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Performance of objective functions and optimisation
procedures for parameter estimation in system biology models
Andrea Degasperi1,2, Dirk Fey1,3 and Boris N. Kholodenko1,3,4

Mathematical modelling of signalling pathways aids experimental investigation in system and synthetic biology. Ever increasing
data availability prompts the development of large dynamic models with numerous parameters. In this paper, we investigate how
the number of unknown parameters affects the convergence of three frequently used optimisation algorithms and four objective
functions. We compare objective functions that use data-driven normalisation of the simulations with those that use scaling factors.
The data-driven normalisation of the simulation approach implies that simulations are normalised in the same way as the data,
making both directly comparable. The scaling factor approach, which is commonly used for parameter estimation in dynamic
systems, introduces scaling factors that multiply the simulations to convert them to the scale of the data. Here we show that the
scaling factor approach increases, compared to data-driven normalisation of the simulations, the degree of practical non-
identifiability, defined as the number of directions in the parameter space, along which parameters are not identifiable. Further, the
results indicate that data-driven normalisation of the simulations greatly improve the speed of convergence of all tested algorithms
when the overall number of unknown parameters is relatively large (74 parameters in our test problems). Data-driven normalisation
of the simulations also markedly improve the performance of the non-gradient-based algorithm tested even when the number of
unknown parameters is relatively small (10 parameters in our test problems). As the models and the unknown parameters increase
in size, the data-driven normalisation of the simulation approach can be the preferred option, because it does not aggravate non-
identifiability and allows for obtaining parameter estimates in a reasonable amount of time.
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INTRODUCTION
Signalling pathways constitute the machinery that cells use to
sense, process and transmit information within and between cells.
Because of the non-linear nature and the complexity of signalling
pathways, mathematical modelling has been used to formalise the
current understanding, identify inconsistencies and suggest new
hypotheses. Dynamic models, such as ordinary differential
equations (ODEs), are among widely used modelling approaches,
capturing the quantitative and dynamic nature of cellular
signalling pathways.1, 2 Mathematically, ODE models are of the
form

d
dt

x ¼ f x; θð Þ; (1)

where f �ð Þ is a nonlinear function of state vector x. The ODE
describes how the rate of change dx/dt depends on x and kinetic
parameters θ. An ODE solution is a function (x = x(t,θ)) that
depends on time and parameters. Successful examples of dynamic
modelling include elucidating the decision-making mechanisms in
growth factor signalling,3, 4 stress and DNA damage response5, 6

and cell migration.7

With ever-increasing pace of documenting molecular interac-
tions within and between signalling pathways, there is a need to
develop larger and more complex mathematical models. While
our current knowledge of molecular interactions allows us to

derive kinetic equations of a model in a relatively straightforward
manner, the associated increase in unknown kinetic parameters
presents a challenge. Usually, these parameters are not directly
experimentally accessible. Parameter estimation is the process of
indirectly estimating the unknown parameter values using
measurement data, which requires high-resolution data of time-
courses and multiple perturbations.4, 8, 9 The complexity and non-
linearity of biological systems render the parameter estimation
problem mathematically difficult. Issues arise from both the
existence of local minima and non-identifiability. To overcome
local minima, heuristic optimisation-based algorithms are used.10,
11 Non-identifiability means that a unique solution to the
parameter estimation problem does not exist. Thus, there are
many sets of parameter values that fit the data equally well. Non-
identifiability can only be overcome by model reformulation or
model reduction,12 or by generating additional data, for example
by measuring additional variables.13

Usually only a subset of all the internal states (or a function
thereof) are measured, referred to as observables ~y.9, 14 To
describe the relation between the states and observables in the
model, a so-called output function is used y = g(x). Based on the
simulated (y) and measured (~y) observables, a parameter
estimation problem can be formulated as an optimisation
problem, in which the error between measured and simulated
values is minimised.9 Mathematically, this error is described using
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an objective function (sometimes also called the goodness-of-fit
function). Several choices for such objective functions exist. Most
common are least-squares (LS), chi-square and log-likelihood
(LL).15

