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Although many prognostic models have been developed to help determine personalized
prognoses and treatments, the predictive efficiency of these prognostic models in
hepatocellular carcinoma (HCC), which is a highly heterogeneous malignancy, is less
than ideal. Recently, aberrant glycosylation has been demonstrated to universally
participate in tumour initiation and progression, suggesting that dysregulation of
glycosyltransferases can serve as novel cancer biomarkers. In this study, a total of
568 RNA-sequencing datasets of HCC from the TCGA database and ICGC database
were analysed and integrated via bioinformatic methods. LASSO regression analysis was
applied to construct a prognostic signature. Kaplan–Meier survival, ROC curve,
nomogram, and univariate and multivariate Cox regression analyses were performed to
assess the predictive efficiency of the prognostic signature. GSEA and the “CIBERSORT”
R package were utilized to further discover the potential biological mechanism of the
prognostic signature. Meanwhile, the differential expression of the prognostic signature
was verified by western blot, qRT–PCR and immunohistochemical staining derived from
the HPA. Ultimately, we constructed a prognostic signature in HCC based on a
combination of six glycosyltransferases, whose prognostic value was evaluated and
validated successfully in the testing cohort and the validation cohort. The prognostic
signature was identified as an independent unfavourable prognostic factor for OS, and a
nomogram including the risk score was established and showed the good performance in
predicting OS. Further analysis of the underlying mechanism revealed that the prognostic
signature may be potentially associated with metabolic disorders and tumour-infiltrating
immune cells.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is a highly aggressive solid
malignancy and the fourth leading cause of cancer-related
death, which imposes a tremendous health and socioeconomic
burden globally (Singal, et al., 2020). Studies have shown that
hepatitis virus infection, alcohol-related liver disease (ALD), non-
alcoholic fatty liver disease (NAFLD) and non-alcoholic liver
steatohepatitis (NASH) are the main aetiological risk factors for
the development of HCC. Chronic infections with hepatitis virus
are still the strongest risk factors for HCC in developing
countries, nevertheless, NAFLD is gradually becoming the
leading cause of HCC in Western countries (Huang, et al.,
2021a). Despite all efforts made in the past to improve the
prognosis of HCC, the prognosis remains poor, with an
overall 5-years survival rate of approximately 18%, which is
only slightly better than that of pancreatic cancer (Jemal,
et al., 2017).

Of note, the prediction of clinical outcomes provides vital and
necessary medical information. The traditional TNM staging
system, which mainly relies on clinicopathological parameters,
cannot provide a precise prediction of prognosis in clinical
practice. In particular, HCC is a malignant tumour with the
characteristic of high heterogeneity, which adds to the complexity
of accurately predicting prognosis. One possible strategy to
improve predictive outcome is to better understand the
fundamental biological processes of cancer cells, and to
identify prognostic signatures to stratify patients for
individualized precision therapies based on prognosis and
metastatic potential.

Glycosylation, the most universal protein post-translational
modification, is an enzymatic process that catalyses the transfer of
carbohydrate chains to proteins by glycosyltransferases (GTs)
and glycosidases (Pinho and Reis, 2015). So far, 14 distinct
human protein glycosylation pathways have been outlined,
which are directed by at least 173 different GTs (Schjoldager,
et al., 2020). They are divided into four main types: N-
glycosylation, O- glycosylation, C-mannosylation and
glypiation. Modified proteins are involved in nearly all
biological processes, especially intercellular signal transduction
and the immune response (Johannssen and Lepenies, 2017;
Indellicato and Trinchera, 2021).

Alterations in cellular glycosylation have been recognized as
hallmarks of malignant tumours, which contribute to sustaining
proliferative signalling and metabolism, promoting invasion and
metastasis, and immune evasion (Munkley and Elliott, 2016;
Thomas, et al., 2021; Dobie and Skropeta, 2021; Rodrigues,
et al., 2021). The under- or overexpression of GTs is the main
contributor to cancer initiation and progression. Fucosylation is
one of the most common modifications in the glycosylation
pattern of HCC (Zhang, et al., 2017). The core fucosylation of
α-fetoprotein (AFP-L3), a typical modified product, has already
been confirmed as a biomarker in detecting early HCC (Wu, et al.,
2014a; Noda, et al., 1998). As key enzymes of fucosylation, FUT1
(Kuo, et al., 2017), FUT8 (Cheng, et al., 2016) and POFUT1 (Ma,
et al., 2016) are highly expressed and positively associated with
advanced stage and poor prognosis in HCC. Other members of

