons,
representing the four subtypes of breast cancer. In addition to the
four aforementioned models, we trained one more model with
ResNet101 using only Imagenet weight for comparing it with the
above four models. The model is named ResNet101_imgnet.

Hyperparameters for Model Training
In total, 1,833,889 patches from TCGA-BRCA dataset were
divided into 70% (1,277,407), 5% (99,269), and 25% (457,213)
for model training, validation, and testing sets, respectively. The
number of images for each cancer subtype is shown in Table 1.
The testing data were only used when the training and validation
procedures were completed to prevent information leaking to the
network as well as for the best model evaluation.

We used adaptive moment estimation (ADAM) as the
optimizer with a learning rate of 1e−5 together with a decay
rate of 1e-5/50 for 50 epochs for the in-house dataset and 1e-5/20
for 20 epochs for the TCGA-BRCA dataset, with the batch size
set to 64. Kernel was used with the ReLU function, with the
kernel initializer set to “he_uniform”. The Kernel regularizer was
used with L2 at 0.0001. The final dense layer was used with the
softmax function for final class decision. We used binary cross-
entropy and categorical cross-entropy to calculate the loss of
accuracy in our model prediction and monitor the training
process by binary accuracy and categorial accuracy metrics for
the first and second steps of transfer learning, respectively.

Image_datagenerator (ID) was used to fit the data for model
training. The ID setup for training data was as follows (rescale = 1/
255, rotation_range = 20, zoom_range = 0.05, width_shift_range =
0.1, height_shift = 0.1, shear_range = 0.05, horizontal_flip = True,
vertical_flip = True, fill_mode = “nearest”, target_size =
(128,128)). The ID for validation and testing was set up with
only rescale = 1/255. We used a flow_from_directory model to fit
the data to the model, with class_mode = “binary” for the first step
of transfer learning and class_mode = “categorical” for the second
step of transfer learning with color_mode = “rgb”. Due to the class
imbalance with both in-house and TCGA-BRCA datasets, we
applied a class_weight term for each class using a standard
tensorflow protocol as displayed in formula (1):

W_class(i) = (1/S(i))*(Simages)/N, (1)
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where W_class(i) was the weight of class i, S(i) was the total
number of samples of class i, Simages was the total number of
images of all classes, and N was the number of classes. Model
checkpoint and early-stopping techniques were also applied
during the training process to preserve the best weight and
stop the training process if validation accuracy failed to
improve in 5 epochs.

Model Performance’s Evaluation Metrics
After models had been trained/validated with the two-step
transfer learning procedure, we tested the model performance
with an independent external testing set. The classification report
from scikit learn (33) was used to calculate and display the final
classifications of each breast cancer molecular subtype with
precision, recall, and F1 score. Additionally, normalized
confusion matrix and receiver operating characteristic/area
under the curve (ROC-AUC) with micro- and macro-average
were used to evaluate model performance. All plots were done
using sckikit-learn library (33).

All training was done with Tensorflow version 2.3.0 (Google
Inc., Mountain View, CA, USA). The hardware system contained
2 GeForce RTX 2080 Ti GPUs and 128 GB RAM.

Grad-CAM for Model Visualization
Grad-CAM is the common approach used to visualize how the
deep learning model made its decision by tracing back the
gradient in the last convolution layer (32). After training our
model with WSIs data and obtaining the final optimal weight file,
we used this weight to obtain the Grad-CAM visualization with
the last convolutional layer in our model. The last convolutions
of VGG16, ResNet50, ResNet101, and Xception were
“block_conv3”, “conv5_block3_out”, “conv_block3_2_relu”, and
“conv2d_3”, respectively. Heatmap images and superimposed
images, i.e., overlays of original and heatmap images, were
processed with OpenCV (30) and matplotlib (34) library.
PAM50 Classification With
Gene Expression
To compare classifications determined by our deep learning
models with the gold standard PAM50 classification using
mRNA expression, we used expression profiles of breast cancer
patients from TCGA-BRCA downloaded from the University of
California Santa Cruz Xena database (https://xenabrowser.net/
datapages/). The mRNA expression data were then transformed
by median-center normalization and the prediction performed
with the Genefu package (35) (ver 2.22.1) in R studio version
1.1.1335 with R version 4.0.3. The “pam50.robust” model was
used for subtype prediction to ensure the best concordance with
traditional clinical parameters according to the Genefu
documentation. The prediction probability of each breast
cancer subtype was then exported to a text file by the function
“subtype.proba” for comparison. To compare the mean of
probability between genefu prediction and deep learning
models, we performed Wilcoxon signed rank test with default
wilcoxon function in R version 4.0.3.
TABLE 1 | Training, validation, and testing sets for each subtype of breast
cancer in the TCGA-BRCA dataset.