A multitude of optimisation algorithms exists that estimate
parameters of dynamic models.16 A recent comparison found that
LSQNONLIN SE (a local gradient-based search algorithm with Latin
hypercube restarts) performs best in terms of both accuracy and
speed (as measured in the number of function evaluations
required to estimate the parameters).17 In particular, this
algorithm largely outperformed 14 other algorithms used to solve
non-linear optimisation problems, including stochastic algorithms
from an Evolutionary Algorithms framework (EvA2)18 and a hybrid
stochastic-deterministic algorithm based on scatter search.19 Thus,
LSQNONLIN SE has become a popular choice for parameter
estimation of systems biology models.20–23

It is reported that hybrid stochastic-deterministic methods
perform better than local gradient-based methods with restarts
for complex problems.24, 25 Hybrid methods combine stochastic
strategies, which help to escape local minima, with deterministic
local strategies, which quickly find local optimal solutions.24, 25 For
instance, previously, we used GLSDC,26 a hybrid algorithm that
was not included in the above comparison,17 that time-efficiently
estimated parameters for a complex model of expression of the
transcription factor cFOS.3 However, it is unknown how GLSDC
compares to other algorithms, in particular LSQNONLIN SE, which
presumably is the currently fastest choice according to ref. 17.
A practical problem arising for any parameter estimation is how

to scale the simulated data points to the measured data. This is
because the most common type of experimental data are relative
data (e.g. western blotting,27, 28 multiplexed Elisa,29 proteomics or
RT-qPCR30), which means that the values of the data points are in
arbitrary units (au), such as optical densities.31 In contrast,
mathematical models carry well-defined units, such as molar
concentrations or normalised dimensionless variables.9, 17, 24 For
example, quantification of a western blot image may yield density
values for a time-course experiment between 10 and 3000 au,
whereas the model simulates nano-molar concentrations between
0 and 500 nM. Consequently, the problem arises of how to best
align the measured and simulated data. Two approaches are
commonly used:

1. Introducing a scaling factor (SF) that scales simulated to
measured data ~yi � αjyi θð Þ, where the “≈” sign indicates that
the match is not perfect due to modelling and measurement
errors, ~yi and yi denote a measured and simulated data-point,
respectively, and αj>0 is the SF for this observable. The SF is
unknown and has to be estimated.

2. Normalising simulations and data in the same way (data-
driven normalisation of the simulations (DNSs)). Experimental
data are often normalised by a reference data point to make
different biological replicates comparable31 (~yi ¼ ŷi=ŷref , with
ŷi the un-normalised data). Then we can use the same
normalisation for the simulated data, ~yi � yi=yref . The
reference data point yref could for example be the maximum
value, the control, or the average of all measured values for
this observable in this replicate.

Note that DNS normalises the simulations, rather than experi-
mental data. Such normalisation is not required for data-driven,
machine-learning-type models that simulate the data directly in
whatever unit these might be, but critical for the type of
mechanistic models considered here that simulate biological
processes rather than data. Further, even if the measured data are
not normalised, we can use DNS by employing the same
normalisation on both data and simulation.
Although DNS has the advantage, with respect to SF, of not

introducing additional unknown parameters, DNSs are rarely used.
A reason can be that current parameter estimation software, such

as COPASI32 and Data2Dynamics,33 do not include DNS support. A
technical difficulty arises, because the normalisation has to be
applied to each simulation run, after the run is completed. Unlike
the SFs, the normalisation factors yref cannot be a-priori fixed,
because they dynamically depend on the simulation. In principle,
DNS could be incorporated into the objective function, but this
would require encoding custom-specified objective functions for
each parameter estimation problem (Supplementary Method 1).
User-friendly software supporting DNS is lacking. Further, a
rigorous, systematic comparison of using DNS vs. commonly used
SF has never been performed.
Here, our main objective is to provide a software fully