the FUT family, such as FUT2 (Wu, et al., 2014b), FUT4 (Cheng,
et al., 2013), FUT6 (Guo, et al., 2012), and FUT7 (Wang, et al.,
2005), are also known to support the development of HCC.
Similarly, aberrant O-GlcNAcylation due to dysregulation of
O-linked N-acetylglucosamine (GlcNAc) transferase (OGT)
expression has been shown in HCC (Makwana, et al., 2019).
OGT can promote migration by regulating FOXA2 stability and
transcriptional activity (Huang, et al., 2021b), and the stem-like
cell potential through O-GlcNAcylation of eIF4E (Cao, et al.,
2019). In addition, abnormal expression of other kinds of GTs has
been described in HCC, including C1GALT1, GALNT1,
GALNT2, GALNT4, MGAT4A, MGAT5, B3GALT5,
B4GALT4, ST3GAL1, ST3GAL2, ST3GAL6 and ST6GAL1.
Cumulative findings indicate that abnormal expression of GTs
seems to be a general feature of cancer cells and contributes to
tumorigenesis and additional malignant characteristics.

Given the diversity of GTs and the high heterogeneity in
individuals, a comprehensive understanding of the crucial role of
aberrant glycosylation in HCC progression can further provide
assistance in predicting prognosis. Therefore, the development of
a novel evaluation index of glycosylation may be very useful for
prognosis research. In this study, we developed a 6-gene
prognostic signature that focused on the prognostic value of
GT in HCC and validated its predictive capability through a
variety of computational approaches.

MATERIALS AND METHODS

Data Screening and Gene Integration
Both the complete clinicopathologic information and matched
RNA-sequencing FPKM data (HTSeq-FPKM) of HCC samples
were extracted from The Cancer Genome Atlas (TCGA) data
portal (up to September 23, 2021,https://portal.gdc.cancer.gov/).
We also downloaded clinical and mRNA expression data of a
Japanese cohort from the International Cancer Genome
Consortium (ICGC) data portal (up to November
27,2019,https://dcc.icgc.org/).

Two glycosylation-related gene sets were obtained from the
GlycoGene DataBase (GGDB: https://acgg.asia/ggdb2/index) and
Hugo Gene Nomenclature Committee (HGNC: https://www.
genenames.org/data/genegroup/#!/group/424). Gene set
intersections were regarded as GT sets. Differentially expressed
genes (DEGs) of the GT set between HCC and normal samples
were identified using the “limma” package in R, and the screening
criteria were FDR <0.05. Meanwhile, univariable Cox regression
was employed to evaluate the association of each DEG with
survival and results with a p value <0.05 were selected as
prognosis-related genes. Finally, prognosis-related differentially
expressed GTs were obtained.

Construction and Validation of the
Prognostic Signature
All incorporated HCC samples from the TCGA database were
randomly assigned to training and testing cohorts at a 1:1 ratio. A
prognostic signature was constructed by applying the Least
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Absolute Shrinkage and Selection Operator (LASSO) regression
method, and the product of gene expression i and the
corresponding coefficient βi of each gene were added to
establish the risk score: risk score = ∑n

i�1βipi.
Utilizing the risk score formula, samples in the training cohort

were categorized into high-risk and low-risk groups via the
threshold of the median score. The Kaplan-Meier method was
performed to compare survival differences between the two
groups, and the prognostic value of the prognostic signature
was shown by the receiver operating characteristic (ROC) curve.
Simultaneously, we validated its prognostic performance with the
TCGA testing cohort and ICGC external validation cohort.

Clinicopathological Features and
Development of a Nomogram
Univariate and multivariate Cox regression analyses were
performed to display the prognostic performance of this
signature with other clinicopathological features.

A nomogram was developed to calculate individual’s
probability of overall survival (OS) by using the risk scores
and clinical indicators. The final sum of the scores was
expected to be the corresponding 1-, 2-, and 3-years survival
probability.