Subtypes Training Validation Testing

Basal 280,663 19,990 99,849
HER2 105,295 16,041 40,127
Luminal A 580,404 41,184 206,244
Luminal B 311,045 22,054 110,993
Total 1,277,407 99,269 457,213
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RESULTS

Models’ Training and Validation
Performance
Training with the VGG16, ResNet50, Res101, and Xception
models achieved 0.73, 0.68, 0.78, and 0.77 classification
accuracy with the testing set, respectively. Apart from the
accuracy metric, other model evaluation metrics were also
calculated for the validation and testing sets, such as the
weighted precision, weighted recall, and weighted F1 score
(Table 2). The lowest F1 score of 0.68 was from the ResNet50
model, and the highest of 0.78 was from the ResNet101 model,
whereas the accuracy of the ResNet101_imgnet weights achieved
0.74 accuracy. The Xception and VGG16 models’ weighted F1
scores were 0.77 and 0.73, respectively (Table 2).

Figure 2 displays the normalized confusion matrix of each
model on the validation and testing sets. In general, all models had
almost identical performance on the validation and testing sets.
The lowest-performing model was ResNet50, and the highest-
performing model was ResNet101. For instance, ResNet50
(Figures 2A, B) had 24% wrong predictions for the basal
subtype and 2%, 14%, and 8% wrong predictions for the HER2-
enriched, luminal A, and luminal B subtypes, respectively. The
VGG16 (Figures 2C, D) and Xception (Figures 2E, F) models had
better prediction for the basal-like subtype, with 15% and 14%
wrong predictions, respectively. While the ResNet101 model
(Figures 2G, H) had only 21% wrong predictions of the basal-
like subtype, the ResNet101_imgnet model (Figures 2I, J) had
20% wrong predictions of the same subtype. The poorest
performance was with the HER2-enriched subtype, with the
ResNet50 model at a 47% error rate on the testing set. The best
performance on luminal A classification was from the ResNet101
and Xception models, both of which reported a 78% correct
prediction rate. Furthermore, ResNet101 was the best predictor
for the luminal B subtype, with 74% correct predictions compared
to the second-best model (Resnet101_imgnet), which achieved
69% correct predictions.
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To further evaluate the true positive rate and false positive rate
of each model on the validation and testing sets, we plotted the
ROC-AUC curve of each model, as well as the micro- and macro-
average ROC curves of all classes (Figure 3). The highest micro-
average AUC was 0.94, which belonged to the Xception model
(Figures 3E, F) and the ResNet101 model (Figures 3G, H),
whereas the lowest belonged to the ResNet50 model (micro-
average AUC=0.89) (Figures 3A, B). The VGG16 model had an
AUC of 0.92 (Figures 3C, D), which was equal to that of the
ResNet101_imgnet model. Together with the confusion matrices
and ROC curve metrics, we also used precision, recall, and F1
score for evaluating all the models’ performance in the validation
and testing sets. For the patch-wise approach, the precision, recall,
and F1 score of the basal-like, HER2-enriched, luminal A, and
luminal B subtypes are displayed in Table 2. Overall, the F1 scores
on the testing set were nearly identical to those of the evaluation.
The highest model performance with the testing set was still
achieved by ResNet101, with F1 scores of 0.76, 0.74, 0.82, and
0.74 for basal-like, HER2-enriched, luminal A, and luminal B
subtypes, respectively.

