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SUMMARY

The visual system processes sensory inputs sequentially, perceiving coarse information before fine 

details. Here we study the neural basis of coarse-to-fine processing and its computational benefits 

in natural vision. We find that primary visual cortical neurons in awake mice respond to natural 

scenes in a coarse-to-fine manner, primarily driven by individual neurons rapidly shifting their 

spatial frequency preference from low to high over a brief response period. This shift transforms 

the population response in a way that counteracts the statistical regularities of natural scenes, 

thereby reducing redundancy and generating a more efficient neural representation. The increase 

in representational efficiency does not occur in either dark-reared or anesthetized mice, which 

show significantly attenuated coarse-to-fine spatial processing. Collectively, these results illustrate 

that coarse-to-fine processing is state dependent, develops postnatally via visual experience, and 

provides a computational advantage by generating more efficient representations of the complex 

spatial statistics of ethologically relevant natural scenes.

In brief

Skyberg et al. show that the visual cortex of mice processes natural scenes in a coarse-to-fine 

manner, driven by individual neuron’s temporal dynamics. These response dynamics, which 

require visual experience to develop, reduce redundancy in the neural code and lead to more 

efficient representations of complex visual stimuli.
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INTRODUCTION

The visual system encodes the rich information of complex environment under the 

limitations of available biological resources. This notion has led to the proposal that the 

underlying “neural code“ must be efficient (Atick and Redlich, 1990; Attneave, 1954; 

Barlow, 1961; Simoncelli and Olshausen, 2001). The efficient coding hypothesis forms 

the framework to explain many properties of the early visual system, such as asymmetries 

in the On/Off pathways (Gjorgjieva et al., 2014; Karklin and Simoncelli, 2011; Ratliff 

et al., 2010), retinal ganglion cell receptive field structure and response decorrelation 

(Karklin and Simoncelli, 2011; Nirenberg et al., 2001; Pitkow and Meister, 2012; Roy 

et al., 2021), cortical simple and complex receptive field structure (Karklin and Lewicki, 

2009; Olshausen and Field, 1996a), and dimensionality, sparseness, and coding smoothness 

of certain subcortical and cortical responses (Dan et al., 1996; Kowalewski et al., 2021; 

Stringer et al., 2019; Vinje and Gallant, 2000).

Importantly, these studies have mostly focused on static visual representations without 

considering their temporal dynamics. Many visual stimuli of varying complexity have been 

shown to be processed in a temporally dynamic fashion, with certain aspects of the stimulus 

being encoded before others. This has been shown at the neuronal level for spatial frequency 

(SF; Allen and Freeman, 2006; Bredfeldt and Ringach, 2002; Cai et al., 1997; Chen et al., 

2018; Frazor et al., 2004; Mazer et al., 2002;Vreysen et al., 2012), orientation (Ringach et 

al., 1997), direction (Perge et al., 2005), and binocularity (Menz and Freeman, 2003), as 

well as for complex stimuli like faces (Matsumoto et al., 2005; Sugase et al., 1999). Among 

these, the most well-established is the dynamic processing of spatial information, where 

individual cells rapidly shift their SF preference from low to high during a brief response 

period (Allen and Freeman, 2006; Bredfeldt and Ringach, 2002; Cai et al., 1997; Chen et 

al., 2018; Frazor et al., 2004; Mazer et al., 2002; Vreysen et al., 2012). However, whether 
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and how coarse-to-fine processing contributes to efficient coding, and more generally, the 

computational benefits it provides, remain unknown.

Neural codes are most efficient when responses are uncorrelated and the representations 

are of high dimension (Atick and Redlich, 1990; Barlow, 1961; Simoncelli and Olshausen, 

2001; Stringer et al., 2019). One way to achieve this efficiency is by eliminating responses 

to statistical regularities of the encoded inputs (Barlow, 1961). A prominent statistical 

regularity in natural scenes is the 1/f relationship between SF and spectral power (Olshausen 

and Field, 1996b; Ruderman and Bialek, 1994; Simoncelli and Olshausen, 2001). Thus, 

coarse-to-fine SF processing could, in theory, produce more efficient neural representations 

by shifting neural responses away from the high-power, low-SF components within natural 

scenes.

In this study, we test the above prediction by measuring the spatiotemporal receptive fields 

of neurons in the mouse primary visual cortex (V1) in response to simple grating stimuli, 

and by determining the efficiency of the neural representation of complex natural scenes. 

We find that the vast majority of V1 neurons in awake mice respond to gratings in a coarse-

to-fine fashion, showing two temporally offset peaks to low and high SFs that generate a 

rapid flattening of the population SF tuning curve. Excitingly, V1 neurons also show coarse-

to-fine processing of natural scenes, which drives a substantial and significant increase 

in the representational efficiency of these complex stimuli. We further demonstrate that 

coarse-to-fine SF processing develops postnatally via visual experience and is significantly 

attenuated in anesthetized mice. Together, our work unveils a computational advantage for 

temporally dynamic cortical responses in efficiently representing the ethologically relevant 

natural stimuli that the visual system evolved and developed to encode.

RESULTS

Coarse-to-fine processing in awake mouse V1

We performed large-scale physiological recordings from awake mice to determine the 

temporal dynamics of how individual V1 neurons process spatial information. First, 

using rapidly displayed gratings and subspace forward correlation (Figure 1A; see STAR 

Methods), we revealed two distinct types of spatiotemporal receptive fields (STRFs). The 

first type was one in which the peak responses to all SFs occurred around the same time 

(Figure 1B) and made up ~25% of the V1 population in awake mice (n = 64/259). Most 

of these “one-peak cells” responded maximally between 80 and 110 ms (Figure 1D) and 

preferred low SFs (Figure S2C). The second type was one that responded to low SFs faster 

than to high SFs, resulting in a dramatic shift of SF preference from low to high (i.e., from 

coarse to fine) during their response trajectory (Figure 1C). The SF shift was often large 

and abrupt, generating two distinct peaks in the SF response profile. Such “two-peak cells” 

made up a vast majority of the awake V1 population (75.3%, n = 195/259). At their first 

peak (i.e., τpk1), the STRFs of these two-peak cells were similar to one-peak cells in both 

the latency (Figure 1D) and SF preference (Figures S2A and S2C). In contrast, at the second 

temporally delayed peak (i.e., τpk2), the SF preferences were much higher and more diverse 

than at the first peak, covering the entire range of tested SFs (Figures 2B and S2B). Nearly 
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every two-peak cell (94.4%, n = 184/195) shifted in a coarse-to-fine fashion from τpk1 to 

τpk2 (Figures 2B and S2D).

We found that the magnitude of SF shift (Δfpk; mean of 1.64 octaves, i.e., a tripling of 

SF preference; and median of 2.00 octaves, i.e., a quadrupling of SF preference) was 

much greater than what has been previously reported for anesthetized mice (mean of 0.85 

octaves; Vreysen et al., 2012) and anesthetized non-human primates (mean of 0.62 octaves; 

Bredfeldt and Ringach, 2002). We therefore tested the influence of anesthesia and found 

it had multiple effects on V1 coarse-to-fine SF processing. First, anesthesia significantly 

attenuated the average percentage of two-peak cells, from 75.8% (±3.4) in awake V1 to 

51.6% (±5.2) in anesthetized V1 (p = 0.002, z statistic = 3.12, Mann-Whitney test; Figure 

2A). Second, even among the remaining two-peak cells, the average Δfpk was significantly 

reduced during anesthesia (from 2.17 to 0.90 octaves; p = 2.56e-18, z statistic = 8.73, Mann-

Whitney test; Figures 2B and S2D). Collectively, the average Δfpk from anesthetized mice 

was significantly lower than that of awake mice (from mean of 1.63 (±0.11) to 0.47 (±0.10) 

octaves; p = 5.4e−5, z statistic = 4.038, Mann-Whitney test; Figure 2C). Furthermore, we 

found that one-peak cells, at the population level, also processed SF information in a coarse-

to-fine manner, with those that preferred high SFs tending to respond at longer latencies than 

those preferring low SFs (Figure S2F). This trend disappeared in anesthetized mice. In other 

words, anesthesia selectively diminished the high SF responses of one- and two-peak cells, 

thereby attenuating cortical coarse-to-fine processing as a whole.