Gene Set Enrichment Analysis and
Correlation of Tumour-Infiltrating Immune
Cells
GSEA was performed based on the gene matrix
(“c2.cp.kegg.v7.4.symbols” and “c5.go.v7.4.symbols”) between
the high-risk and low-risk groups.

The CIBERSORT algorithm was used to calculate the relative
abundance of 22 tumour-infiltrating immune cells in each sample
of the TCGA dataset and ICGC dataset.

Cell Culture and the Experimental Validation
in vitro
The LO2 human hepatocyte cell line and HepG2 human
hepatoma cell line were cultured in Dulbecco’s modified
Eagle’s medium (DMEM, Gibco, United States) supplemented
with 10% foetal bovine serum (FBS, Gibco, United States) and
incubated in a humidified atmosphere at 37 °C with 5% CO2.

Total RNA was extracted by using TransZol Up (TransGen
Biotech, China) following the manufacturer’s protocols. cDNA
was synthesized using the PrimeScript RT reagent kit with gDNA
Eraser (Takara, Japan), and mixed with primers (Supplementary
Table S1) and TB Green Premix Ex Tap II (Takara, Japan), and
run in the CFX96 Real-Time PCR Detection System (Bio–Rad,
United States). The relative expression of the prognostic signature
mRNA was calculated by the 2−ΔΔCt method with GAPDH as the
reference.

Total protein was prepared with RIPA buffer (Solarbio, China)
with protease and phosphatase inhibitor cocktails (Solarbio,
China). The protein levels were quantified by the BCA protein
assay kit (Solarbio, China). Next, proteins were loaded onto 10%

SDS-PAGE gel, separated electrophoretically, and transferred to
PVDFmembranes (Millipore, United States). After blocking with
5% non-fat milk for 1 h, the membranes were incubated at 4°C
overnight with primary antibodies against POMGNT1
(Immunoway, YT6311), B4GALT3 (Immunoway, YT5009),
DPM1 (Proteintech, 12403-2-AP), B4GALT2 (Proteintech,
20330-1-AP), B4GALNT1 (Proteintech, 13396-1-AP), B3GAT3
(ABclonal, A20618), and GAPDH (Immunoway, YT5052). The
next day, we incubated the PVDF membranes with HRP-
conjugated secondary antibodies (mouse or rabbit) at room
temperature for 1 h. The immunoblot signals were visualized
using the hypersensitive ECL chemiluminescence detection kit
(Proteintech, PK10003).

The protein expression levels of the prognostic signature
were verified between normal tissues and cancer tissues from
The Human Protein Atlas (HPA: https://www.proteinatlas.
org/).

Statistical Analysis
All statistical analyses were performed with R software (version
4.0.4) and Strawberry Perl (version 5.32.0.1). LASSO regression
analysis was applied to construct the prognostic signature.
Nomogram construction and validation were performed using
Iasonos’ guide. The survival predictive accuracy of the risk
assessment model was evaluated using time-dependent ROC
curve analysis. Differences with p < 0.05 were considered
statistically significant.

RESULTS

Dataset Characteristics and Candidate
Gene Identification
The flow chart of this study design is depicted in Figure 1. In the
TCGA dataset, 337 primary HCC samples and 39 normal samples
were screened as training cohort and testing cohort. In the ICGC
dataset, a total of 231 tumour samples with HCC were available
for external validation. The detailed characteristics are shown in
Table 1.

A total of 154 GT-related genes were generated by merging
two gene sets, (Supplementary Table S2). Through initial
analysis, 34 prognosis-related differentially expressed GTs
overlapped as candidate genes for further analysis
(Supplementary Table S3 and Figures 2A,B).

Construction and Validation of Prognostic
Signatures
Thirty-four candidate genes were used in LASSO regression
analysis to confirm the core prognostic genes and to fit a risk
prognosis model in the training cohort (n = 169). Finally, a
prognostic risk score model comprising six genes (POMGNT1,
DPM1, B4GALT3, B4GALT2, B4GALNT1, and B3GAT3) was
constructed (Table 2 and Figures 2C,D). The following formula
was utilized: risk score = (0.002*expression level of POMGNT1) +
(0.231*expression level of DPM1) + (0.222*expression level of
B4GALT3) + (0.122* expression level of B4GALT2) + (0.212*
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expression level of B4GALNT1) + (0.304*expression level of
B3GAT3).