supporting DNS (PEPSSBI34) and establish how the choice of
using either SF or DNS affects identifiability and estimation
convergence-speed in the context of different parameter optimi-
sation algorithms and objective functions. We analysed three test-
bed parameter estimation problems with markedly different
numbers of observables (one or eight) and unknown parameters
(10 or 74). Our results show that (i) accurately assessing the
convergence speed of algorithms employing sensitivity equations
(SEs) requires measuring the computation time: counting function
evaluations is inappropriate in this setting; (ii) unlike SF, using DNS
does not aggravate non-identifiability problems and improves
optimisation performance in terms of speed compared to SF; (iii)
For large parameter numbers, GLSDC performs better than LevMar
SE, an implementation of the current best performing method
(LSQNONLIN SE) in ref. 17.

RESULTS
Objective functions, optimisation algorithms and test-bed
problems
We focus on systematic comparison of DNSs vs. SFs for parameter
estimation in dynamic systems. We consider least squares (LS) and
log-likelihood (LL) objective functions (Supplementary Method 1)
and three optimisation algorithms (Methods):

1) LevMar SE: Levenberg–Marquardt nonlinear least squares
optimisation algorithm35 with SEs. LevMar SE uses gradient-
based local optimisation with Latin hypercube restarts
whereby the gradient is computed using SEs17;

2) LevMar FD: like LevMar SE except that the gradient is
computed using finite differences (FDs), which we included
for comparing the FD and SE approaches;

3) GLSDC: Genetic Local Search algorithm with distance
independent Diversity Control, which alternates a global
search phase based on a genetic algorithm with a local search
phase based on Powell’s method and does not require
computation of the gradient.26

LevMar SE and FD are our implementations of LSQNONLIN SE
and LSQNONLIN FD studied in ref. 17 (Methods).
We analyse three parameter estimation problems as test

problems, which for brevity we call STYX-1-10 (ref. 4), EGF/HRG-
8-10 (ref. 3) and EGF/HRG-8-74 (ref. 3). In this notation, the first
number indicates the number of observables (and thus SFs, if SF is
used), and the second number indicates the number of unknown
kinetic parameters. Two additional unknown parameters (sa and
sb, see Supplementary Method 1) are estimated if LL is used.
The STYX-1-10 problem consists of a dynamic model describing

the interactions between the kinase ERK and the pseudopho-
sphatase STYX following the activation of ERK kinase MEK in PC12
cells.4 Data for one observable, phosphorylated ERK, in two
experimental conditions, control and STYX knock down, are
available. Overall, the model consists of 25 species, 22 reactions
and 42 parameters, 10 of which require estimation. The
experimental data contained 38 data points, and normalisation
by average was used to normalise the data. For details about
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relative data normalisation see Supplementary Method 1 and
ref. 31.
The EGF/HRG-8-10 and EGF/HRG-8-74 problems consist of a

mathematical model of the ERK pathway activation and two
transcriptional negative feedback loops triggered by the activa-
tion of ERK kinase MEK in MCF-7 cells.3 Data for eight observables
in two experimental conditions, EGF or HRG stimulations, are
available. Overall, the model consists of 49 species, 78 reactions
and 141 parameters. In EGF/HRG-8-74, 74 parameters require
estimation, while in EGF/HRG-8-10, only 10 parameters require
estimation, and the remaining 64 parameters are assigned values
from the best optimal parameter set estimated in the original
publication.3 The data consist of 112 data points, and normal-
isation by average was used to normalise the data.