To determine how coarse-to-fine SF processing of individual cells affects the SF tuning 

of the cortical population, we calculated the average SF responses of all V1 cells at 

six distinct latencies (Figure 2D). Between 60 and 120 ms, the cortical representation 

of SF information shifted in a coarse-to-fine manner, evolving from low pass to largely 

flat and eventually to more high pass (Figure 2D). Between 105 and 120 ms the low-SF 

population responses became negative, indicative of temporally delayed suppression at low 

SFs (Allen and Freeman, 2006; Bredfeldt and Ringach, 2002). Conversely, anesthetized 

mice with significantly attenuated cellular coarse-to-fine processing displayed little to no 

shift in their population SF tuning, instead remaining low pass throughout the duration of 

the response (Figure 2E). Additionally, there were no signs of temporally delayed, low-SF 

suppression in the anesthetized population response. Finally, we calculated the average 

time-integrated SF tuning curves of the awake (blue) and anesthetized (gray) V1 populations 

(Figure 2F). The time-integrated SF tuning curves were substantially different between 

awake and anesthetized mice, particularly in regard to the medium to high SFs (Figure 

2F). Collectively, these data directly demonstrate that coarse-to-fine SF processing is state 

dependent and in awake mice acts to dynamically shift cortical SF tuning away from a 

low-pass representation.

Awake mice process natural scenes in a coarse-to-fine manner

We next asked whether the coarse-to-fine processing of SF information seen in response 

to simple and artificial gratings occurred while viewing ethologically relevant stimuli, like 

natural scenes (Figure 3A). Natural scenes are high-dimensional stimuli containing a wide 

range of SFs and varying noticeably from one scene to the next. Despite this variability, 
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the SF statistics of natural scenes all tend to obey a 1/f relationship between SF and 

spectral power (Figure 3B, black; Olshausen and Field, 1996b; Ruderman and Bialek, 1994; 

Simoncelli and Olshausen, 2001). To test if awake mice process the spatial statistics of 

natural scenes in a coarse-to-fine manner, we generated two variants of 60 different natural 

scenes, low-pass filtered and high-pass filtered (Figure 3A). Low-pass or high-pass filtering 

of natural scenes attenuates the high-SF or low-SF information they contain, respectively 

(Figures 3A and 3B). If natural scenes are processed in a coarse-to-fine fashion, V1 neurons 

should respond to low-pass filtered scenes (with attenuated high-SF components) more 

quickly than to high-pass ones (with attenuated low-SF components). This prediction held 

true at both the level of individual neurons (Figures 3C–3F and S3A–S3D) and across the 

population (Figures 3G and 3H), with responses to low-pass scenes reaching their peaks 

before high-pass natural scene responses. In fact, nearly every cell we recorded (92.3%, n 

= 159/171; 5 mice) responded more quickly to low-pass natural scenes than they did to 

high-pass ones (Figure 3I), with an average difference of 23.8 ± 1.67 ms. Furthermore, the 

differences in peak response times between low-pass and high-pass natural scenes were not 

correlated with the response magnitude (Figure S3H). In other words, the differences in 

response latency are not due to differences in response strength, but in fact reflect sequential 

processing of the natural scenes.

Using subspace forward correlation, we were able to map the STRFs of 116 of the 171 

neurons that responded to the filtered natural scenes. Both one-peak cells (n = 32, Figure 

S3E) and two-peak cells (n = 84, Figure S3F) showed similar temporal progressions to 

the filtered natural scenes, responding more quickly to low-pass filtered scenes than high-

pass filtered scenes (Figures S3E–S3G). Interestingly, the average normalized responses 

of two-peak cells to all variants of natural scenes were substantially larger than that of 

one-peak cells (Figures S3E–S3G), suggesting that two-peak cells contribute more strongly 

to natural scene responses. This was particularly true with the high-pass filtered natural 

scene responses between one- and two-peak cells (Figures S3E and S3F). Collectively, these 

data illustrate that the spatial statistics of natural scenes are processed in a coarse-to-fine 

manner in mouse V1 and that both one- and two-peak cells contribute, albeit differently, to 

this temporally dynamic processing.

Coarse-to-fine processing reduces redundancy within the neural representation of natural 
scenes

The discovery that coarse-to-fine spatial processing occurs when viewing high-dimensional, 

ethologically relevant, natural scenes raises important questions regarding the computational 

advantages this process may provide visual processing. One compelling hypothesis is that 

it may reduce redundancies within the neural representation of natural scenes. To test this 

hypothesis directly we recorded the responses of 629 V1 neurons, from eight adult awake 

mice, to 20 repeats of 150 unfiltered natural scenes. Note that we increased the number 

of natural scenes and removed filtered variants for this particular experiment. The recorded 

responses were then averaged across repeats and analyzed by principal component analysis 

(PCA). The intuition behind the following analyses is graphically represented in Figure 

4A. In a hypothetical scenario of two neurons that respond identically to each other, their 

responses would be perfectly redundant (Figure 4A top, black squares). This redundant 
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neural code would generate a long and narrow natural scene response manifold in this 

two-dimensional space (Figure 4A top, black dotted line), which can be captured by one 

large principal component (PC) (PC1, along y = x) and one small PC (PC2, orthogonal to y 

= x). In this example, the percentage of the total variance described by PC1 and PC2 would 

be nearly 100% and 0%, respectively, and the resulting eigenspectrum slope would be steep 

(Figure 4A bottom, black). On the other extreme, if both neurons generate unique responses, 

the redundancy between their responses would be low (Figure 4A top, red circles). This 

hypothetical neural code, having similar PC1 and PC2 (roughly 50% for each) and a flat 

eigenspectrum slope, would be considered efficient under the efficient coding hypothesis 

(Barlow, 1961). Thus, the slope of the eigenspectrum, the number of PCs required to explain 

the neural response manifold, and the percentage of total variance explained by PC1 are all 

indications how redundant or efficient a neural representation is.

To measure if redundancy in the neural representation of natural scenes from V1 of awake 

mice changed over the response, we began by combining all our data into a single group (n 

= 629, eight mice). We chose the time points where PC1 reached its local maximum within 

an early temporal window that reflects “coarse” processing of natural scenes (100–150 ms; 

τ1 =121 ms; solid line in Figures 4B–4D) and within a later temporal window that reflects 

“fine” processing of natural scenes (151–225 ms; τ2 = 165 ms; dotted line in Figures 4B–

4D). We chose these temporal windows based on the average population responses to low-

pass and high-pass natural scenes (Figures 3G and 3H; see STAR Methods). Comparing the 

average firing rate between these two time points (Figure 4B, solid and dotted lines) shows 

similar population responses at both times, making it unlikely that any subsequent findings 

are due simply to wholesale changes in the responsivity of the population. Plotting the 

eigenspectrum at τ1 and τ2 (Figure 4D, solid and dotted lines, respectively) revealed a clear 

and substantial flattening of the eigenspectra over time. From τ1 to τ2 the eigenspectrum 

slope decreased from −0.49 to −0.33, a net change of 0.16 (ΔSlope, positive values indicate 

flattening; Figure 4D). Additionally, we found that the number of large PCs, that is, the 

number of PCs that rise above a threshold derived via data shuffling (see STAR Methods), 

also changed substantially from τ1 to τ2 (Figure 4D, inset). At τ1 the first 26 PCs were 

greater than their shuffled counterparts, whereas at τ2 the first 34 PCs were greater than 

the shuffled data, an increase of eight PCs (−ΔLarge PCs; Figure 4D, inset). A positive 

ΔLarge PC indicates that more PCs are required to describe the response manifold at τ2 

compared with τ1. As a final measure, we calculated the change in the percentage of 

variance described by PC1 from τ1 to τ2. We found an almost 2-fold decrease (from 6.28% 

to 3.31%, Figure 4D), further indicating a flattening of the eigenspectrum over time.