This formula was used to evaluate outcomes in each sample
and the optimal cut-off value for samples in the high-risk group
and low-risk group was set at the median risk score in the training
cohort. Kaplan-Meier analysis revealed that a significantly
inferior OS was reflected in the high-risk group than in the
low-risk group in the training cohort, testing cohort and

validation cohort (Figures 3A–C). Then, ROC curves were
plotted to verify how well the risk score predicted the risk of
death at years 1, 2, and 3 (Figures 3D–F). In Figures 4A–C, the
risk score curves, risk gene expression heatmap and patient
survival status are shown based on the risk score values.
Furthermore, principal component analysis (PCA) was
implemented to visualize the sample information by risk
group (Figure 4D). The results proved that the prognostic

FIGURE 1 | Flowchart of our study.

TABLE 1 | Clinical characteristics of samples involved in this study.

Characteristics TCGA dataset ICGC dataset

Training cohort Testing cohort Validation cohort

No. of samples 169 168 231
Age at diagnosis, years
≤65 112 106 89
>65 57 62 142

Gender
Female 52 55 61
Male 117 113 170

Grade
G1-2 115 96 NA
G3-4 54 72 NA

TNM-stage
StageI-II 127 123 141
StageIII-IV 42 45 90

T classification
T1-2 128 125 NA
T3-4 41 43 NA
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signature based on these 6 candidate genes had good predictive
performance for HCC patients.

Associations Between Risk Score and
Clinicopathological Features
In the TCGA dataset, the risk score was significantly associated
with OS in univariate Cox regression analysis (HR = 3.915, 95%

CI = 2.516–6.092, p < 0.001, Figure 5A). Likewise, multivariate
analysis showed that the risk score was an independent
prognostic indicator in HCC (HR = 3.443, 95% CI =
2.163–5.481, p < 0.001, Figure 5B). The results from the
ICGC dataset were consistent with the above (Figures 5C,D).

For further analyses, we created prognostic subgroups of
patients based on multiple classification approaches in both
datasets. The results showed that OS between the two groups

FIGURE 2 | Visualization of candidate genes. (A) Heatmap of the expression levels of candidate genes. (B) Forest plot of candidate genes. (C) Partial likelihood
deviance of different combinations of variables calculated via the LASSO Cox regression model. (D) LASSO coefficient profiles of candidate genes.
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was significantly different in patients aged >65 years (Figure 6A,
p = 0.018), ≤65 years (Figure 6B, p < 0.001), males (Figure 6C,
p < 0.001), stage I-II (Figure 6E, p = 0.010) and stage III-IV
(Figure 6F, p = 0.010). The difference in females did not reach
significance (Figure 6D, p = 0.084). Furthermore, we used
additional information from the TCGA to verify the above
result (Figures 6G–J).

The Construction of a Nomogram and
Calibration Curve
The nomogramwas constructed by integrating the risk score with
other clinicopathological features (Figures 7A,B). Furthermore,
the calibration curve displayed linear concordance in the
predicted and actual survival rates at 1, 2, and 3 years (Figures

7C,D). The findings suggested that the nomogram had high
accuracy in predicting OS.

Gene Set Enrichment Analysis
Gene set enrichment analysis (GSEA) was done using Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG). GO term analysis was used to evaluate the
functional assessment of the different risk score groups, and the
results demonstrated that the high-risk group was reportedly
associated with protein folding, protein targeting to
mitochondrion, endoplasmic reticulum protein containing
complex, vacuolar membrane, catalytic activity acting on a
tRNA and chaperone binding (Figures 8A–C). Additionally,
monocarboxylic acid catabolic process, amino acid betaine
metabolic process, microbody lumen, high density lipoprotein

TABLE 2 | Detail information of the prognostic gene signatures.