Models’ Performance on the Testing Set
With a Slide-Wise Approach
We validated the model performance with a testing set of 457,213
patches comprising four subtypes as shown in Table 1. In
addition to the patch-wise approach described above, we used
a slide-wise approach because each patient would have more
than one WSI for final subtype assessment in routine clinical
practice. The slide-wise approach had the highest confidence,
with 0.913 overall accuracy across all four subtypes using the
ResNet101 model. The slide-wise method was better for clinical
use because it provided higher confidence in the model
prediction based on the PAM50 signature in clinical
applications. The slide-wise results of all four models for each
subtype are displayed in Figures 4A–D. To maintain
comparability with Genefu prediction probability, the
threshold was determined as 0.5 for subtype classification of
TABLE 2 | Patch-wise model performance on the validation and testing sets.

Models/Metrics Validation/Testing results

Basal HER2 Luminal A Luminal B

ResNet50 Precision 0.53/0.56 0.81/0.69 0.76/0.78 0.62/0.65
Recall 0.76/0.76 0.53/0.54 0.72/0.73 0.58/0.58
F1-score 0.62/0.64 0.64/0.61 0.74/0.75 0.60/0.61

ResNet101 Precision 0.70/0.72 0.81/0.68 0.84/0.86 0.73/0.75
Recall 0.80/0.79 0.81/0.82 0.78/0.78 0.74/0.74
F1-score 0.75/0.76 0.81/0.74 0.81/0.82 0.74/0.74

ResNet101_imgnet Precision 0.65/0.68 0.76/0.61 0.83/0.84 0.65/0.67
Recall 0.80/0.80 0.74/0.74 0.73/0.73 0.69/0.69
F1-score 0.72/0.74 0.75/0.67 0.77/0.78 0.67/0.68

VGG16 Precision 0.58/0.61 0.76/0.62 0.86/0.87 0.69/0.72
Recall 0.85/0.85 0.71/0.72 0.72/0.72 0.64/0.64
F1-score 0.69/0.71 0.73/0.66 0.78/0.79 0.67/0.78

Xception Precision 0.62/0.64 0.82/0.70 0.85/0.86 0.77/0.78
Recall 0.86/0.86 0.75/0.75 0.78/0.78 0.66/0.66
F1-score 0.72/0.73 0.78/0.73 0.81/0.82 0.71/0.72
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A B

D
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FIGURE 2 | Normalized confusion matrix of five models with the validation (left panels) and testing (right panels) sets. (A, B) ResNet50 model, (C, D) VGG16 model,
(E, F) Xception model, (G, H) ResNet101 model, (I, J) ResNet101_imgnet model. True and predicted subtype classifications are shown on the y- and x-axes,
respectively, such that the correct predictions are shown on the diagonal from the top left to the bottom right of each matrix. The blue gradient color represents the
model accuracy for detecting each subtype. The darker the blue color, the better the model performance.
A B
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FIGURE 3 | ROC-AUC curves for the true positive and false positive rate of all five models (left panels for validation set, right panels for testing set). (A, B) ResNet50
model, (C, D) VGG16 model, (E, F) Xception model, (G, H) ResNet101 model, (I, J) ResNet101_imgnet model. In the individual legends, classes 0, 1, 2, and 3
represent basal-like, HER2-enriched, luminal A, and luminal B subtypes, respectively. The higher the AUC, the better the model in detecting true positives and
producing fewer false positives.
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each patient (Table S1). Each model’s performance on slide-wise
analysis is detailed in Table 3. The ResNet101 model’s accuracy
was 0.89, 0.9375, 0.969, and 0.857 for the basal-like, HER2-
enriched, luminal A, and luminal B subtypes, respectively. The
second-highest model performance was the Xception model with
an average accuracy of 0.856. ResNet50 had the poorest
performance with an average accuracy of 0.698, whereas the
VGG16 and ResNet101_imgnet models had average accuracies
of 0.851 and 0.834, respectively. Additionally, weighted average
of precision, recall, and F1 score of each model are displayed in
Table 4 together with the results from previous study performed
by Jaber et al. (36). The best model performance (ResNet101)
reached 0.78 for all accuracy, precision, recall, and F1 score. The
poorest model performance (ResNet50) with 0.68, 0.69, 0.68, and
0.68 for the same set of metrics.