Next, we tested if the redundancy reduction occurred within recordings from individual 

mice. We chose τ1 and τ2 in each animal following the same procedure as described above 

(Figure 4E). First, we compared the slope of the eigenspectra and found that in every animal 

the slope flattened from τ1 to τ2 and was significantly less negative at τ2 (−0.39 ± 0.04) 

than at τ1 (−0.55 ± 0.05; p = 0.008, Wilcoxon; Figure 4F). The number of large PCs 

required to explain the response manifold also changed on an animal-to-animal basis and 

was significantly larger at τ2 (17.1 ± 1.9) than at τ1 (12.6 ± 1.4; p = 0.008, Wilcoxon; 

Figure 4G). Finally, the percentage of total variance described by PC1 was significantly 

larger at τ1 (11.33 ± 0.98) than at τ2 (8.00 ± 0.94; p = 0.008, Wilcoxon; Figure 4H). These 
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findings were not dependent upon the specific τ2 chosen for each animal (Figures S6G–

S6I). Thus, all three measures demonstrate that coarse-to-fine SF processing substantially 

decreases the redundancy in V1’s representation of the spatial statistics of natural scenes.

It is conceivable that the reduction in redundancy in the representation of natural scenes at 

τ2 could be caused by an increase in the variability of neuronal responses as the influence 

of the stimulus decays. This could also generate a flatter eigenspectrum at τ2 but would 

suggest that the responses are overtaken by noise rather than rearranging into a more 

efficient representation. To test this possibility, we calculated the Fano factor (Churchland 

et al., 2010), a measure of response variability, of responses over time from a population of 

140 cells from three mice that were shown unfiltered natural scenes. We found that the Fano 

factor was high (~1.3) before the stimulus reached the cortex and quickly decreased toward 

1 at the onset of stimulus-evoked activity (Figure S4), similar to previous findings in many 

brain areas (Churchland et al., 2010). Importantly, the Fano factor remained low and near 1 

throughout the duration of the population response (~125–225 ms), excluding the possibility 

of a disproportional increase in neuronal variability during this period. Thus, the flattening 

of the natural scene response eigenspectrum at τ2 is indicative of the neuronal representation 

becoming more efficiently organized.

Coarse-to-fine processing requires visual experience to develop postnatally

The finding that coarse-to-fine SF processing drives efficient coding of natural scenes 

raises an intriguing possibility that natural viewing during postnatal development may be 

required for its normal development. To test this, we mapped the STRFs of V1 neurons 

from postnatal day 17–18 mice (“P17” group, 10 mice; Figure 5A), only a few days after 

vision onset, and from adult mice that were reared in complete darkness throughout life 

(“DR,” 12 mice; Figure 5A). We found a significant decrease in the average percentage 

of two-peak cells in P17 mice (48.4% ± 7.2, compared with 75.8% ± 3.4 in adult; p = 

0.0039, z statistic = 2.89, Mann-Whitney test; Figure 5B). Among the remaining two-peak 

cells, their Δfpk was also significantly reduced (1.43 ± 0.14 octaves at P17 and 2.17 ± 

0.08 octaves in adult; p = 9.87e−6, z statistic = 4.42, Mann-Whitney test; Figure S4J). 

Together, these changes resulted in a significantly lower average Δfpk for all P17 mice (0.83 

± 0.13 octaves) compared with adult mice (1.63 ± 0.11 octaves; p = 2.45e−04, z statistic 

= 3.67, Mann-Whitney test; Figure 5C). These single cell developmental differences led to 

a substantially reduced time-integrated representation of high-SF information in P17 mice 

(Figure 5D).

Similar findings were observed in DR mice, which had a smaller average percentage of 

two-peak cells (60.96% ± 4.3) than adult normal reared mice (p = 0.024, z statistic = 2.25, 

Mann-Whitney test; Figure 5B) and reduced Δfpk among the remaining two-peak cells (1.43 

± 0.12; p = 2.54e−06, z statistic = 4.71, Mann-Whitney test; Figure S4J). Similarly, the 

average Δfpk values for all DR mice (0.84 ± 0.09 octaves) was significantly lower than that 

of adult normal reared mice (p = 9.01e−5, z statistic = 3.92, Mann-Whitney test; Figure 5C). 

Interestingly, as a population one-peak cells from adult DR mice still showed coarse-to-fine 

SF processing similar to that of normal reared mice (Figure S5L), suggesting that dark 

rearing selectively attenuates the coarse-to-fine processing of two-peak cells rather than a 
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wholesale deterioration of high-SF responses. At the population level, the effects of dark 

rearing manifested as a substantial attenuation of the medium- to high-SF time-integrated 

responses (Figure 5D).

Together, these results indicate that both the percentage of two-peak cells, the magnitude of 

their SF shift, and consequently coarse-to-fine SF processing as a whole, require patterned 

visual experience to develop properly after vision onset. Importantly, we find that dark 

rearing had specific and significant effects on the coarse-to-fine SF processing of two-peak 

cells, while leaving other aspects of cortical SF processing largely unscathed (Kowalewski et 

al., 2021; Nishio et al., 2021).

Disrupting coarse-to-fine processing reduces efficient coding of natural scenes

The specific deficit seen in the DR mice provided us an opportunity to more directly test 

the idea that coarse-to-fine processing drives efficient coding, where we tracked the temporal 

evolution of redundancy within neural representations of natural scenes in these mice. We 

first combined all cells from DR mice into a single group (n = 312, six mice) and analyzed 

the data identically to that of the normal reared population, choosing the two time points 

(τ1 = 124ms, τ2 = 168ms) at which PC1 reached its local maximum within the previously 

defined temporal windows (Figure S6A). Qualitatively, the DR response eigenspectrum at 

these two time points were very similar, only showing subtle signs of flattening. Our three 

quantitative methods confirmed this to be true (Figures S6B and S6C). The same conclusion 

held true with the analysis of individual DR animals. The eigenspectrum slope across all DR 

mice at τ1 (−0.50 ± 0.04) was not significantly different from that at τ2 (−0.48 ± 0.03; p = 

0.688, Wilcoxon; Figure 6A). The number of large PCs were also similar at τ1 and τ2 (11.3 

± 1.9 and 10.5 ± 1.9 respectively; p = 0.5, Wilcoxon; Figure 6B), and the same was true for 

the percentage of total variance explained by PC1 (12.14% ± 1.60% at τ1 versus 11.47% ± 

1.10% at τ2; p = 0.844, Wilcoxon; Figure 6C).

Furthermore, the combined data from anesthetized mice (n = 348, six mice) showed similar 

deficits to that of the DR data (Figure S6D). Both qualitatively and quantitatively, the natural 

scene response eigenspectrum from anesthetized mice failed to flatten from τ1 (131ms) to 

τ2 (186 ms; Figures S6E and S6F). These deficits were also seen when analyzing individual 

animals (Figures 6A–6C), as measured by eigenspectrum slopes (−0.56 ± 0.03 at τ1 versus 

−0.55 ± 0.03 at τ2; p = 1.0, Wilcoxon; Figure 6A), the number of large PCs (11.3 ± 1.2 at τ1 

and 10.2 ± 0.8 at τ2; p = 0.625, Wilcoxon; Figure 6B), and the percentage of total variance 

explained by PC1 (12.8% ± 1.4% at τ1 and 11.9% ± 0.6% at τ2; p = 0.438, Wilcoxon; 

Figure 6C).

Thus, irrespective of the quantitative method used, neither DR nor anesthetized mice showed 

a reduction of the redundancy in their natural scene responses akin to what was seen in 

awake normal reared mice. Importantly, at τ1 there were no significant differences between 

these groups in the eigenspectrum slope (H(2) = 0.833, p = 0.659, Kruskal-Wallis; Figures 

4F and 6A), number of large PCs (H(2) = 0.663, p = 0.718, Kruskal-Wallis; Figures 4G 

and 6B), or percentage of total variance explained by PC1 (H(2) = 0.485, p = 0.785, 

Kruskal-Wallis; Figures 4H and 6C); illustrating that natural scene responses of these three 

groups of mice are initially similarly redundant. However, over time this redundancy is 
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significantly reduced only in awake normal reared mice with substantial coarse-to-fine SF 

processing and not in DR or anesthetized mice with significantly attenuated coarse-to-fine 

SF processing (Figures 6D–6F). Finally, these differences between awake, anesthetized, and 

dark-reared mice were not dependent upon the specific time points τ2 that we chose to 

analyze (Figures S6G–S6I).