Gene symbol Gene name Lasso coefficient

POMGNT1 Protein O-linked mannose beta 1,2- N-acetylglucosaminyltransferase 1 0.00221148
DPM1 Dolichyl-phosphate mannosyltransferase polypeptide 1 0.23073783
B4GALT3 Beta-1,4-galactosyltransferase 3 0.22198892
B4GALT2 Beta-1,4-galactosyltransferase 2 0.12189376
B4GALNT1 Beta-1,4-N-acetyl-galactosaminyltransferase 1 0.21161694
B3GAT3 Beta-1,3-glucuronyltransferase 3 0.30439163

FIGURE 3 | Validation of the prognostic signature. The Kaplan–Meier survival plots of high-risk and low-risk groups in the training cohort (A), testing cohort (B) and
validation cohort (C). The ROC curves of the prognostic signature in 1-, 2-, and 3-years survival in the training cohort (D), testing cohort (E) and validation cohort (F).
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particle, aromatase activity and steroid hydroxylase activity were
significantly downregulated in the low-risk group (Figures
8D–F). KEGG analysis showed that pyrimidine metabolism,
purine metabolism, and N-glycan biosynthesis pathways were
enriched in the high-risk group (Figure 8G); in contrast, some
pathways in the low-risk group were enriched, including drug
metabolism cytochrome P450, retinol metabolism and
tryptophan metabolism (Figure 8H). We hypothesized that
the prognostic signature may be potentially associated with
metabolic disorders.

Correlation of Risk Score With
Tumour-Infiltrating Immune Cells
The relative abundance of 22 infiltrating immune cells was
calculated by the CIBERSORT algorithm between the groups
in both datasets. In the ICGC dataset, the infiltration levels of
follicular helper T cells, regulatory T cells (Tregs) and M0
macrophages were higher in the high-risk group; however,
naive B cells and gamma delta T cells were significantly
enriched in the low-risk group; meanwhile, the correlation

between immune cell infiltration and risk score was analysed
(Figures 9A,B). Then, we observed higher levels of immune-
infiltrating of M0 macrophages, regulatory T cells (Tregs),
memory B cells, activated CD4 memory T cells, follicular
helper T cells and resting dendritic cells in the TCGA’s high-
risk group. In contrast, increased levels of naive B cells, resting
CD4 memory T cells, resting NK cells, monocytes, M2
macrophages and resting Mast cells were found in the low-risk
group. Similarly, we analysed the correlation between the risk
score and TICS in the TCGA dataset (Figures 9D,E). By taking
the intersection of results, the two most relevant TICS were
identified as M0 macrophages and naive B cells (Figures
9C,F–G).

Validating the Expression of Six Genes
To validate the differential expression at the mRNA level, we used
qRT–PCR to compare the expression of the six genes in the HCC
cell line (HepG2) and normal liver cells (LO2) (Figure 10). The
mRNA levels of DPM1, B4GALT3, B4GALT2, B4GALNT1, and
B3GAT3 were significantly higher in HepG2 cells than in LO2
cells. Subsequently, to validate the differential expression at the

FIGURE 4 | Characteristics of prognostic signature. Distribution of risk score, Survival status of HCC samples and Heat map of the expression of prognostic
signature in the training cohort (A), testing cohort (B) and validation cohort (C). Principal component analysis (PCA) plot in the training cohort, testing cohort and
validation cohort (D).
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protein level, total cellular protein was analysed for the signature
gene’s expression by western blot (Figure 11). Likewise, these six
genes were compared in normal versus cancer tissues derived
from the HPA, and the results are shown in Figure 12. Similar
expression of POMGNT1 and B3GAT3 was observed in normal
versus cancer tissues by immunohistochemical staining.
However, the degree of staining in DPM1, B4GALT3,
B4GALT2, and B4GALNT1 was stronger in cancer tissues
than normal tissues.

DISCUSSIONS

Protein glycosylation, as the most common post-translational
modification, plays an indispensable regulatory role in diverse
biological functions (Pinho and Reis, 2015). Almost all proteins
exert their functions through one or more of the 14 distinct
glycosylation pathways (Schjoldager, et al., 2020). Given its
critical role in tumour biology, aberrant glycosylation is
regarded as a new hallmark of cancer (Munkley and Elliott,
2016), and offers a novel direction to predict cancer prognosis
and treat cancer. In essence, aberrant glycosylation is due to
dysregulation of GTs, and many of them are implicated in
tumorigenesis as tumour suppressors or oncogenes. For

