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Immune responses against classical
swine fever virus: between ignorance
and lunacy
Artur Summerfield * and Nicolas Ruggli

Institute of Virology and Immunology – IVI, Bern, Switzerland

Classical swine fever virus infection of pigs causes disease courses from life-threatening to
asymptomatic, depending on the virulence of the virus strain and the immunocompetence
of the host. The virus targets immune cells, which are central in orchestrating innate and
adaptive immune responses such as macrophages and conventional and plasmacytoid
dendritic cells. Here, we review current knowledge and concepts aiming to explain
the immunopathogenesis of the disease at both the host and the cellular level. We
propose that the interferon type I system and in particular the interaction of the virus
with plasmacytoid dendritic cells and macrophages is crucial to understand elements
governing the induction of protective rather than pathogenic immune responses. The
review also concludes that despite the knowledge available many aspects of classical
swine fever immunopathogenesis are still puzzling.
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Introduction

Classical swine fever (CSF) is a highly contagious disease of pigs caused by the classical swine fever
virus (CSFV), which is a member of the genus pestivirus within the Flaviviridae family. CSFV is
a spherical virus particle of 40–60 nm in diameter, consisting of a lipid envelope surrounded by a
nucleocapsid packaging a positive-strand RNA genome of 12.3 kb. The RNA carries a single large
open reading frame (ORF) which encodes a large polyprotein that is co- and post-translationally
cleaved into the twelve proteins Npro, C, Erns, E1, E2, p7, NS2, NS3, NS4A, NS4B, NS5A, and NS5B
by cellular and viral proteases. The four structural proteins C, Erns, E1, and E2 are components of
the virion, while the others are non-structural proteins with various functions in the viral life cycle.
Virus replication is restricted to the cytoplasm and does normally not result in a cytopathic effect in
cell culture. Virion assembly occurs on intracellular membranes of the endoplasmic reticulum (ER),
and first progeny virus is released from the cells at 5–6 h post-infection via exocytosis (1).

Classical swine fever leads to important economic losses worldwide. In Europe, the wild boar
population is an important reservoir for the virus, and represents a source for reintroduction of the
disease in domestic pigs.

After oronasal infection, CSFV probably passes through the epithelial cells and M-cells of the
tonsilar crypts, the primary target tissue for virus replication. Thereafter, the virus is found in
the tonsils and local oropharyngeal lymph nodes (2, 3). A particular affinity of the virus for the
reticuloendothelial cell system has been noted with macrophages (MΦ), dendritic cells (DC), and
endothelial cells (EDC) being primary targets (2–10). From these primary sites of replication, the
virus spreads to other lymphoid organs. Such secondary target organs include the spleen, lymph
nodes, gut-associated lymphoid tissue, bone marrow, and thymus (2, 3, 11). CSFV has also been
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found in the pancreas, brain, heart, gall and urinary bladders,
mandibular salivary and adrenal glands, thyroid, liver, and kidney,
particularly in association with EDC and MΦ (3). More recent
investigations using quantitative RT-PCR confirmed these older
studies, also demonstrating a wider tissue distribution with longer
durations of infection (12). This is also reflected at the level of
cell tropism. For example, only in late stages of the disease, viral
antigen is found in peripheral lymphocytes and immature gran-
ulocytes (7, 11, 13). Furthermore, in the skin, efficient infection
of keratinocytes, hair follicle epithelial cells, and mesenchymal
cells in the dermis was demonstrated at later time points after
infection (14).

Highly Virulent Strains Induce a Disastrous
Infection for the Immune System

Strong Peripheral and Central Lymphoid
Depletion Affecting Primary and Secondary
Lymphoid Tissue
The numerous field isolates and laboratory strains cover an almost
continuous spectrum of virulence, from highly virulent viruses
to low-virulent strains. Accordingly, the clinical outcome of CSF
in pigs can vary from peracute to acute, subacute, chronic, and
subclinical disease outcomes. The peracute and acute disease
is characterized by pyrexia, anorexia, central nervous disorders,
diarrhea, and in some cases also hemorrhages of the skin, mucosa,
and various other organs. In fact, virulent CSFV can induce
a typical hemorrhagic fever with immunological characteristics
common to all viral hemorrhagic fevers. The disease is associated
with severe lymphopenia and lymphocyte apoptosis (6, 11, 15),
thrombocytopenia (3), platelet aggregation (16), bone marrow
depletion affecting myelopoiesis and magakaryocytopoiesis (11,
17), and thymus atrophy as well as thymocyte apoptosis (5, 13).
Lymphoid depletion is generalized, not only affecting peripheral
blood and lymph nodes but also the mucosal tissue (18). At later
stages, disseminated intravascular coagulation (DIC), petechial
bleedings, and hemoconcentration can be found (3), which can
result in a circulation failure, hypotension, and death. A recent
study, however, suggests that the hemorrhagic lesions observed in
the late stages of the disease are not attributable to DIC. Inhibition
of diffuse fibrin and thrombi formation did not influence the
extent of hemorrhagic lesions. From this, it was concluded that
DICwas not the cause for the thrombocytopenia andhemorrhages
observed in acute–lethal CSF (19).