Comparison Between DL Models
Prediction and Genefu Prediction
Furthermore, to compare the confidence of model prediction
probability from our study, the golden standard Genefu tool, we
Frontiers in Oncology | www.frontiersin.org 7
calculated and showed the mean and standard deviation of deep
learning models in comparison to that from Genefu (Table 5).
Overall, based on Wilcoxon signed rank test results, we found
that mean probability in the basal-like subtype was not
significantly different from the deep learning model, whereas
the other subtypes such as HER2-enriched, luminal A, and
luminal B subtypes showed significant difference between these
mean probabilities, which means the DL model prediction has
significantly improved the prediction probability for each patient
compared to the Genefu package.

Models’ Prediction Visualization
To decode the model learning process, we used Grad-CAM with
the last convolution layer to create a heatmap superimposed on
the original image. This illustrated how each model learned to
distinguish differences among the four breast cancer subtypes
(Figures 5A–D). It was readily seen that the VGG16 model’s
heatmap was highly activated over the edges of the image for all
A B

DC

FIGURE 4 | Slide-wise subtype prediction using the testing set. (A) ResNet50 model, (B) ResNet101 model, (C) VGG16 model, (D) Xception model. Basal, HER2,
luminal A, and luminal B subtypes are represented in blue, orange, green, and yellow bars, respectively. A threshold of 0.5 was used to select the correct prediction
subtype from the whole slide image of each patient. The prediction probability of each subtype was aggregated from the patches of the same patient.
TABLE 3 | Slide-wise model performance on the testing set.

Model Accuracy

Basal HER2 Luminal A Luminal B Average

ResNet50 0.767 0.563 0.905 0.557 0.698
ResNet101 0.890 0.9375 0.969 0.857 0.913
ResNet101_imgnet 0.904 0.7812 0.924 0.729 0.834
VGG16 0.918 0.875 0.955 0.657 0.851
Xception 0.972 0.719 0.975 0.757 0.856
Bold font denotes the best model.
TABLE 4 | Patch-wise model performance on the testing set in comparison to a
previous study.

Model Weighted
average
Accuracy

Weighted
average
Precision

Weighted
average
Recall

Weighted
average F1

Score

ResNet50 0.68 0.69 0.68 0.68
ResNet101 0.78 0.78 0.78 0.78
ResNet101_imgnet 0.73 0.75 0.73 0.74
VGG16 0.73 0.75 0.70 0.73
Xception 0.77 0.78 0.77 0.77
Jaber et al. 0.59–0.66 N/A N/A N/A
December 2
021 | Volume 11
Bold font denote the best model. N/A: no information available.
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subtypes, whereas the ResNet50 and ResNet101 models’
heatmaps were activated in the middle of the image for all
subtypes. The Xception model’s activation was quite different
for each subtype. Regardless of the corner or middle activation of
these models, they demonstrated all models’ capability and logic
in distinguishing cell cluster and non-cell cluster areas.
DISCUSSION

In the present study, we applied deep learning techniques for
breast cancer intrinsic subtypes classification, using pathological
images as the only source of input without annotation for tumor
areas. ResNet101 achieved the highest performance in both
validation and testing sets, with either patch-wise (accuracy of
0.78) or slide-wise (accuracy of 0.913) approach. The
heterogeneity of breast cancer was also observed across all four
intrinsic subtypes based on the prediction probability
distributions across various deep learning models. We believe
Frontiers in Oncology | www.frontiersin.org 8
the comprehensive pipeline in the current study is applicable to
more than just a single type of cancer, for which breast cancer is
the case; it can be generalized to other types of cancers after a
simple change in data labeling. This pipeline can assist
pathologists to classify breast cancer subtypes rapidly and has
great potential to augment PAM50 subtyping using gene
expression data with enhanced concordance for each subtype.
The two-step transfer learning is proved to outperform the
common transfer learning protocol with weights from Imagenet.