The test problems exhibit different degrees of parameter
non-identifiability
Performance of different parameter estimation schemes may
critically depend on the identifiability properties of test problems.
Therefore, we analysed practical (a posteriori) identifiability.36

Briefly, by analysing the parameter estimates from multiple runs,
we assess practical non-identifiability. If the parameter estimates
are largely variable in a certain direction, then this direction in the
parameter space (e.g. a particular parameter or a parameter
combination) is not practically identifiable: their parameter values
cannot be accurately estimated given the current model and data.
None of our test problems was practically identifiable (Fig. 1).
Nevertheless, each problem exhibited different degrees of non-
identifiability, with STYX-1-10 having the lowest degree of non-
identifiability, and EGF/HRB-8-74 the highest. Here we define the
degree of practical (a posteriori) non-identifiability as the number

of directions in the parameter space that are not identifiable. This
is best explained using an example.
The parameter estimates for the STYX-1-10 problem were highly

related, where all estimates clustered along a one-dimensional
(1D) curve in the high-dimensional parameter space (Fig. 1).
Parameter changes along this curve are not identifiable, because
they lead to very similar objective function values. All other
directions are identifiable, because moving away from the curve
yields increased objective function values. Thus, the degree of
non-identifiability of the STYX-1-10 DNS SF test problem is one.
For parameter estimates that resemble a 1D curve, there is only
one uncertain direction in the parameter space (along this curve);
the degree of non-identifiability is one. Similarly, if the manifold of
the estimated parameters resembles a 2D surface, there would
be two uncertain directions (Supplementary Fig. 1), and the
degree of non-identifiability is two.
Generally, a degree of practical non-identifiability is difficult to

illustrate, because accurate visualisation of the estimated para-
meter space is not possible beyond three dimensions (three
parameters). However, using a linear approximation, the dimen-
sionality of the non-identifiable manifold can be estimated using
principal component analysis (PCA). For details, we refer to
Gutenkunst et al.36, 37. Briefly, PCA gives optimal directions in
the parameter space, so-called principal components (PCs)
that can best explain variability of the parameter estimates. PCs
are ordered according to their associated variances, with the first
PC explaining the most variability. Here, we considered a PC
significant if its variance is >1, corresponding to more than a one-
fold change with respect to the best estimate found, see Methods
for details. Figure 1c shows that our test problems have different
degrees of non-identifiability. STYX-1-10 has one non-identifiable
direction, EGF/HRG-8-10 has four and EGF/HRG-8-74 has 62.

Fig. 1 Relations between parameter estimates and non-identifiability. a Clustergram visualising the relations between the parameter
estimates. b Scatter plot illustrating that the space occupied by the estimates is a low-dimensional manifold: here a 1D curve in 10D space;
shown is a projection in 3D (blue dots), and 2D (grey dots). c Principal component analysis of the parameter estimates. Bars illustrate the
number of principal components required to explain the variability of the parameter estimates. The colours indicate how much variance is
explained by each principal component (PC). The data were brought onto the same scale by normalising each parameter with respect to the
best estimate from GLSDC-DNS-LS (see Methods). The number of PCs required indicates the dimensionality of the estimated parameter space
(linear approximation), thus indicating the degree of non-identifiability
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Using SF over DNS increases non-identifiability because of the
additional scaling parameters to be estimated
SFs constitute additional parameters to be estimated. Thus, we
would expect that introducing these SFs negatively affects the
identifiability of our test problems. Our a posteriori non-
identifiability analysis using PCA confirmed this. Note that we
focused the PCA analysis solely on the free kinetic parameters. The
SF estimates and their variabilities were neglected, because we
were only interested in the identifiability of the kinetic parameters
(see Methods for details). Compared to DNS, using SF leads to one
more non-identifiable PC for the STYX-1-10 and EGF/HG-8-10 test
problems, and three more non-identifiable PCs for the EGF/HRG-8-
74 test problem (Fig. 1). Thus, using SF (instead of DNS) increased
the degree of non-identifiability in all our test problems.
We can have a closer look at the STYX-1-10 example to see what