Massive Induction of Interferon-α
Very high levels of serum interferon-(IFN)-α are a hallmark of
the acute disease phase induced by virulent CSFV. It appears that
the levels of IFN-α found in the serum correlate with disease
severity and the virulence of the isolate used for infection (20, 21).
Nevertheless, the association between virulence and high IFN-α
levels was less clear in 6-month-old pigs (22). Our experience in
younger animals clearly indicated a correlation between serum
IFN-α levels and the degree of lymphopenia induced by CSFV.
In fact, the onset of severe lymphopenia was concomitant with
the IFN-α responses, and all animals with serum IFN-α had
depleted peripheral B andT lymphocytes (21). These observations

indicate that high levels of IFN-α cannot control the virus butmay
rather mediate aberrant responses leading to immunopathology
(Figure 1). Microarray analyses of PBMC isolated from infected
pigs confirmed not only the dominance of IFN-stimulated genes
but also of cell death receptor and apoptosis pathways such as
TRAIL, FAS, andTNF (23), relating to previous studies performed
with peripheral blood cells using flow cytometry (15). To our
knowledge, compared with other virus infections of pigs, CSFV
can induce not only themost long-lasting but also themost intense
systemic IFN-α responses (24).

Infection and Activation of MΦ
In vivo, MΦ infection and morphological signs of activation were
found in the spleen (4, 25), the kidney (26) the lung (27), the
liver (28), and the intestine (18). In addition, infection of pigs
was associated with MΦ producing pro-inflammatory cytokines,
such as IL-1α, IL-1β, IL-6, and TNF-α (5, 8, 25, 28). There is
also evidence for macrophage activation leading to the produc-
tion of vasoactive mediators including prostaglandin E2 (8) and
platelet activation (16). Finally, during acute and severe CSF, an
activation of the complement system has been observed (5, 25).
Therefore, MΦ infection and activation have been proposed to
play an important role in CSF pathogenesis, in particular, through
release of pro-inflammatory and vasoactive mediators (Figure 1).

Infection and Activation of Dendritic Cells
It was also shown that CD11R1+CD172a+ cells, probably rep-
resenting a subset of conventional DC (29), are activated in vivo
in the blood, the tonsil, and the spleen at 24–48 h post-infection
to produce TNF-α and IL-10 (10). The same study also demon-
strated IFN-α and IL-12 producingCD4+CD172a+ plasmacytoid
DC (pDC) in the same immunological compartments but possibly
with an ever faster kinetic of response. Immunofluorescence anal-
ysis indicated that these two populations of DC do represent early
target cells of CSFV (10). Only recently it became clear that the
monocytic cells andDC represent two distinct lineage of cells with
respect to their ontogenic development (30), and it is now also
possible to clearly differentiate bona fide DC frommonocytic cells
in the pig (29). Although these cells do have overlapping functions,
they also have a clear functional specialization. During CSF, MΦ
are probably mainly responsible for the typical pro-inflammatory
responses, but conventional DC appear to contribute to this
response although theymay also be involved in counteracting it by
secretion of anti-inflammatory IL-10 (10). Finally, pDC typically
secrete large quantities of IFN-α, but possibly also Th1-promoting
IL-12. The impact of the virus on the antigen-presenting functions
ofDC is not clear but it appears that the cells are not depleted in the
lymphoid tissues at least in the first 2–3 days post-infection (10).