instance, as a major metabolic integration point, OGT is
upregulated in many tumours, including HCC, and it has been
shown to be involved in the regulation of stem-like cell potential
through modification of eIF4E (Cao, et al., 2019). Likewise,
several studies have reported associations between dysregulated
GTs and patient outcomes. Wu et al. detected the expression level
of the sialyltransferase ST3GAL1 in 273 patients with HCC and
found that upregulation of ST3GAL1 was an independent
predictor of OS and disease-free survival (DFS) (Wu, et al.,
2016). Liu et al. demonstrated that the polypeptide
N-acetylgalactosaminyltransferase GALNT4 promoted the
development of cancer as a tumour suppressor gene, and the
level of expression could act as an independent favourable
prognostic factor for recurrence-free survival (RFS) and OS
(Liu Y. et al., 2017). In addition, integrating multiple genes
could better predict the clinical outcome in the study of Kuo
et al. (Kuo, et al., 2017). For this purpose, it is necessary to explore
the prognostic signature of GTs for the accurate prediction of
prognosis or response to therapy, which provides a reliable basis
and reference for cancer management.

In this study, 34 prognosis-related differentially expressed GTs
were first obtained. Then, LASSO regression was applied to
construct a prognostic signature, as used in previous
studies(Ueno, et al., 2021). The final screening result identified

FIGURE 5 | Forest plot of prognostic signature and clinical risk factors. The univariate Cox regression analysis in the TCGA dataset (A) and ICGC dataset (C). The
multivariate Cox regression analysis in the TCGA dataset (B) and ICGC dataset (D).
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6 genes (POMGNT1, DPM1, B4GALT3, B4GALT2, B4GALNT1,
and B3GAT3); consistent with the screening results, we
confirmed their differential expression in cells and tissues. The

prognostic signature had strong robustness and stable prediction
performance in the training and validation cohorts by a series of
significance tests, and the risk score was identified as an

FIGURE 6 | Independent prognostic analysis of risk scores and clinicopathological features. The Kaplan–Meier survival plots of patients with age >65 and
≤65 (A,B); Males and females (C,D); Stage I-II and Stage III-IV (E,F) in both TCGA and ICGC dataset. The Kaplan–Meier survival plots of patients with tumour stage T1-2
and T3-4 (G,H); tumour grading G1-2 and G3-4 (I,J).
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independent prognostic indicator. Then, a nomogram
comprising the risk score and clinicopathological data was
generated to predict OS and showed superior performance in
its validity. To gain more insight into the potential biological
mechanism of the prognostic signature, we further used GSEA for
the identification of biological functions. As expected, the results
revealed that the prognostic signature was enriched in
metabolism-related signalling pathways. Meanwhile, we know

that glycosylation can modify protein structure and function;
likewise, glycosylation affects immune cells with diverse functions
and therefore modifies the tumour-immune microenvironment.
M0 macrophages and naive B cells were identified as the most
relevant TICS in our risk score group.

Coincidentally, the gene signature showed a tumour-
promoting effect in our study. POMGNT1 has been examined
in depth in glioblastoma (GBM), and it can promote proliferation

FIGURE 7 | Nomograms and calibration curves for the prognostic signature. Nomograms for predicting the OS of 1-, 2-, and 3-years in the TCGA dataset (A) and
ICGC dataset (B). Calibration curves of nomograms in the TCGA dataset (C) and ICGC dataset (D).
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and invasion by regulating EGFR/ERK signalling (Lan, et al.,
2015); Furthermore, it induces temozolomide resistance of
tumour cells in GBM by regulating the expression of factors in

EMT signalling (Liu, et al., 2017b). In addition, it acts as a
prognostic and predictive novel marker in GBM, similar to
our results (Lan, et al., 2013). DPM1 acts as a core catalytic