exactly happens. When DNSs are used, all estimates lie closely
around a 1D curve in the parameter space. But when SFs are used,
a distinct additional cluster occurs (Supplementary Fig. 1). The
cluster is far away from the 1D curve (and the first PC), and
represents another ‘pocket’ of parameter values with similarly low
objective function values. In the DNS-LS case, this cluster contains
39 of the 96 estimates. Thus, there are two non-identifiable
regions in the parameter space when SFs are used; the 1D curve
also present in the DNS case, and the “pocket” (second cluster)
introduced by the SFs. Further, when SFs were used, many kinetic
parameters tended to cluster together with a SF, instead of
another kinetic parameter that is biologically or mechanistically
related, as was the case when DNS was used (Supplementary
Fig. 2). The example illustrates how introducing SFs increase the
degree of non-identifiability.

Comparing LevMar SE and LevMar FD by counting function
evaluations is inaccurate
Counting function evaluations in-lieu of actual computation times
can lead to unfair comparisons. To illustrate this, we compare
LevMar SE and LevMar FD using two test problems: STYX-1-10 and
EGF/HRG-8-10 (Figs. 2 and 3). First, we have to make sure that
both algorithms converge. For both test problems, the distribution
of the optimal objective function values after termination of the
algorithm shows no marked differences between LevMar SE and
LevMar FD (Fig. 2). We conclude that both algorithms converge to
equally good solutions.
Because LevMar FD and LevMar SE reach the same objective

function minima and have the same termination criteria, we can
compare the two algorithms by analysing the function evaluations
to terminate optimisation or the termination time. This is
illustrated in Fig. 3. For both test problems, we observe that
using the number of function evaluations until termination as a
performance measure leads to an overestimation of LevMar SE

performance when compared to LevMar FD. This is because the
count of function evaluations does not accurately reflect the
actual computation time necessary to terminate. For both STYX-1-
10 and EGF/HRG-8-10, the number of function evaluations to
terminate is markedly lower for LevMar SE than for LevMar FD
(Fig. 3a, c). Yet, the actual computation time only shows marginal
improvements in the case of STYX-1-10 (Fig. 3b). Strikingly, in the
case of EGF/HRG-8-10, the computation time is markedly and
consistently higher for LevMar SE than for LevMar FD (Fig. 3d).
This apparent inconsistency is explained by the fact that for

LevMar SE, the computational cost of computing the gradient is
not reflected appropriately by the count of function evaluations.
The gradient is either computed as a forward finite difference
approximation in the case of LevMar FD, or supplied by solving
the SEs in the case of LevMar SE. LevMar FD will approximate the
gradient by computing p + 1 evaluations of the objective function,
where p is the number of unknown parameters, solving only the
original ODE system each time. LevMar SE evaluates the gradient
by solving an ODE system that has p + 1 times the number of
equations of the original ODE system, as it includes the original
ODE variables and their derivatives with respect to the unknown
parameters.17 Note that the cost of computing the SEs is much
greater than the cost of simply solving the original ODEs. The cost
of computing the gradient using SEs may be lesser or greater than
the cost of computing the gradient using finite differences,
depending on both the implementation and the specific
optimisation problem. However, in both implementations of
LevMar SE (here) and of LSQNONLIN SE in Data2Dynamics,33

computing the gradient is counted only as one function
evaluation, whereas computing it with FD is counted as p + 1
function evaluations. Figure 3 demonstrates that this way of
counting is not appropriate when comparing LevMar FD with
LevMar SE, and that the actual computation time should be used
instead.

LevMar FD can be faster than LevMar SE
It has been argued that solving the SEs leads to a more accurate
gradient than using a finite difference approximation, which in
turn results in a faster converging algorithm in the SE case.17 In
contrast, in our implementation LevMar SE is not always faster
than LevMar FD. In fact, the case of EGF/HRG-8-10 shows the
opposite; the computation time is always markedly lower for
LevMar FD than for LevMar SE (Fig. 3d). How the computation
time compares between LevMar SE and LevMar FD depends on
both accuracy and cost of the gradient computation. At least for
the EGF/HRG-8-10 test problem, our implementation of LevMar FD
provides sufficient accuracy and converges faster than SE.