DISCUSSION

In this study we find that a vast majority of V1 cells in adult mice have two temporally 

offset peaks in their STRFs. The two peaks lead to a rapid increase of the preferred SF, 

roughly tripling (1.64 octaves) over a brief response window. The coarse-to-fine processing 

of two-peak cells we reveal is uniquely different from what has been reported previously in 

anesthetized animals (Bredfeldt and Ringach, 2002; Vreysen et al., 2012), often consisting 

of large, abrupt rather than smooth, subtle shifts toward higher SFs. In other words, coarse-

to-fine SF processing is dependent on the animal’s awake or anesthetized state. Additionally, 

we show that it develops postnatally via visual experience and, most importantly, acts to 

dynamically shift the population SF tuning curve away from a low-pass representation. 

Strikingly, we illustrate that coarse-to-fine processing occurs when viewing ethologically 

relevant natural scenes and acts to drive a significant decrease in redundancy within V1’s 

representation by shifting population responses away from the high-power, low-SF statistical 

regularities in natural scenes. Collectively, these findings reveal a computational role for 

coarse-to-fine processing in efficiently representing the spatial statistics of the complex 

stimuli that the visual system evolved and developed to encode and demonstrate that 

efficient coding operates on a previously unrealized timescale.

Temporal dynamics of natural scene responses

Our results highlight that V1’s representation of natural scenes is not static, but rather 

evolves dynamically over time. Initially, the response is dominated by the low-SF 

components in the natural scenes, generating a population representation that is low 

dimensional and redundant. Over the response period, the cortical population rapidly shifts 

its SF tuning away from the low SF statistical regularities in the natural scenes, due 

largely (but not exclusively) to the temporal dynamics of two-peak cells. Subsequently, 

the population response becomes highly dimensional and efficient. This finding raises an 

interesting question regarding why V1 representations are not efficient to begin with. It is 

conceivable that V1’s initial representation may be primarily driven by subcortical inputs, 

whose SF tuning largely match the SF statistics of the natural world (Grubb and Thompson, 

2003; Piscopo et al., 2013; Tschetter et al., 2018), prior to having been processed by 

cortical circuitry. In other words, the initially redundant representation may reflect the neural 

scaffolding upon which the mechanisms driving coarse-to-fine SF processing are built and 

provides little to no computational benefit. However, previous studies demonstrating that 

coarse-to-fine SF processing also occurs in the dorsal lateral geniculate nucleus (dLGN; 

Allen and Freeman, 2006; Cai et al., 1997) and superior colliculus (SC; Chen et al., 2018) 

suggest this is unlikely. Alternatively, the initially redundant response could in fact be 

beneficial. Indeed, redundant neural codes are known to provide unique computational 

advantages unavailable to efficient ones (Młynarski and Hermundstad, 2021; Stringer et al., 
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2019), such as being resilient to noise and producing representations that are generalizable 

(Stringer et al., 2019). Thus, it is likely that the coarse-to-fine processing of natural 

scenes we report here balances the benefits and drawbacks of both encoding schemes, 

allowing V1’s representation to be initially robust and generalizable and eventually efficient, 

maximizing the transmission of information and enabling complex features to be encoded by 

downstream networks (DiCarlo et al., 2012; Stringer et al., 2019).

Circuit and developmental mechanisms for coarse-to-fine processing

Given the computational benefits we show coarse-to-fine processing to have, one might 

ask what circuit mechanism underlies this coarse-to-fine processing. One possibility is an 

entirely feed-forward mechanism whereby coarse-to-fine processing is inherited directly 

from subcortical structures. While coarse-to-fine SF shifting has been reported in the 

dLGN of cats (Allen and Freeman, 2006; Cai et al., 1997) and the SC of non-human 

primates (Chen et al., 2018), it is not clear whether the two-peak cells we describe here 

are present in those datasets and whether cortical feedback drives the SF shift they report. 

Another possible feedforward mechanism could be the coordinated convergence of two 

pathways with differing latencies and spatial preferences. While the existence of the rodent 

correlate of the magno- and parvocellular pathways in primates (Y and X cells in carnivores, 

respectively) is still a matter of debate (Frazor et al., 2004; Gao et al., 2010; Grubb and 

Thompson, 2003), the convergence of these pathways could, in theory, generate STRFs 

similar to that of two-peak cells. Also of interest are potential differences between mice and 

highly visual animals in coarse-to-fine processing and the underlying circuit mechanisms.

Previous studies have suggested temporally delayed suppression that is tuned to low 

SFs may drive coarse-to-fine SF processing (Allen and Freeman, 2006; Bredfeldt and 

Ringach, 2002). Interestingly, we find a similar relationship between the presence of low-SF 

suppression and coarse-to-fine processing at the population level, as well as a lack of both in 

anesthetized preparations, providing more evidence suggesting that the two may be related. 

Both intracortical feedback (Bredfeldt and Ringach, 2002) and subcortical feedforward 

(Allen and Freeman, 2006) mechanisms have been proposed as sources of this suppression. 

Relevant to the former, Ayzenshtat et al. (2016) have demonstrated a role for vasoactive 

intestinal polypeptide (VIP) expressing cortical inhibitory neurons in controlling the SF 

preferences of putative excitatory neurons in mouse V1 (Ayzenshtat et al., 2016), although 

the study did not directly address the temporal dynamics of SF tuning. Thus, the coarse-to-

fine SF processing we report here may involve cortical inhibitory circuits including VIP 

cells.

Additionally, the second, high-SF, peak could be due to feedback inputs from higher cortical 

areas. Consistent with this idea, human fMRI studies reported that low SFs produced an 

initial increase of activity in prefrontal and temporo-parietal areas, followed by enhanced 

responses to high SFs in V1 (Peyrin et al., 2010). In mice, it has been reported that certain 

higher visual areas are functionally specialized to process high SFs (Andermann et al., 

2011; Marshel et al., 2011; Tohmi et al., 2021), supporting this hypothesis. Future studies 

will be needed to characterize coarse-to-fine SF processing in these higher visual areas and 

determine their impact on V1.
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Importantly, developmental studies can also provide clues to the circuit mechanisms 

underlying coarse-to-fine SF processing. A number of studies have described the 

developmental trajectories of the mouse visual system, ranging from retinal ganglion cells 

to primary and higher visual areas in the cortex (Chen et al., 2014; Hoy and Niell, 2015; 

Kang et al., 2013; Ko et al., 2013; Kowalewski et al., 2021; Rochefort et al., 2011; Tschetter 

et al., 2018; Wang et al., 2013). Future experiments are needed to link these developmental 

processes to the temporally dynamic shift of V1 SF tuning, particularly the development of 

cortical inhibitory circuits and functional maturation of higher visual area. It is interesting 

to note that our results complement previous reports on the development of SF tuning in V1 

(Hoy and Niell, 2015; Kowalewski et al., 2021; Nishio et al., 2021) and the development 

of its behavioral correlate, visual acuity (Kang et al., 2013; Prusky and Douglas, 2003; 

Stephany et al., 2018). In fact, the development of coarse-to-fine SF processing revealed 

in our study might underlie the development of high-acuity vision, as both have been 

shown to develop postnatally and require visual experience (Kang et al., 2013; Prusky and 

Douglas, 2003; Stephany et al., 2018). Thus, future research on the relationship between 

coarse-to-fine SF processing and high-acuity vision could aid our understanding of the 

neural underpinnings of behavioral acuity and potentially provide clinical applications for 

the temporally dynamic process we report here.

Finally, given that we find coarse-to-fine SF processing is state dependent, it is interesting to 

speculate if and to what degree animal behavior might contribute to this temporally dynamic 

processing. Indeed, it has been well established that a variety of behaviors (e.g., locomotion, 

arousal, and attention; Ayaz et al., 2013; Hembrook-Short et al., 2019; Niell and Stryker, 

2010; Savier et al., 2019; Vinck et al., 2015) directly modulate to the processing of visual 

information. Future research will be required to directly assess the contributions of such 

behaviors to the findings we report here.