Effects on Lymphocytes
Despite the severe lymphoid depletion, acute CSF is also asso-
ciated with a pronounced anergy of T lymphocytes in the acute
phase of the disease (13, 15). At later stages of severe CSF, T
cell activation events (31, 32) with the detection of serum IL-2
and IFN-γ (33) have been found. Similarly, indication of B-cell
activation has been described in terms of an increase in cells
expressing the lambda light chain and IgM (34).
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FIGURE 1 | Critical immunological pathways for protective (green)
versus pathogenic (red) immune responses during acute CSFV. CSFV
targets both monocytic cells with their MΦ descendants and conventional
and plasmacytoid DC (cDC and pDC). MΦ are mainly responsible for the
typical pro-inflammatory responses, although conventional DC may

contribute to this response. We propose that the large quantities of IFN-α
produced by pDC play a central role in the innate immune response to
CSFV. Prolonged systemic responses are associated with pathogenic host
responses while time-limited production appears to promote protective
adaptive Th1 effector responses.

Low-Virulent Strains: From Controlled to
Chronic Infections

In contrast to severe forms of the disease described above, infec-
tion with low-virulent strains of CSFV induces no obvious clinical
symptoms or only weak and transient disease. In the serum of
such animals, no or lower levels of IFN-α and pro-inflammatory
cytokines can be detected (21, 22, 35). However, these animals
often also develop transient lymphopenia (36, 37). If controlled,
such infections result in life-long immunity against CSFV. Never-
theless, depending on the age and immune status, infection with
low or moderately virulent CSFV may lead to forms of chronic
disease, which can last up to 3months before the animals die
(38–40). Due to the inability of the immune system to clear the
infection, these animals shed large quantities of virus and play an
important role in epidemiology of the disease (41, 42). Initially,
the immunopathogenic events in such animals can be similar
to those described above albeit milder. At later stages, signs of

lymphocyte activation and proliferation are found, which are not
well defined (43, 44).

Virus–Host Interactions at the Cellular
Level

CSFV Proteins Targeting Innate Immune
Responses
Npro

The Npro is a cysteine autoprotease that cleaves itself from the
viral polyprotein co-translationally and targets IRF3, an essential
transcription factor for IFNB1. The C-terminal half of Npro carries
a zinc-binding domain that is required for interaction with IRF3
(45, 46). Through this interaction, Npro induces efficient proteo-
somal degradation and depletion of IRF-3, which is the basis of
the very potent antagonism of IFN type I induction by CSFV
(47–51) (Figure 2). However, pDC are unique by constitutively
expressing IRF7, and in contrast to other cells do not require
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FIGURE 2 | Classical swine fever virus-encoded inhibitors of the IFN
type I system. In MΦ and non-pDC target cells, Npro represents the main IFN
antagonist, which almost completely inhibits IRF3-mediated IFN type I induction
induced by sensing viral dsRNA via RIG-I, MDA-5, and/or TLR3. In pDC, Npro is
also active by inhibiting IRF7-mediated IFN-α induction although this inhibition is

not complete. In addition, Erns represents a potent inhibitor of pDC responses
through its ability to degrade viral ssRNA and thereby prevent TLR7 activation.
Viral ssRNA can originate from virus replicating in pDC or in neighboring cells.
The mechanism of viral RNA transfer as well as the subcellular location of RNA
degradation is not clear.

IRF3 for induction of IFN-α/β (52), explaining why this cell type
is exclusively able to respond to CSFV by IFN-α/β production.
Nonetheless, Npro was found to be also partially active in pDC,
presumably through its ability to interact also with IRF7 and
prevent IRF7-mediated IFN type I induction (53) (Figure 2). Fur-
thermore, also in GM-CSF-driven bone marrow hematopoietic
cell-derived DC, which have been induced to express IRF7 by IFN
type I pre-treatment, Npro was still inhibitory (54). In addition to
its ability to suppress IFN type I responses, Npro also mediates
anti-apoptotic effects induced by synthetic double stranded (ds)
RNA but not by FasL or staurosporine (48, 55, 56), preventing
activation of caspases 8, 9, and 3 and inhibiting the loss of mito-
chondrial membrane potential and cytochrome c release (48, 55,
56). Interestingly, Npro interacts with the anti-apoptotic HS-1-
associated protein X-1 (HAX-1), inducing the redistribution of
HAX-1 to the ER compartment. This HAX-1 redistribution to
the ER during CSFV infection may increase cellular resistance to
apoptosis, similar to other HAX-1 interacting proteins (56). Npro

also interacts with IκBα known to prevent NFκB p65 nuclear
translocation but this interaction apparently has no impact on
NFκB translocation (57).