It is widely accepted that different breast cancer molecular
subtypes have discrepant prognoses over time. Understanding
different recurrence patterns can improve breast cancer care via
the application of surveillance guidelines, which can identify the
most optimistic treatment (37). According to Metzger-Filho et
al., basal-like and HER2-enriched cohorts had higher risk of
recurrence in the first 4 years after diagnosis. On the other hand,
luminal B had a continuously higher hazard of recurrence over
the 10-year follow-up compared to luminal A breast cancer (37).
Another study by Ribelles et al. reported that luminal A cancer
TABLE 5 | Comparison of mean of probability between Genefu method and deep learning models by Wilcoxon signed rank test.

Basal HER2 Luminal A Luminal B

Genefu 0.804 ± 0.202 0.50 ± 0.123 0.668 ± 0.098 0.543 ± 0.183
ResNet50 0.723 ± 0.224 (0.02718) 0.527 ± 0.228 (0.2214) 0.748* ± 0.174 (4.113e-07) 0.561 ± 0.257 (0.6809)
ResNet101 0.783 ± 0.188 (0.2949) 0.796* ± 0.143 (7.577e-06) 0.787* ± 0.134 (2.615e-15) 0.718* ± 0.190 (8.048e-06)
ResNet101_imgnet 0.761 ± 0.179 (0.1612) 0.699* ± 0.225 (0.005995) 0.737* ± 0.148 (5.104e-07) 0.664* ± 0.216 (0.003084)
VGG16 0.811 ± 0.176 (0.4308) 0.668* ± 0.187 (0.02027) 0.729* ± 0.136 (6.228e-06) 0.632* ± 0.216 (0.03663)
Xception 0.836 ± 0.163 (0.163) 0.729* ± 0.195 (0.002992) 0.797* ± 0.133 (3.573e-16) 0.654* ± 0.210 (0.004434)
December 2021 |
The values were presented as mean ± SD (p-value). *denotes the significant improvement of deep learning model in comparison to Genefu model (p-value < 0.05).
A B

DC

FIGURE 5 | Grad-CAM visualization of deep learning models in four breast cancer subtypes. The visualization of each model’s prediction for the same set of images
from five patients with breast cancer of the basal subtype (A), HER2 subtype (B), luminal A subtype (C), and luminal B subtype (D). The heatmap in dark green and
yellow colors was plotted together with the merged images of the original and activated heatmaps. The activation levels in the merged images are shown with a
gradient of red, yellow, and blue areas, which the models used to make a classification decision. LumA: Luminal A; LumB: Luminal B.
Volume 11 | Article 769447

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Phan et al. Deep-Learning Predicts Breast Cancer Subtypes
displayed a slow risk increase, reaching its maximum after 3
years and then remaining steady, while luminal B cancer
presented most of its relapses during the first 5 years (38).
Compared to HER2-overexpressing and triple-negative cancers,
ER-positive breast cancers exhibited more mid- to long-term
relapses and acquired ESR1 mutations, resulting in the ligand-
independent and constitutive activation of the ER that is believed
to play a major role in late recurrence and endocrine therapy
resistance (39). Deciphering breast cancer molecular subtypes by
deep learning approaches could provide a convenient and
efficient method for diagnosis of breast cancer patients. It
could reduce costs associated with transcriptional profiling and
subtyping discrepancy between IHC assays and mRNA
expression. In terms of academic development, this is a novel
approach that can lay the foundation for later research on breast
cancer taxonomy and precision medicine.

We are approaching an era of AI- and machine learning-
aided diagnosis and treatment, and breast pathology imaging
may be one of the frontiers. AI has the potential to transform
genomics, pathology, and breast oncology, and current deep
learning systems are starting to match human performance in
reading pathological and morphological features and reducing
inter-observer variability (14, 21–23). In the current study,
ResNet101 achieved an overall accuracy of 78% in the
validation and testing sets, whereas the ResNet50 model
achieved 68% accuracy (Table 4). In a study performed by
Jaber et al., with the region of interest labeled by pathologists,
their model accuracy ranged from 0.586 to 0.661 (40). In
previous literature, many models have been developed to
predict or classify a wide range of diagnostic or therapeutic
targets of breast cancer. Cruz-Roa et al. designed a convolutional
neural network to detect the location of invasive tumors in whole
pathological images. In their study, they used 400 samples for
training and validated the model with 200 samples from TCGA
database. The model achieved a Dice coefficient of 75.86 and
71.62% positive predictive value and 96.77% negative predictive
value relative to manual annotation (41). In another study,
Zheng et al. applied the K-means algorithm to classifying
benign and malignant lesions. The feature was extracted and
trained with a support vector machine (SVM). This model
reached 97% accuracy with 10-fold cross-validation on a
Wisconsin Diagnostic Breast Cancer dataset (42). Google’s
Inception model has been used for identifying cancer subtypes
with extensive tumor heterogeneity with accuracy rates of 100,
92, 95, and 69% for various cancer tissues, subtypes, biomarkers,
and scores, respectively (43). Another study by Alakwaa et al.
used a cohort of 548 cancer patients to train feed-forward
networks within a deep learning framework. They found that
the deep learning method achieved an AUC of 0.93 in classifying
ER+ and ER− breast cancer patients (44).