Limitations of the study

In this work we used trial-averaged responses to assess how coarse-to-fine processing of 

natural scenes affects the representational efficiency of the underlying neural code. However, 

the true neural code occurs on individual trials, so our trial-averaged analyses may miss 

subtleties of the neural code that can only be revealed through investigating population 

responses on a trial-to-trial basis. Because responses of the individual neurons that make up 

the neural code are noisy and sparse, it becomes difficult to analyze the temporal dynamics 

of neural responses for individual trials. The common way to overcome this limitation is 

to average the response of a neuron either over time (Kowalewski et al., 2021; Stringer et 

al., 2019) or over trials (Churchland and Shenoy, 2007; Churchland et al., 2012; and as 

we did here). More recently, modeling methods have been developed to overcome these 

same technical limitations by attempting to infer the temporal dynamics of neural responses 

given sparse and noisy inputs (Pandarinath et al., 2018). This modeling approach has 

successfully recapitulated known population temporal dynamics that were first discovered 

using trial-averaged responses, demonstrating both its practicality as well as validating the 

use of trial-averaged responses in that particular case. Future research using methods such as 

these will provide promising avenues for investigating the temporally dynamic processing of 

information.

Skyberg et al. Page 11

Cell Rep. Author manuscript; available in PMC 2022 June 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Any further information and requests for resources and reagents should be 

directed to the lead contact, Jianhua Cang (cang@virginia.com).

Materials availability—This study did not generate any new unique reagents.

Data and code availability

• All data reported in this paper will be shared by the lead contact upon request.

• All custom written Matlab scripts used in the current study is available online 

(Github: https://github.com/RolfSkyberg/CellReports2022–CtF-Processing, also 

Zenodo: https://doi.org/10.5281/zenodo.6320882).

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Wild-type C57BL/6 mice at two developmental ages (P17-18, P40-P90) and of either sex 

were used in the experiments. All normal-reared (NR) animals were raised on a 12-h 

light/dark cycle, with food and water available ad libitum. Dark-reared (DR) animals were 

raised on a 24-h dark cycle from conception until the day of recording, with food and 

water available ad libitum. All experimental procedures were approved by the University of 

Virginia Institutional Animal Care and Use Committee.

METHOD DETAILS

Physiological recordings from mouse visual cortex—We performed physiological 

recordings from both anesthetized and awake mice. For anesthetized recordings, we 

followed our published surgical procedures (Chen et al., 2021; Shi et al., 2017, 2018). 

Briefly, mice were anesthetized with an intraperitoneal injection of urethane (1.2-1.3 g/kg in 

10% saline) and supplemented by chlorprothixene (10 mg/kg in 4mg/mL water). Atropine 

(0.3 mg/kg in 10% saline) and dexamethasone (2.0 mg/kg in 10% saline) were administered 

subcutaneously to reduce secretions and edema, respectively. The animals body temperature 

was monitored and maintained at 37°C via a rectal probe connected to a feedback heater 

control module (Frederick Haer Company). Artificial tears (Henry Schein Medical) were 

applied to the eyes for protection during surgery. Mice were placed on the stereotaxic 

instrument (Narishige), with lidocaine applied on the ear bars. The scalp was shaved and 

skin was removed to expose the skull. A titanium custom-made head plate was mounted on 

the top of the skull with Metabond (Parkell). A craniotomy (~2.0 × 2.0 mm2) was performed 

above the left visual cortex (V1; ~2.75mm lateral for adult mice and ~2.5mm for P17-18, 

and ~0.5mm anterior from lambda; Hoy and Niell, 2015; Niell and Stryker, 2008, 2010). 

The animal was then transferred to the recording station, still on the heating pad, with the 

head plate clamped in for fixation. A thin layer of silicon oil was applied on both eyes to 

replace the artificial tears.
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For awake recordings, a survival surgery was first performed to implant the head plate. 

This was done with isoflurane anesthesia (4% for induction, 2% for maintenance, in O2, 

~0.5 L/min, VetFlo, Kent Scientific), and followed by the above procedures. After surgery, 

mice were given a dose of carprofen (5mg/kg, Sub-Q) and placed in a heated chamber 

until ambulatory. They were then transferred back to their home cage and monitored daily 

for pain and wound health. Two days after the head plating, mice were habituated to head-

fixation for another 3-4 days. Recordings were performed once they were comfortable with 

the setup. On the day of the recording a craniotomy was done under isoflurane anesthesia, at 

least 4 h before the recording. For DR mice, surgical procedures were done using red-shifted 

light and an eye cover to minimize ambient light exposure.

Recordings were done using high-density multielectrode silicon microprobes developed by 

Sotiris Masmanidis from the University of California, Los Angeles (Yang et al., 2020). We 

used the “128AxN Sharp”, “128M” and “128J” probe designs (Figure S1A). The probe was 

carefully inserted into the craniotomy and lowered to a depth of ~0.9mm below the cortical 

surface. After reaching its final depth, the probe was allowed to sit for ~15 min before 

recordings began.

Visual stimulation—Visual stimuli were generated with MATLAB Psychophysics 

toolbox (Brainard, 1997; Niell and Stryker, 2008) (RRID: CDR_002881) on an LCD 

monitor (52.7cm x 29.6cm, 60Hz refresh rate, ~50cd/m2 mean luminance, gamma 

corrected). The monitor was placed 25cm away from the mouse. For each recording the 

monitor was slightly adjusted so that cells’ receptive fields were near the center of the 

monitor. Thus, the monitor center in visual space varied between roughly 0° and 20° across 

the azimuth (0° representing the center of the binocular visual field) and −10° and 10° in 

elevation (0° representing eye-level). Receptive fields were mapped using a white bar on a 

black background at the beginning of every recording.

Subspace-forward correlation: To measure and analyze the temporal dynamics of spatial 

frequency (SF) tuning we used subspace forward-correlation to measure the spatiotemporal 

receptive field of V1 neurons. This technique is mathematically identical to the subspace 

reverse-correlation method described by (Bredfeldt and Ringach, 2002; Frazor et al., 2004; 

Vreysen et al., 2012). Briefly, we recorded neural responses to a rapid sequence of 

sinusoidal gratings of varying orientations (0°, 45°, 90°, 135°), spatial phases (0, π/2, π, 

3π/2 rad), and SFs (0.02, 0.04, 0.08, 0.1, 0.12, 0.16, 0.2, 0.24, 0.28, 0.32 c/d; Figure 1A). 

We included spatial phase and orientation as variables to cover the subspace of the majority 

of V1 neurons’ receptive fields. Blank images of uniform luminance were interleaved into 

the sequence to provide a measure of the baseline firing (Figure 1A). The probability of a 

blank image being presented was equal to that of showing any one SF, irrespective of phase 

and orientation. Our stimulus set consisted of 176 conditions (10 SFs x 4 orientations x 4 

spatial phase +16 blanks) that were shown to the animal in a randomized order at 60Hz 

and repeated 800 times for a total recording time of ~39 min. Images were presented in 60° 

circular window centered approximately on the cells’ receptive fields. In a subset of animals 

that were shown both natural scenes and gratings, we used a smaller number of repeats (400) 

to keep total recording times practical.
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Natural scenes: Animals were shown a collection of 150 natural scenes, acquired from 

a previously published natural scene database (http://doi.org/10.25378/janelia.6845348.v4; 

Stringer et al., 2019). These images were manually selected by Stringer et al. (2019) to 

ensure that they contained a mixture of low and high spatial frequencies and were uniformly 

contrast normalized. We randomly selected 150 of these contrast-normalized naturalistic 

scenes from the 2800 image database. Each image was presented in a 60° circular window, 

centered approximately on the cells’ receptive fields for 300ms. Blank images of uniform 

luminance were interleaved between each naturalistic scene for 200ms before subsequent 

stimuli were presented. Each naturalistic scene was shown 20 times in a pseudorandomized 

order for a total recording time of ~25 min.

Filtered natural scenes: A subset of 60 of the above natural scenes were filtered, 

using the image processing toolbox on MATLAB (Mathworks Inc, Sherborm MA; RRID: 

SCR_001622), to generate variants of natural scenes with altered SF statistics (Figures 3A 

and 3B). To do this, we filtered the natural scenes with a Gaussian filter with a standard 

deviation of 2. The resulting low-pass filtered scenes had significantly attenuated SFs above 

~0.08 c/d (Figures 3A and 3B). By subtracting the low-pass filtered scenes from their 

unfiltered originals we generated the high-pass variants of the natural scenes. These high-

pass filtered scenes had significantly attenuated SFs below ~0.08 c/d. Following filtering, all 

scenes were contrast normalized so that the average stimulus luminance did not differ across 

scenes. During recordings, all 180 natural scenes (60 scenes x 3 variants) were presented 

in a 60° circular window, centered approximately on the cells’ receptive fields for 300ms. 