Studies in pigs indicate that the Npro-mediated interference
with IFN type I induction contributes to pathogenicity. Single
amino acidmutations specifically eliminating the ability of Npro to
interact with IRF3 partially attenuatedmoderately virulent but not
highly virulent CSFV (20). On the other hand, reintroduction of
functionalNpro intomoderately virulentGPE−-derived viruswith
unfunctional Npro enhanced virulence by preventing IFN type I
induction at local replication sites (58).

Erns

This essential structural glycoprotein of pestiviruses has a remark-
able RNase activity, with structural similarities to plant T2RNases.
The optimal catalytic activity is at acidic pH (59), with preferential
cleavage of single-stranded (ss) RNA (60, 61). The protein also has
an unusual membrane anchor composed of an amphipathic helix

without a typical membrane anchor (62, 63), but a retention signal
ensuring its associationwith the intracellularmembrane compart-
ments (64). Based on the observation that a minor fraction of
the protein was found to be secreted from infected cells or cells
expressing Erns (62, 64, 65), a role for secreted Erns acting in the
extracellular compartment where it could degrade RNA has been
postulated (66–68). In addition, Erns can be rapidly endocytosed
to also degrade endosomal RNA in adjacent cells (69). However,
these studies were performed with recombinant Erns. In the viral
context, the antagonistic activity of Erns on IFN-α induction was
only demonstrated in pDC (70). On one side, CSFV expressing
Erns lacking RNase activity in contrast to wild-type virus was able
to induce very strong IFN-α responses in pDC. On the other
hand, cells infected with virus replicon particles lacking Erns or
CSFV expressing an Erns without RNase activity were much more
efficient at stimulating pDC than cells infected with the parent
virus. This very potent stimulation of pDC by infected cells was
demonstrated not to be mediated by virions but by a transfer of
viral RNA to the TLR7 compartment of pDC. Based on this data
it can be concluded that Erns degrades viral ssRNA preventing
its interaction with TLR7 in pDC. Considering that the RNase
activity of Erns is particularly high at acidic pH, an attractivemodel
is that degradation would happen in the endosomal compartment
(70) (Figure 2). We consider these findings as relevant since the
stimulation of pDC by infected cells results in much higher levels
of IFN-α as compared to the direct pDC stimulation by virions
(70). The role of Erns in other cell types expressing TLR7 and
TLR8 or even TLR3 such as monocyte/MΦ, B cells, and other DC
subsets still needs to be investigated. The first step would be to
characterize the TLR expression in pigs. In vivo removal of the
RNase activity results in virus attenuation (71) and abrogation
of the capacity of pestiviruses to establish immunotolerance and
persistent infection after infection of fetuses (72). The relationship
between this inhibitory activity of Erns on the innate immune
responses mediated via TLR7 and the establishment of tolerance
will be an important area of future investigations.
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Quiescent In vitro Infections
With a few exceptions, CSFV is absolutely non-cytopathogenic.
In all target cells analyzed so far, except pDC, the virus does not
induce IFN type I responses, and no or low cytokine responses
are found. This is independent of the virulence of the strains
investigated. MΦ activation following in vitro infection with
CSFV is surprisingly weak compared to stimulation with TLR
ligands such as lipopolysaccharide, and many reports confirm
that CSFV only induces a minor activation of monocytic cells
including monocyte-derived MΦ, monocyte-derived DC, as well
as their bonemarrow-derived counterparts (8, 54, 73, 74). Zaffuto
et al. (75) reported microarray data showing only 11 out of 7712
genes (0.14%) induced by the virus, including arginase-1, phos-
phoinositide 3-kinase, chemokine receptor 4, and interleukin-
1β. Obviously, these characteristics are dependent on the potent
ability of Npro to counteract virus sensing (76). Previous work
also demonstrated that CSFV neither induces nor interferes with
NFκB signaling (57). These reports with cell lines, monocyte-
derived cells, and ex vivo isolated macrophages are remarkable,
considering the replicative ability of the virus in these cells. This
demonstrates that the viral innate immune system antagonist
Npro is most efficient in hiding the infection. For pestiviruses,
it is well known that the balance of viral dsRNA accumulating
during replication is regulated by a tightly controlled expression
of NS3 (77). Cytopathogenic mutants typically have higher lev-
els of dsRNA. Accordingly, such mutants do induce IFN-β and
activate monocytic cells even with functional Npro, indicating that
evolution has driven a well-balanced relationship between Npro

and viral dsRNA (76). In fact, using non-functional Npro mutants
of CSFV, we have demonstrated that in PK-15 cells viral RNA is
sensed by TLR3, RIG-I, and MDA-5 (78).