FIGURE 8 |Gene set enrichment analysis between high-risk and low-risk groups. The result of top 3 in GO analysis in the high-risk group (A–C). The result of top 3
in GO analysis in the low-risk group (D–F). The upregulated KEGG pathways of top 3 in the high-risk group (G). The upregulated KEGG pathways of top 3 in the low-risk
group (H).
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component of Dolichol phosphate mannose synthase (DPMS)
(Tomita, et al., 1998). Li et al. reported that DPM1 serves as a
biomarker for HCC patients’ prognostic prediction because the
level of expression is significantly associated with
clinicopathological parameters (Li, et al., 2020). The beta-1,4-
1galactosyltransferase (B4GALT) family is a class of key enzymes
that have crucial roles in many biological events, and catalyses the
biosynthesis of N-acetyllactosamine on N-glycans by
transferring UDP-galactose. It has been reported that
upregulation of B4GALT2 induces p53-mediated apoptosis
in HeLa cells and reveals a relationship with cisplatin-
resistance in ovarian cancer cells (Zhou, et al., 2008; Zhao,
et al., 2017). On the other hand, B4GALT3 has been evaluated
more in-depth in tumour research than the former and it
mainly plays a functional role by directly modifying β1-
integrin glycosylation (Chen, et al., 2014; Chang, et al.,
2013; Sun, et al., 2016). However, B3GALT3 develops
different effects in different tumours, research shows that
B4GALT3 overexpression can promote tumour growth and
invasion in cervical cancer, neuroblastoma and GBM (Chang,
et al., 2013; Sun, et al., 2016; Wu, et al., 2020), opposite to the
tumour suppressor effects in colorectal and bladder cancer
(Chen, et al., 2014; Liu, et al., 2018). In our study, we also
found a high level of expression of this gene in HCC.
B4GALNT1 (also known as GM2/GD2 synthase) functions
as the key enzyme that transfers N-acetylgalactosamine
(GalNAc) to GM3/GD3, catalysing the biosynthesis of
gangliosides GM2/GD2 (Yoshida, et al., 2020). In breast
cancer stem cells (CSCs), the upregulation of B4GALNT1
plays key roles in maintaining the CSC phenotype (Liang,
et al., 2013). Jiang et al. confirmed that B4GALNT1 promoted
the progression and metastasis of lung adenocarcinoma
through the JNK/c-Jun/Slug signalling pathway and was
involved in the tumour development of melanoma and
clear cell renal cell carcinoma (Yoshida, et al., 2020; Jiang,
et al., 2021; Yang, et al., 2019). B3GAT3 participates in the
biosynthesis of the glycosaminoglycan (GAG) linker region of
proteoglycan (PG) (Barré, et al., 2006). Given its important
role in tumour metabolism, which was used repeatedly as a
candidate gene for constructing prognostic models (Zhao,
et al., 2021; Zhao, et al., 2020; Bingxiang, et al., 2021), its
function of promoting the process of tumour EMT in HCC
was confirmed by experimental verification (Zhang, et al.,
2019). Based on the analysis above, the cancer-promoting
effects of dysregulated expression are in accordance with our
prediction results.

Risk prediction models have been developed as a powerful tool
to provide references for clinical decision-making. A large
amount of evidence has identified that dysregulation of GT
expression plays critical roles in tumorigenesis, affecting the
prognosis of HCC. For this reason, we developed a risk model
and tried to explore its prognostic value. Although promising
prediction results were displayed in our study, there is still room
for improvement. First, we took a bioinformatics approach to
mine GT data, which should be taken prudently and further
validated by experimental studies before it is developed for
clinical use. Second, to improve the efficiency of risk

FIGURE 9 | (1–2) Correlation of risk score with tumor-infiltrating
immune. Results of the infiltrating level of 22 immune cell types in
the ICGC dataset (A) and TCGA dataset (D). Correlations of risk
scores with immune infiltration level in the ICGC dataset (B) and
TCGA dataset (E) (only significant correlations were plotted). Venn
diagram of immune cells by the results of difference analysis and
correlation analysis in the ICGC dataset (C) and TCGA dataset (F). Result
of the overlapping immune cell in the ICGC dataset and TCGA
dataset (G).
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FIGURE 10 | Validation of the mRNA expression levels of the prognostic genes in HCC cell line (HepG2) and normal hepatocyte cell line (LO2) using qRT–PCR.

FIGURE 11 | Validation of the protein expression levels of the prognostic genes in HCC cell line (HepG2) and normal hepatocyte cell line (LO2) using Western blot.
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prediction in heterogeneity, further studies on larger sample sizes
are needed.

CONCLUSION

In summary, a computational risk model combining six GTs was
developed to aid in the clinical prediction of HCC prognosis. The
model showed good prediction efficiency after verification by the
internal testing and the external validation cohort. Furthermore,
these prognostic markers were validated by western blot and
qRT–PCR. However, further studies should be conducted to
explore the clinical value of our current study.
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