Blank images of uniform luminance were interleaved between each naturalistic scene for 

200ms before subsequent stimuli were presented. Each naturalistic scene was shown 30 

times in a pseudorandomized order for a total recording time of ~45 min.

Data analysis—Voltage signals from the probes were band-pass filtered (300-6000Hz) 

and recorded at 20 kHz sampling rate (RHD Evaluation System, Intan Technologies, 

RRID:SCR_019278). Spike waveforms were sorted offline using the software package 

MountainSort (Chung et al., 2017; RRID:SCR_017446). We separated spike clusters into 

single-units versus multi-units based on two clustering metrics. One was noise overlap, 

which measures how much overlap the cluster has to a cluster comprised of randomly 

sampled spikes from noise. The second was isolation, which indicates how well isolated a 

cluster is from other clusters. The clusters that have a noise overlap <0.08 and an isolation 

of >0.96 were classified into single units (Figure S1B; Chen et al., 2021). By plotting the 

variance of a single unit’s responses to all grating stimuli, we determined if the single unit 

was responsive or not. Single units were considered responsive, and included in subsequent 

analyses, if their variance plot generated a peak between 30 and 180ms. When recording 

natural scene responses, we used a more objective selection criterion and included any single 

unit that responded to at least 1 of the natural images by firing at least 1 spike.

Subspace-forward correlation: Each grating stimulus was generated with specific values 

of orientation θ, SF f, and phase φ. For simplicity, we represent the 3-parameter combination 

with an array θ. We triggered the spike train of a neuron at the time at which a specific 

grating was presented and calculated the probability that a cell generated a spike at every 
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time bin τ following the stimulus onset Pr(θ, τ), with 1ms bin width, up to 200ms after the 

stimulus onset. A similar spike histogram was calculated, with the trigger time as the onset 

of a blank image. This spike histogram provided the baseline B(τ). The relative strength 

of the response was given by R(θ, τ) = Pr(θ,τ) - B(τ) Figure 1A), A R(θ,τ) value of zero 

indicate the cell’s response to a grating stimulus was equal to that of the blank stimulus. 

Positive and negative values of R(θ,τ) indicate excitation and suppression, respectively. We 

show that using blank subtracted values did not lead to erroneous or systematic confounds 

in our assessment of coarse-to-fine processing across animal groups (Figure S7). For both 

short (τ < 30ms) and long (τ > 180ms) time lags, R(θ,τ) is expected to be flat and near zero, 

indicating no causal relationship between the stimulus and the response. To reduce the noise 

in the estimation, we filtered R(θ,τ) with a 16.6ms wide square wave window. Finally, the 

values of R(θ,τ) were converted to firing rate (spikes/s) by dividing by the bin width 0.001 

(s).

Although the grating stimuli were characterized by 3 parameters (orientation, SF, and 

phase), we put the focus of our analysis on SF. We marginalized R(θ,τ) with respect to 

the orientation and phase parameters with the following procedure. For each combination 

of orientation and SF, we first picked the phase that evoked the strongest response, and 

discarded all R(θ,τ) that were associated with other phase values. The number of parameter 

combinations comprising R(θ,τ) was reduced from 160 to 40. We then averaged R(θ,τ) 

over orientation. The resulting R(θ,τ) was a 2D function of SF and time, which we will 

henceforth denote as R(f,τ). Due to the 10 discrete values of SF used in the experiment, the 

data of R(f,τ) was a matrix R with 10 rows. The columns of R represented a cell’s SF tuning 

over time. Using this response matrix R we first quantified a cell’s time-integrated SF tuning 

curve (i.e., without considering how it changes over time). To do this, we summed all values 

of R(f,τ) that were greater than a threshold value (2.5 s.d. above the average R(f,τ) between 

τ = 0 and τ = 30).

To measure if and how a cell’s SF tuning changed over time we first calculated the time 

point τ that evoked the strongest response in each cell. We defined this time point and the 

SF preference of the cell at this time point as Tpk1 and fpk1, respectively. Many cells in 

our data set showed a temporally delayed second peak in R(f,τ) Figure 1C). We defined 

the time point and preferred spatial frequency of the cell at this time point as τpk2 and 

fpk2, respectively. To quantitatively determine if a cell had a temporally delayed second 

peak we developed a template matching algorithm which compared the SF responses R(f,τ), 

to R(fpk1,τ). This template matching algorithm separated each R(f,τ) into a fitted curve 

matrix and residual curve matrix based on R(fpk1,τ). We then calculated the τ in which the 

strongest response occurred for both the fit and residual curve matrix (defined as τfit and 

τres, respectively). By definition τfit = τpk1 and τres ≠ τpk1. τres occurred at some τ after τpk1. 

If any response R(f,τres) was greater than a threshold of 2.5 s.d. above the average R(f,τ) 

between τ = 0 and τ = 30, we considered that cell to have a temporally delayed second peak 

at τres. In these cells we set τpk2 equal to τres and fpk2 equal to the preferred SF at τpk2. Cells 

that did not pass this criterion were considered to not have a temporally delayed second peak 

in R(f,τ) and were not given values for τpk2 or fpk2 (Figure 1B). The cells with and without 

a temporally delayed second peak in R(f,τ) were referred to as “2 peak cells” and “1 peak 

cells”, respectively (for examples see Figures 1B and 1C).
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To determine how the preferred SF of 2 peak cells changed during their response, we 

compared fpk1 and fpk2: Δfpk = log2(fpk2/fpk1). This value estimates Δfpk in octaves. Because 

1 peak cells do not have a value for fpk2 we gave them a Δfpk = 0. Note that this method 

for determining Δfpk is similar but not identical to what has been previously published 

(Bredfeldt and Ringach, 2002; Vreysen et al., 2012).

Natural scenes: For each of the contrast-normalized natural scenes, we generated peri-

stimulus time histograms (PSTHs), which represent the average response of a cell to all 

repeats of the scene. Each PSTH was filtered with a 16.6ms square wave window and 

divided by the width of the time bin. Using these PSTHs we created a natural scene response 

matrix N, in which the i-th row corresponds to the i-th natural scene of the stimulus set 

and the j-th column corresponds to the j-th time bin. By averaging across the rows of N, 

we calculate the cell’s mean PSTH across all scenes. To prevent future analyses from being 

dominated by a few neurons with high firing rates, we normalized the firing rate of each 

neuron to the maximum value across all the elements of N; this is particularly important 

with PCA-based analyses (Churchland et al., 2012; Kaufman et al., 2016; Yu et al., 2009).

Measuring neural population response structure over time: To measure how the neural 

population response structure evolves over time we used Principal Component Analysis 

(PCA) to reduce the dimensionality of the neural response dataset at each time point τ 
independently. Each dataset contained the response of n neurons to 150 natural scenes. 

The response to one scene at any time point τ can be represented as a single point in 

an n-dimensional space. We call the subspace occupied by all 150 points at any τ the 

neural response manifold. Through PCA we assessed the dimensionality of this neural 

response manifold separately at each τ by measuring the number of principal components 

(PCs) needed to describe the signal within it. To be clear, PCA was recomputed at each 

τ. A majority of the “signal” in datasets is captured by the larger PCs, while smaller PCs 

represent “noise” (Farmer, 1971; Lehky et al., 2014). Thus, measuring the dimensionality of 

the “signal” in a dataset becomes a matter of counting the number of large PCs.