Plasmacytoid DC Responses In vitro
Classical swine fever virus activates pDC to produce IFN-α. This
activation requires live virus and pDC infection (79). Neverthe-
less, compared to other viruses such as influenza virus the levels
of IFN-α are relatively low (24). In fact, this can be explained by
the action of Npro targeting IRF7 (53) and of Erns degrading viral
RNA to prevent the triggering of TLR7 by viral RNA (70). A very
efficient TLR7-dependent induction of IFN-α in pDC by CSFV-
infected cells in the absence of virions has been demonstrated.
This pathway is mediated by a transfer of RNA from an infected
donor cell to pDC in a cell contact-dependent manner requiring
intact lipid rafts and cytoskeleton of the donor cell. Erns blocks
both direct stimulation of pDC by virions and stimulation by
infected cells (70). Although on a per cell basis CSFV is a weak
activator of pDC, its strong tropism for lymphoid tissue and pDC
is likely to result in the overall high andprolonged responses found
in vivo (24).

Proposed Mechanisms Leading to Control

Dysregulated Responses
Published data indicate that at the initial sites of virus replica-
tion – involving principally MΦ and epithelial cells – CSFV Npro

inhibits virus-induced IFN-α/β allowing the virus to replicate
and generate the virus load leading to viremia and spread within

the organism. The speed and level by which CSFV replicates and
spreads appears to be critical for the outcome of disease. The virus
then infects more MΦ and pDC, resulting in massive IFN-α and
pro-inflammatory cytokine release as described above (Figure 1).
Based on the known effects of IFN-α/β on MΦ activation it is
tempting to postulate that pDC activation may enhance these
effects. Nevertheless, to our surprise even IFN-primed MΦ did
not respond to CSFV by production of IFN-α, IL-1β, or IL-6
production (54). It is thus still puzzling to observe the discrepancy
between in vitro and in vivo with regards to MΦ activation.

In vaccinated and immune animals, there are no or less
immunopathological events such as development of leukopenia
and systemic inflammatory responses after challenge infection
(80–82). However, vaccinated animals still respond toCSFV infec-
tion with a serum IFN-α response, even in absence of viremia,
but, in contrast to naïve animals, this response is lower and
only of short duration (79–81, 83). A possible explanation for
this observation is the fact that pDC from vaccinated pigs carry
cytophilic antibodies, which mediate efficient capture of CSFV,
resulting in early strong pDC stimulation (79). This observation
underlines that in contrast to strong long-lasting systemic IFN-
α responses, a short-lived IFN-α response is probably beneficial
for the immunity against CSFV. In vivo administration of high
levels of IFN type I is known to have comparable negative effects
on the hematopoietic system (84–87). Moreover, when IFNAR
knockout mice were employed in a lymphocytic choriomeningitis
virus model, no induction of hematopoietic cell depletion and
leukopenia was observed (88). In fact, the known antiproliferative
and proapoptotic effects of IFNs (89) could be directly responsible
for hematologic cytopenia (Figure 1).

Several attempts to shed light into host responses related to
control of CSFV by the immune system have used transcriptomic
profiling (23, 90, 91). In response to CSFV infection, increased
expression of IFN-stimulated genes as well as other immune
response genes, genes related to cell cycle, apoptosis, metabolism,
and others were observed. The profiles described reflected what
was expected in terms of IFN and cytokine responsesmeasured by
ELISA, apoptosis of lymphocytes, and general changes in immune
cell composition described for CSF. Using a moderately virulent
strain of CSFV, Hulst and co-workers compared groups of pigs
able to control the infection with those developing chronic disease
and excreting high quantities of virus over a period of 35 days
(92). Interestingly, the animals that recovered later had a generally
more robust early response in terms of genes associated with
IFN type I responses and macrophage activation, whereas those
developing chronic disease were found to express inhibitors of the
NFκB pathway. This study also indicated a dysregulation of the
complement cascade and the vitamin D3 metabolism in animals
not controlling the infection. On the other hand, this work also
showed that immunoregulatory molecules such as indoleamine
2,3-dioxygenase 1 (IDO1) were expressed early in controller pigs
but late in non-controllers (92). Certainly, such analyses high-
light the complexity of protective immune responses, which are
composed of both stimulatory and regulatory elements required
to prevent tissue damage at the right moment. It appears that this
is a central theme in understanding the complex pathogenesis of
CSF (Figure 1).
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Protective Immune Mechanisms
It is well established that conventional live attenuated CSFV vac-
cines have an extraordinary protective capacity inducing protec-
tion as early as 3–5 days post vaccination (93, 94). Remarkably,
transmission can even be prevented when animals are vaccinated
on the day of challenge (95). Obviously, this protection is found in
complete absence of neutralizing antibodies indicating alternative
mechanisms of protection early post vaccination.