Fig. 2 Minima reached by LevMar SE and LevMar FD after the optimisation terminated. Boxplots show the median, 25th and 75th percentile,
and extreme points (dots) outside 1.5 times the interquartile range (whiskers) of 96 independent runs. a STYX-1-10 optimisation problem. b
EGF/HRG-8-10 optimisation problem. DNS normalisation of the simulations, LL log-likelihood, LS least squares, SF scaling factors. To facilitate
the comparison, we always report the log-likelihood values on the y axis, even when LL was optimised
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DNS converges faster than SF, especially for systems with many
observables, independently of optimisation algorithms used
One of the most important differences between DNS and SF is
that SF requires the estimation of additional parameters: the SFs.
For example, EGF/HRG-8-10 problem features 8 observables and
10 unknown kinetic parameters. Using DNS, only the 10 kinetic
parameters need to be estimated. But using SF introduces 8
additional parameters, 1 unknown SF for each observable, thus 10
+ 8 parameters need to be estimated. One would expect that this
increase in the parameter numbers negatively affects the
convergence speed of the optimisation algorithms, in addition
to increasing the degree of parameter non-identifiability. This
negative effect could become more pronounced, the more
parameters require estimation. To determine whether these
hypotheses are correct, we performed parameter estimations in
three test problems that differ in terms of their numbers of
observables and unknown parameters (STYX-1-10, EGF/HRG-8-10
and EGF/HRG-8-74).
For the STYX-1-10 problem with only one observable, using DNS

instead of SF improved the convergence speed of GLSDC for both
LS and LL objective functions, while the same improvement was
not observed for LevMar (Figs. 4a, b and 5a, b). For the more
complex problems, all tested algorithms converged faster when
DNS was used instead of SF: albeit the convergence speed
increased only slightly for the EGF/HRG-8-10 problem featuring
more observables but the same number of unknown kinetic
parameters as in the STYX-1-10 problem, this increase was very
substantial for the EGF/HRG-8-74 problem featuring both more
observables and more parameters (Figs. 4 and 5). Both observa-
tions were independent of the algorithm (GLSDC, LevMar SE,
LevMar FD) and objective function (LS, LL) used. Thus, choosing
DNS over SF consistently improved the convergence speed of the
estimation. This gain in performance became more pronounced
for more complex problems with more observables (8 vs. 1) and
more parameters (74 vs. 10).
In addition to the SFs introduced by SF, using LL also introduces

additional parameters. The LL objective function features an error

model for estimating the variances for each measured data-point
(Supplementary Method 1). This error model contains two
parameters that need to be estimated relating to the absolute
and proportional part of the measurement error. As a conse-
quence, the convergence speed of the most complex test problem
(EGF/HRG-8-74) was markedly reduced when LL was used instead
of LS (Fig. 5e). For this complex problem, estimating both eight
additional scaling parameters (DNS vs. SF) and the two additional
error parameters (LS vs. LL) negatively affected the convergence
of all three algorithms tested.

GLSDC DNS was the fastest in all test problems, performing
particularly well for problems with many parameters
Recently, LSQNONLIN SE, an alternative implementation of LevMar
SE, was reported as the best performing algorithm in a
comprehensive test including 15 algorithms and 2 test pro-
blems.17 But neither the GLSDC algorithm, nor simulation scaling
with DNS, were part of this comparison, raising the question of
whether GLSDC could outperform LevMar SE. We found that when
combined with DNS, GLSDC was consistently the fastest in all our
test problems (Fig. 5a, c, e). The performance of GLSDC critically
depended on the use of DNS or SF: for the EGF/HRG-8-10 problem,
GLSDC was the fastest converging algorithm when DNS was used,
while it was among the slowest when SF was used (Fig. 5c, d). This
is particularly evident when looking at the full convergence curve
(Fig. 4c, d). Similarly, GLSDC with DNS was also the fastest for the
EGF/HRG-8-74 problem. Albeit a decrease in performance
occurred when SF was used, GLSDC SF was still markedly faster
compared to the LevMar SF combinations. In fact, for this high-
dimensional problem, the performance increase of GLSDC over
LevMar was quite dramatic (Fig. 4e, f). As a result, GLSDC DNS LS
stands out as the only algorithm-objective function combination
capable of reaching acceptable parameter estimates robustly
within a reasonable timeframe for complex systems (24 h, 8
observables, 74 unknown parameters in our test problem).