We used three measures to quantify and compare changes in dimensionality of a neural 

response manifold over time. First, we rank-ordered the PCs as a function of the amount 

of variance they describe (i.e. eigenspectrum). We then randomly shuffled our dataset and 

generated an eigenspectrum for the shuffled dataset. To shuffle the data, we reorganized 

the response matrix N into a 1D array, randomly permutated those elements in the 1D 

array, and then reshaped the array back into the original matrix N size. Randomly shuffling 

the data destroys the structure of the original response signal while maintaining the same 

total variance in the dataset. Therefore, by comparing the eigenspectra generated by the 

shuffled and original dataset we can assess which PCs correspond to the signal structure and 

which correspond to noise. PCs from the original dataset that were larger than their shuffled 

counterparts were considered to correspond to signal in the data (i.e. large), while the rest 

were considered to correspond to noise (i.e. small). This can be graphically represented 

as the point at which the original and shuffled eigenspectra intersect (Figure 4D, inset). 

Thus, by measuring the number of large PCs we can assess the dimensionality of a neural 

response manifold at any τ. This shuffling method has been used by previously published 
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studies to assess dimensionality (Horn, 1965; Lehky et al., 2014; Peres-Neto et al., 2005). To 

determine if and how the dimensionality of a neural response manifold changed throughout 

the response period we calculated the change in the number of large PCs between two time 

points: ΔLargePCs = τ2LargePCs = τ1LargePCs. Positive and negative values of ΔLargePCs 

indicate increases and decreases in the dimensionality of the neural response manifold over 

the response period, respectively.

Second, we calculated the slope of the eigenspectrum at any τ. Because high-dimensional 

neural response manifolds will share the variance associated with the “signal” across more 

PCs than low-dimensional ones, the eigenspectrum they generate will be flatter (Figure 

4A; Stringer et al., 2019). Thus, the slope of the eigenspectrum is indicative of the 

dimensionality: the steeper the slope the lower the dimensionality of the underlying response 

manifold. To calculate the eigenspectrum slope we computed a linear fit of the first 20 

(for pooled data) or 10 (for individual animals) PCs in log-log space. This was a judicious 

choice based on two observations. 1) These values roughly corresponded to the number of 

large PCs we discovered using our shuffling method (described above). 2) Using more PCs 

significantly attenuated how well the curve fit the eigenspectrum due to many small PCs 

not describing much of the variance. We measured the change in the eigenspectrum slope 

from τ1 to τ2 as: ΔSlope = τ2Slope = τ1Slope. Positive and negative values of ΔSlope indicate 

increasing and decreasing dimensionality of the neural response manifold over the response 

period, respectively.

Third, we calculated the change in the percentage of the total variance described the first 

PC between τ1 and τ2 as: ΔPercent = τ2Percent–τ1Percent. We chose to limit this analysis to 

PC1 for two reasons. 1) PC1 by definition describes the largest amount of variance within 

a neural response manifold at any given τ. 2) We noticed that PC1 was the most variable 

over the response period (see Figures 3F or 4C). Unlike the previous two measures, positive 

values of ΔPercent indicate decreases in the dimensionality while negative values indicate 

increases.

To determine how the dimensionality of a neural response manifold changed over the 

response period we compared these three measures at the two time points, τ1 and τ2. 

One could choose any two time points in which there is a sufficiently strong population 

response. However, because we were interested in how the dimensionality of a neural 

response manifold might be shaped by the coarse-to-fine SF processing we described in the 

cortex, we chose time points based on our findings from our recordings using filtered natural 

scenes. We chose to use the temporal windows of 100–150ms and 1251–225ms to define τ1 

and τ2, respectively.

These temporal windows were chosen because 150ms provided relatively good separation 

between the average high-pass filtered and low-pass filtered or unfiltered natural scene 

peak response times (Figures 3G–3H and S3E–S3G). The time points within each temporal 

window where PC1 reached its local maximum value were used as τ1 and τ2. However, 

additional analyses were done to demonstrate that the specific τ2 we chosen did not 

erroneously affect our results (Figures S6G–S6I). In fact, our method for selecting τ2 often 
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resulted in slightly more conservative estimates of changes in efficiency than if we were to 

use an earlier or later time point.

Measuring natural scene response variability: We measured the variability of the 

responses to natural scenes using Fano factor, the ratio between the variance of the spike 

count over the mean of the spike count31. Responses of individual trials were each filtered 

with a 16.6ms wide square wave window. At each time point, we computed the variance of 

the spike count and the mean of the spike count for each natural scene. We repeated this 

calculation for all the natural scenes and all the neurons. Thus, a neuron’s response to one 

natural scene at any given time, τ, was represented by two numbers: the variance and mean 

of the spike count. At every τ we obtained the linear regression (model II) of the variance 

versus the mean (Figure S3). We used model II regression because variance and mean are 

both dependent variables. The slope of the regression line was our estimate of the Fano 

factor (Figure S3).

Relating dimensionality of a neural response to efficiency of a neural 
representation: Notably, the dimensionality of a neural response manifold is directly 

related to the amount of redundancy in the neural responses that make up the manifold. 

In an extremely redundant representation where all neurons responded identically, the 

dimensionality of the neural response manifold will be low (equal to 1) and the number 

of PCs required to capture the variance in this neural response manifold will also be low 

(equal to 1). On the other extreme, if all n neurons generated distinctly unique responses 

(i.e., no redundancy), the dimensionality of their neural response manifold would be high 

(equal to n). In this case, the number of PCs required to capture all the variance in the 

response manifold would also be high (equal to n). In reality neural codes fall somewhere 

between these two extremes, as neural responses are often somewhat redundant but never 

completely so. However, these hypothetical extremes help to generate intuition as to how we 

can assess the efficiency of a neural response by measuring the dimensionality of the neural 

response manifold it creates. For a graphical representation of this concept, where n = 2 and 

the number of natural images = 5, see Figure 4A.

QUANTIFICATION AND STATISTICAL ANALYSIS

All pooled data were presented as means ± SEM unless otherwise stated. The Mann-

Whitney test was applied for comparing data from different groups of cells, while the 

Wilcoxon signed-rank test was applied for paired comparisons. Two-sided statistical tests 

were used. The Kruskal-Wallis test was used to compare data from three groups of cells. All 

analyses and graph plotting were performed in MATLAB (Mathworks Inc, Sherborm MA; 

RRID:SCR_001622). The number of cells and animals, as well as details of statistical tests, 

are provided in Results. In figures, *p < 0.05, **p < 0.01 and ***p < 0.001. No statistical 

methods were used to predetermine sample sizes, but our sample sizes are similar to those 

reported in the field. We did not randomly assign animals to groups as it is not applicable to 

the experimental design of this study.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Majority of V1 neurons in awake mice have coarse-to-fine receptive field 

dynamics

• Mice process complex natural scenes in a coarse-to-fine manner

• Coarse-to-fine processing drives efficient coding of natural scenes in awake 

mice

• Coarse-to-fine processing develops via visual experience and requires 

wakefulness
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Figure 1. Mapping spatiotemporal receptive fields of mouse V1 cells
(A) Diagram of the subspace forward correlation method. Top, the stimulus is a rapid 

sequence of sinusoidal gratings of varying spatial frequencies (SF), orientations, and phases. 

Each neuron’s spike responses following the onset of all repeats of a given stimuli (black) 

or blanks (gray) are binned and summed into individual peri-stimulus time histograms 

(PSTHs). Bottom, example PSTHs to a particular stimulus (black) and blank (gray).

(B) Representative one-peak cell from V1 of an awake mouse. Left, heatmap of responses to 

each SF. Black and red brackets indicate corresponding responses plotted to the right. Scale 

bar denotes firing rate in spikes/s. Right, low-SF (black) and high-SF (red) responses of the 

same cell. c/d, cycles/degree.

(C) Same as (B) but for a representative two-peak cell.

(D) Distribution of latencies to peak response for cells from awake mice. Orange, one-peak 

cells; dark blue, two-peak cells first peak (τpk1); light blue, two-peak cells second peak 

(τpk2). See also Figure S7.
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Figure 2. State-dependent coarse-to-fine SF processing in mouse V1
(A) Proportion of one- and two-peak cells from V1 of awake (blue) and anesthetized (gray) 

adult mice. Each point represents one animal (18 awake mice, nine anesthetized mice).

(B) Scatterplot comparing the preferred SF at τpk1 and τpk2 of two-peak cells from awake 

(blue circles) and anesthetized (gray diamonds) mice. Black dotted line marks where the 

preferred SFs are equal at τpk1 and τpk2. A small amount of scatter is added to the data to 

differentiate points at the same coordinates.