For this reason, several groups investigated the potential role
of IFN-γ-secreting T cells (32, 35, 94, 96–98). Typically after
challenge infection of pigs with virulent CSFV, only the previously
vaccinated animals had circulating T cells secreting IFN-γ. In
contrast, vaccination alone using C-strain based vaccine was not
efficient at inducing detectable levels of activated peripheral T
cells. Only in one study using three shots of a DNA vaccine, CSFV-
specific IFN-γ spots were also found before infection (98). Also,
in unvaccinated animals, which are challenged with a virulent
strain of CSFV, no T cell activity can be detected in the peripheral
blood. This is certainly caused by the severe defects in their T
cell compartment which is even unable to respond to polyclonal
stimulation (13, 15). Most of the IFN-γ-producing lymphocytes
found in the peripheral blood belong to the CD4−CD8β+ T cell
subset and co-express perforin indicating effector functions (82,
97) and are probably effector CTL’s since they express CD107a on
their surface. This is in line with previous work demonstrating
cytotoxic T cell activity against CSFV-infected target cells (96).
From the latter study, it appears that the ability to detect CSFV-
specific cytotoxic T cell activity requires a certain level of virus
replication; since in this study, CTL activity was found only in
the peripheral blood of animals kept unvaccinated but challenged
with a moderately virulent virus. A recent report showed induc-
tion of MHC class II on NK and γδ T cells by IFN-α derived
from CSFV-infected pDC in vitro. However, in vivo this was only
found in tonsils and retropharygeal lymph nodes of pigs infected
with virulent virus, but not following vaccination with attenuated
vaccines. Furthermore, neither an increase in perforin nor IFN-
γ was found both in vitro and in vivo. From this, the authors
concluded that these cell types are probably not contributing to
early protection induced by attenuated vaccines (99).

These studies showing an association of T cell responses with
protection alone do not permit a conclusion that IFN-γ secreting

T cells are a correlate of protection or even have protective value
and the general contribution of T cells to protection remains
unclear. A main problem is the immunopathological effects of
CSFV on the T lymphocyte compartment, which if present do
not permit the detection of any T cell activation. Furthermore,
NS3 protein known to contain T cell epitopes (100) was not able
to confer partial protection in vaccination-challenge studies (101,
102) indicating that T cell immunity alone is unlikely to control
CSFV. On the other hand, neutralizing antibodies against E2
are well known to be associated with protection (83, 103–106).
But E2 also contains CTL epitopes (107) whose contribution to
protection is not yet clear.

Conclusion and Future Research

Despite the knowledge available on the pathogenesis of CSF,
many essential aspects remain enigmatic and can only be clar-
ified with well-defined gain- as well as loss-of-function in vivo
experimental models. In our view, the most important ques-
tions are to identify the precise contribution of various cell types
including pDC, conventional DC, and MΦ to disease patho-
genesis and immunity both during the acute forms of CSF and
during chronic disease. Similarly, correlates of early vaccine-
induced protection remain unproven. The functions of various
subsets of T cells in protection need to be defined to under-
stand both chronic disease and vaccine-mediated early protec-
tion. Furthermore, the exact role of evolvement of viral inhibitors
of the IFN type I system, targeting both non-pDC and pDC
remains puzzling considering that in vivo IFN-α/β responses
are induced. Finally, the cellular systems and the viral inhibitors
described in this review need to be understood in the light of
the ability of pestiviruses to induce immunotolerance, if infection
occurs during certain stages of the development of the immune
system.
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