Furthermore, in an attempt to demonstrate that deep learning
models trained on pathological images could be potential tools in
assisting pathologists to predict breast cancer using the PAM50
gene signature, we compared the mean of probability between
our deep learning models to the commonly used package for
PAM50 classification, Genefu (35). Except for the basal-like
Frontiers in Oncology | www.frontiersin.org 9
subtype, means of probability of the remaining three subtypes
were significantly improved from the Genefu prediction.
These comparisons illustrated that the results from deep
learning models with only pathological WSIs as their data
source can be used as an initial tool for breast cancer intrinsic
subtypes classification.

The potential applications of the current protocol are not only
for breast cancer but also can be used for pan-cancer study. Apart
from gene expression signature prediction, this pipeline can also
be used to predict the overall survival or disease-free survival
duration of cancer patients. We have implemented this pipeline
with the renal cancer dataset downloaded from TCGA database.
The model successfully predicted patients’ survival in different
years categories with weighted accuracy of 95.5% (data not
shown). Estimating the cancer patient survival from a single
source of data for such as pathological images with high
resolution facilitates the prediction accuracy and is cost-efficient.

There were some limitations in the current study. The
developed protocol for predicting gene expression signatures
using pathological images was only tested using two breast
cancer datasets. For future prospective studies, this pipeline
can be applied for predicting gene expression signatures with
enhanced power of evidence by including clinical information
into the training data. Depending on the prediction targets, the
clinical information such as age, cancer stage, tumor size, and
grades could add more features, which might be important for
model learning and potentially improve model prediction
performance. There exist imbalances among the breast cancer
subtypes in the TCGA-BRCA dataset used in this study, which
might explain why the model performed well for certain subtypes
but not for others. For the intrinsic heterogeneity in other types
of cancers, it is recommended to have a balance dataset between
subtypes as the amount of data from each subtype might have an
effect on the model performance. However, in real-world cancer
datasets, the model performance may be highly dependent on the
nature of the cancer type and study cohort; therefore, acquiring a
balance dataset is a caveat.
CONCLUSIONS

In summary, our study provided a practical deep learning-based
pipeline for classifying breast cancer molecular subtypes via a
two-step transfer learning protocol that used pathological images
as the source for training of deep convolutional neural networks.
These deep learning models had the potential to assisting
pathologists and physicians to classify breast cancer subtypes
rapidly with good reliability and accuracy.
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1. Arranz EE, Vara J.Á.F., Gámez-Pozo A, Zamora P. Gene Signatures in Breast
Cancer: Current and Future Uses. Trans Oncol (2012) 5(6):398–403. doi:
10.1593/tlo.12244

2. Perou CM. Molecular Stratification of Triple-Negative Breast Cancers. The
Oncologist (2011) 16(S1):61–70. doi: 10.1634/theoncologist.2011-S1-61

3. Perou CM, Børresen-Dale A-L. Systems Biology and Genomics of Breast
Cancer. Cold Spring Harbor Perspect Biol (2011) 3(2):a003293. doi: 10.1101/
cshperspect.a003293

4. Creighton CJ. The Molecular Profile of Luminal B Breast Cancer. Biologics:
Targets Ther (2012) 6:289. doi: 10.2147/BTT.S29923

5. Parker JS, Mullins M, Cheang MC, Leung S, Voduc D, Vickery T, et al.
Supervised Risk Predictor of Breast Cancer Based on Intrinsic Subtypes. J Clin
Oncol (2009) 27(8):1160. doi: 10.1200/JCO.2008.18.1370

6. Sørlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated
Observation of Breast Tumor Subtypes in Independent Gene Expression Data
Sets. Proc Natl Acad Sci (2003) 100(14):8418–23. doi: 10.1073/pnas.
0932692100

7. Brouckaert O, Laenen A, Vanderhaegen J, Wildiers H, Leunen K, Amant F,
et al. Applying the 2011 St Gallen Panel of Prognostic Markers on a Large
Single Hospital Cohort of Consecutively Treated Primary Operable Breast
Cancers. Ann Oncol (2012) 23(10):2578–84. doi: 10.1093/annonc/mds062

8. Goodfellow I, Bengio Y, Courville A, Bengio Y. Deep Learning Vol. 1.
Cambridge: MIT press (2016).

9. Miotto R, Wang F,Wang S, Jiang X, Dudley JT. Deep Learning for Healthcare:
Review, Opportunities and Challenges. Briefings Bioinf (2018) 19(6):1236–46.
doi: 10.1093/bib/bbx044

10. Loi S, Pommey S, Haibe-Kains B, Beavis PA, Darcy PK, Smyth MJ, et al. CD73
Promotes Anthracycline Resistance and Poor Prognosis in Triple Negative
Breast Cancer. Proc Natl Acad Sci (2013) 110(27):11091–6. doi: 10.1073/
pnas.1222251110

11. Luini A, Aguilar M, Gatti G, Fasani R, Botteri E, Brito JAD, et al. Metaplastic
Carcinoma of the Breast, an Unusual Disease With Worse Prognosis: The
Experience of the European Institute of Oncology and Review of the
Literature. Breast Cancer Res Treat (2007) 101(3):349–53. doi: 10.1007/
s10549-006-9301-1

12. De Laurentiis M, Cianniello D, Caputo R, Stanzione B, Arpino G, Cinieri S,
et al. Treatment of Triple Negative Breast Cancer (TNBC): Current Options
and Future Perspectives. Cancer Treat Rev (2010) 36:S80–6. doi: 10.1016/
S0305-7372(10)70025-6

13. Brekelmans C, Seynaeve C, Menke-Pluymers M, Brüggenwirth H, Tilanus-
Linthorst M, Bartels C, et al. Survival and Prognostic Factors in BRCA1-
Associated Breast Cancer. Ann Oncol (2006) 17(3):391–400. doi: 10.1093/
annonc/mdj095

14. Gaudet MM, Kirchhoff T, Green T, Vijai J, Korn JM, Guiducci C, et al.
Common Genetic Variants and Modification of Penetrance of BRCA2-
Associated Breast Cancer. PloS Genet (2010) 6(10):e1001183. doi: 10.1371/
journal.pgen.1001183

15. Van't Veer LJ, Dai H, Van De Vijver MJ, He YD, Hart AA, Mao M, et al. Gene
Expression Profiling Predicts Clinical Outcome of Breast Cancer. nature
(2002) 415(6871):530–6. doi: 10.1038/415530a

16. Cardoso F, van’t Veer LJ, Bogaerts J, Slaets L, Viale G, Delaloge S, et al. 70-
Gene Signature as an Aid to Treatment Decisions in Early-Stage Breast
Cancer. N Engl J Med (2016) 375(8):717–29. doi: 10.1056/NEJMoa1602253

17. Krijgsman O, Roepman P, Zwart W, Carroll JS, Tian S, de Snoo FA, et al. A
Diagnostic Gene Profile for Molecular Subtyping of Breast Cancer Associated
With Treatment Response. Breast Cancer Res Treat (2012) 133(1):37–47. doi:
10.1007/s10549-011-1683-z

18. O'Connell MJ, Lavery I, Yothers G, Paik S, Clark-Langone KM, Lopatin M,
et al. Relationship Between Tumor Gene Expression and Recurrence in Four
Independent Studies of Patients With Stage II/III Colon Cancer Treated With
Surgery Alone or Surgery Plus Adjuvant Fluorouracil Plus Leucovorin. J Clin
Oncol (2010) 28(25):3937. doi: 10.1200/JCO.2010.28.9538