(C) Bottom, cumulative distribution of Δfpk for all cells from awake (blue) and anesthetized 

(gray) mice. Arrows mark proportion of cells from awake and anesthetized mice with Δfpk 

≤ 0. Red dots denote the mean Δfpk values. Top, mean Δfpk values for individual mice (18 

awake, nine anesthetized). Statistical comparisons were done using individual mice mean 

values shown at top of (C).

(D) Average normalized SF response at six distinct latencies for all cells from awake mice. 

30 ms (black dotted line) is used as baseline.

(E) Same as (D) but for all cells from anesthetized mice. Note that slightly different latencies 

were used here compared with (D) to account for the effects of anesthesia on response 

timing.

(F) Average normalized time-integrated SF tuning of all V1 cells from awake (blue) and 

anesthetized (gray) mice. Error bars denote SEM throughout. ***p < 0.001. c/d, cycles/

degree. See also Figures S2 and S7.
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Figure 3. Awake mice process natural scenes in a coarse-to-fine manner
(A) Three variants of 60 natural scenes were shown to six awake mice; unfiltered natural 

scenes with 1/f spatial statistics (black), low-pass filtered natural scenes with attenuated high 

SFs (yellow), and high-pass filtered natural scenes with attenuated low SFs (purple).

(B) Average SF power spectrum of unfiltered (black), low-pass filtered (yellow), and high-

pass filtered (purple) natural scenes. SEM were not included in this plot as they were smaller 

than the thickness of the lines. Note the log10 y axis.

(C) Heatmap of responses of one neuron to unfiltered (top) and low-pass (middle) or 

high-pass filtered (bottom) natural scenes. Scale bar denotes firing rate in spikes/s.

(D) The average firing rate of the same cell in (C) to all unfiltered (black), low-pass filtered 

(yellow), and high-pass filtered (purple) natural scenes.

(E–F)Another representative cell plotted in the same way as (C)–(D).

(G) Average normalized response of all 171 cells to unfiltered (black), low-pass filtered 

(yellow), and high-pass filtered (purple) natural scenes. Error bars represent SEM.

(H) Average normalized response (y axis) plotted against the average time at the peak 

response (x axis) of all cell’s responses to unfiltered (black), low-pass filtered (yellow), and 

high-pass filtered (purple) natural scenes. Error bars represent SEM.

(I) Histogram of difference in peak response time between average high-pass and average 

low-pass responses from each cell. Positive values indicate that high-pass filtered image 

responses peak later than that of low-pass filtered images. Dotted line demarks 0. See also 

Figure S3.
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Figure 4. Coarse-to-fine SF processing reduces redundancy in neural representation of natural 
scenes
(A) Hypothetical two-neuron example of redundant (black) and efficient (red) neural 

codes. Top, schematic of responses of a redundant (black) and efficient (red) neural 

code to five natural scenes. Dotted lines mark the neural response manifold generated by 

these hypothetical neural codes. Bottom, eigenspectrum generated from these hypothetical 

redundant (black) and efficient (red) neural codes.

(B) Average firing rate of all cells (n = 629) to all natural scenes from V1 of eight awake 

mice. Solid and dotted lines mark the time points τ1 (121ms) and τ2 (165ms) used for 

subsequent analyses in (C)–(D).

(C) Variance explained by the first six PCs over the response period when measuring the 

structure of the neural response manifold generated by all 629 cells. Solid and dotted lines 

mark the time points τ1 (121ms) and τ2 (165ms) used for subsequent analyses in (D).

(D) Eigenspectra at 121 ms (solid line) and 165 ms (dotted line). Red line is the 

eigenspectrum of shuffled dataset averaged overtime. ΔSlope indicates the change in the 

eigenspectrum slope from τ1 (−0.49) to τ2 (−0.33). Note the log10 x axis. Dashed box 

indicates portion of eigenspectra plotted in inset. Inset, same eigenspectra but zoomed in 

to highlight the point at which the eigenspectra of the original data at τ1 and τ2 cross the 

eigenspectrum of the shuffled data. Dotted vertical lines mark the number of large PCs for 

τ1 and τ2. ΔLarge PCs is the difference in the number of large PCs from τ1 to τ2.

(E) Time at τ1 and τ2 for individual recordings from V1 of eight different awake mice.

(F) Eigenspectrum slope at τ1 and τ2 for individual mice (gray points connected by line). 

Blue bar plots indicate mean values. Error bars denote SEM.

(G) Same as (F) but for the number of large PCs at τ1 and τ2 for individual mice.

(H) Same as (F)–(G) but for the percentage of total variance explained by PC1 at τ1 and τ2 

for individual mice. **p < 0.01. PC, principal component. See also Figure S4.
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Figure 5. Experience-dependent development of coarse-to-fine SF processing
(A) Timeline of visual development in normally reared (top) and dark-reared mice (bottom).

(B) Proportion of one- and two-peak cells in V1 of normally reared adult (blue), P17 (light 

blue), and dark-reared adult (black) mice. Each dot represents one mouse (18 adult mice, 12 

DR mice, 10 P17 mice).

(C) Bottom, cumulative distribution of Δfpk for all cells from normally reared adult (blue), 

P17 (light blue), and dark-reared adult (black) mice. Arrows mark proportion of cells with 

Δfpk ≤ 0. Red dots denote the mean Δfpk values. Top, mean Δfpk values for individual mice 

(18 adult mice, 12 DR mice, 10 P17 mice). Statistical comparisons illustrated in legend were 

done using individual mice mean values shown in top of (C).
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(D) Average normalized time-integrated SF tuning of the three groups. Error bars denote 

SEM throughout. ***p < 0.001. c/d, cycles/degree. See also Figures S5 and S7.
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Figure 6. Disrupted redundancy reduction in natural scene responses from mice with attenuated 
coarse-to-fine SF processing
(A) Average eigenspectrum slope at τ1 and τ2 for individual recordings from V1 of six 

dark-reared mice (white bars) and V1 of six anesthetized mice (gray bars). Error bars denote 

SEM. Values from individual mice are marked with gray points.

(B) Same as (A) but for number of large PCs at τ1 and τ2.

(C) Same as (A)–(B) but for the percentage of total variance explained by PC1 at τ1 and τ2.

(D) Average ΔSlope for normally reared (blue), dark-reared (white), and anesthetized (gray) 

mice. Error bars denote SEM. Values from individual mice are marked with gray points.

(E) Same as (D) but for ΔLarge PCs.

(F) Same as (D)–(E) but for ΔPercentage of total variance explained. *p < 0.05, **p < 0.01. 

c/d, cycles/degree; PC, principal component; ns, not significant. See also Figure S6.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Carprofen Zoetis Cat#141-199

Chlorprothixene hydrochloride Sigma Cat#C1671

Vetbond 3M Cat#70200742529

Atropine Sigma Cat#A0132

Urethane Sigma Cat#u-2500

Dexamethasone Sigma Cat#D4902

Metabond Parkell Cat#S380

Isoflurane Covetrus Cat#1169567761

Deposited data

Natural Scene Database Stringer et al., 2019 http://doi.org/10.25378/janelia.6845348.v4

Experimental models: Organisms/strains

Mouse: C57BL/6 Bred in lab; Originally from Jackson https://www.jax.org/strain/000664; RRID: IMSR_JAX:000664

Software and algorithms

Psychophysics Toolbox Psychtoolbox http://psychtoolbox.org/docs/Psychtoolbox; RRID: SCR_002881

Matlab 2018a MathWorks http://www.mathworks.com/products/matlab.html; RRID: 
SCR_001622

MountainSort Chung et al., 2017 https://github.com/flatironinstitute/mountainsort; RRID: SCR_017446

Intan RHD Recording Sytem Intan Technologies https://intantech.com/RHD_system.html; RRID: RCR_019278

Custom Written Matlab Code This Paper https://doi.org/10.5281/zenodo.6320882

Other

UCLA Silicone Probes Yang et al., 2020 https://masmanidislab.neurobio.ucla.edu/technology.html

LCD Monitor Dell U2417Ht

Head Holding Device Narishige SR-AM

Anesthesia Systems Kent Scientific VetFlo

Temperature Control FHC N/A
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