Fig. 3 Convergence speed of LevMar SE and LevMar FD. Boxplots (n= 96) as in Fig. 1. a Required number of function evaluations to terminate
and b computation time to terminate for the STYX-1-10 problem. c Required number of function evaluations to terminate and d computation
time to terminate for the EGF/HRG-8-10 problem. DNS normalisation of the simulations, LL log-likelihood, LS least squares, SF scaling factors
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DISCUSSION
Here we analysed how the overall performance of a parameter
estimation procedure depends on optimisation algorithms, the
selected objective functions (e.g. LS vs. LL), and the scaling/
normalisation used (SF vs. DNS). When making such comparisons,
choosing an appropriate performance metric is important. In
particular, we demonstrated that when comparing LevMar SE with
LevMar FD, counting of the function evaluations overestimates the
performance of SE. When gradient-based methods are used, the
computational cost of calculating the gradient cannot be
neglected. Thus, the actual computation time has to be used.
First, we analysed how the algorithms perform depending on

the number of SFs and number of unknown parameters. In high-
dimensional problems with several SFs (EGF/HRG-8-74, 8 obser-
vables, 74 parameters), GLSDC is the best performing algorithm
(Figs. 4f and 5e). In low-dimensional problems with one SF (STYX-
1-10, one observable, ten parameters), the three algorithms have
similar performances (Fig. 4b). In low-dimensional problems with
several SFs (EGF/HRG-8-10, eight observables, ten parameters),

LevMar FD and SE have an overall better convergence than GLSDC
(Figs. 4d and 5d). The results are consistent with previous results,
in which hybrid methods (enhanced scatter searches) outper-
formed gradient-based methods with hypercube restarts.24 The
fact that the LSQNONLIN SE outperformed the hybrid stochastic
methods in ref. 17 may be due to the use of function evaluations
as performance measure. A systematic comparison of GLSDC with
the best performing hybrid method in ref. 17 and the novel hybrid
method in ref. 24 is currently lacking, and can be the subject of a
future study.
Next we showed how the choice between DNS and SF affects

both identifiability and convergence speed of the optimisation
algorithms. For problems with several SFs (EGF/HRG-8-10 and EGF/
HRG-8-74), using DNS improves the performance of every
algorithm tested (Figs. 4c–f and 5c–e). For problems with a few
SFs (STYX-1-10), using DNS markedly improves the performance of
GLSDC but not LevMar FD and SE (Figs. 4a, b and 5a, b). The results
are consistent with the notion that gradient-based methods are
more efficient in relatively small problems that tend to be well

Fig. 4 Convergence of the three optimisation algorithms for a, b the STYX-1-10 problem, c, d the EGF/HRG-8-10 problem and e, f the
EGF/HRG-8-74 problem. The plots show the median (thick line), and 25th and 75th percentiles (thin lines) of the objective function minima
(least squares values) over the computation time from independent 96 runs. a, c, e Normalisation of the simulations (DNSs). b, d, f Scaling
factors (SFs)
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behaved (only one or two non-identifiable parameter directions
in the STYX-1-10 case), whereas hybrid methods perform
better for complex problems with a high degree of non-
identifiability.11, 24, 38 For all problems, DNS is either neutral or
beneficial, and should thus be the first choice.
The fact that SF reaches lower minima while at the same time