19. Tavolara TE, Niazi M, Gower AC, Ginese M, Beamer G, Gurcan MN. Deep
Learning Predicts Gene Expression as an Intermediate Data Modality to
Identify Susceptibility Patterns in Mycobacterium Tuberculosis Infected
Diversity Outbred Mice. EBioMedicine (2021) 67:103388. doi: 10.1016/
j.ebiom.2021.103388

20. Zhao Y, Zhou Y, Liu Y, Hao Y, Li M, Pu X, et al. Uncovering the Prognostic
Gene Signatures for the Improvement of Risk Stratification in Cancers by
Using Deep Learning Algorithm Coupled With Wavelet Transform. BMC
Bioinf (2020) 21:1–24. doi: 10.1186/s12859-020-03544-z

21. Hamidinekoo A, Denton E, Rampun A, Honnor K, Zwiggelaar R. Deep
Learning in Mammography and Breast Histology, an Overview and Future
Trends. Med Image Anal (2018) 47:45–67. doi: 10.1016/j.media.2018.03.006

22. Kather JN, Pearson AT, Halama N, Jäger D, Krause J, Loosen SH, et al. Deep
Learning can Predict Microsatellite Instability Directly From Histology in
December 2021 | Volume 11 | Article 769447

https://portal.gdc.cancer.gov/repository/
https://portal.gdc.cancer.gov/repository/
https://www.frontiersin.org/articles/10.3389/fonc.2021.769447/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2021.769447/full#supplementary-material
https://doi.org/10.1593/tlo.12244
https://doi.org/10.1634/theoncologist.2011-S1-61
https://doi.org/10.1101/cshperspect.a003293
https://doi.org/10.1101/cshperspect.a003293
https://doi.org/10.2147/BTT.S29923
https://doi.org/10.1200/JCO.2008.18.1370
https://doi.org/10.1073/pnas.0932692100
https://doi.org/10.1073/pnas.0932692100
https://doi.org/10.1093/annonc/mds062
https://doi.org/10.1093/bib/bbx044
https://doi.org/10.1073/pnas.1222251110
https://doi.org/10.1073/pnas.1222251110
https://doi.org/10.1007/s10549-006-9301-1
https://doi.org/10.1007/s10549-006-9301-1
https://doi.org/10.1016/S0305-7372(10)70025-6
https://doi.org/10.1016/S0305-7372(10)70025-6
https://doi.org/10.1093/annonc/mdj095
https://doi.org/10.1093/annonc/mdj095
https://doi.org/10.1371/journal.pgen.1001183
https://doi.org/10.1371/journal.pgen.1001183
https://doi.org/10.1038/415530a
https://doi.org/10.1056/NEJMoa1602253
https://doi.org/10.1007/s10549-011-1683-z
https://doi.org/10.1200/JCO.2010.28.9538
https://doi.org/10.1016/j.ebiom.2021.103388
https://doi.org/10.1016/j.ebiom.2021.103388
https://doi.org/10.1186/s12859-020-03544-z
https://doi.org/10.1016/j.media.2018.03.006
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Phan et al. Deep-Learning Predicts Breast Cancer Subtypes
Gastrointestinal Cancer. Nat Med (2019) 25(7):1054–6. doi: 10.1038/s41591-
019-0462-y

23. Coudray N, Tsirigos A. Deep Learning Links Histology, Molecular Signatures
and Prognosis in Cancer. Nat Cancer (2020) 1(8):755–7. doi: 10.1038/s43018-
020-0099-2

24. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2016). IEEE. Las Vegas, NV, USA.

25. Chollet F. Xception: Deep Learning With Depthwise Separable Convolutions.
In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (2017). IEEE. Honolulu, HI, USA.

26. Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-
Scale Image Recognition. arXiv preprint arXiv (2014) 1–14. doi: https://
arxiv.org/abs/1409.1556

27. Network CGA. Comprehensive Molecular Portraits of Human Breast
Tumours. Nature (2012) 490(7418):61.

28. Muñoz-Aguirre M, Ntasis VF, Rojas S, Guigó R. PyHIST: A Histological
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