increasing the variability in the parameter estimates would
indicate that the risk of overfitting is very high. Overfitting occurs
when free parameters are used to fit noise rather than biologically
meaningful trends. Although the risk of overfitting is generally
higher when more parameters are fitted, the structure of the
dynamic model also plays a key role:24, 38 flexible models that can
exhibit a range of behaviours (for example due to multiple
feedback loops39, 40) are more prone to overfitting even when the
number of parameters remains low.41, 42 That the SFs might be
used by the optimisation to overfit the data is also supported by
our observation that many kinetic parameters clustered together
with a SF, instead of another biologically related parameter. But
whether DNS carries an advantage over SF in terms of overfitting
is an open question that should be the subject of a follow-on
study. For example, using only parts of the experimental data and
bootstrapping could be employed in a systematic analysis of
overfitting.
Finally, we have seen that as the number of unknown

parameters increases, the benefit of using DNS over SF increases.
In fact, in the STYX-1-10 case the choice of estimating SFs (DNS vs.
SF) and estimating the measurement error (LS vs. LL) does not
seem to affect the convergence of the gradient-based algorithms

LSQNONLIN FD and SE (Fig. 5a, b). However, in the case of EGF/
HRG-8-74 both these choices have a clear impact on convergence
speed (Fig. 5e). Our results suggest that for such high-dimensional
problems, GLSDC DNS stands out as the best performing
algorithm in terms of convergence speed.

METHODS
Software implementation
The analysis in this paper was performed in PEPSSBI (Parameter Estimation
Pipeline for Systems and Synthetic Biology), a dedicated software that we
developed and that is freely available at https://bitbucket.org/andreadega/
systems-biology-compiler. This software provides an implementation of
the three optimisation algorithms and the four objective functions tested
here. Most importantly, PEPSSBI automates the set-up of the parameter
estimation problems, including the ones based on the DNSs and
automates the deployment of those problems to a computer cluster. A
dedicated input language allows for model definition, data specification
and normalisation in a single input file, which allows the user also to
change data normalisation by changing a single line of code. When
measuring computation time performance, we used a computer cluster
with highly homogeneous nodes, composed of 64 Intel Ivybridge E5-2620
v2 and a 8 Intel Ivybridge E5-2620, which differ mostly on energy
consumption and 4% clock speed.

Sample size of the simulation runs
The sample size for all simulation runs is n = 96. This number was chosen as
a compromise between statistical power, computation time and the cluster

Fig. 5 Minima reached by different algorithm-objective function combinations after a set time for a, b the STYX-1-10 problem, c, d the
EGF/HRG-8-10 problem and e the EGF/HRG-8-74 problem. Times are a after 3 min, b after 8 min, c after 10min, d after 2 h and e after 24 h of
optimising. Boxplots as in Fig 1. DNS data-driven normalisation of the simulations, LL log-likelihood, LS least squares, SF scaling factors. To
facilitate the comparison, we always report the LS values on the y axis, even when LL was optimised
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job submission specification (batches of 24 parallel jobs, to match the
cluster hardware setup).

Algorithm implementations
The GLSDC implementation was kindly provided by Shuhei Kimura (Tottori
University, Japan). The LevMar SE algorithm was implemented using the
levmar C library, which is an open source implementation of the
Levenberg–Marquardt nonlinear least squares algorithm.43 In contrast,
LSQNONLIN SE and SD in ref. 17 use the Matlab built-in function “lsqnonlin.
m”. Similar to LSQNONLIN SE and SD, we used the CVODES (Sundials) C
library44 to solve the ODEs and the SEs. More information about the
algorithms and objective functions is available in Supplementary
Method 1.

Practical identifiability analysis using PCA
We used PCA to analyse a posteriori identifiability. For each parameter, we
log-normalised the data (estimates) with respect to the best estimate from
GLSDC-DNS-LS. θi,j,norm = log2(θi,j/minj θi,j), where i indicates the parameter,
and j the estimate. Thus, a value of 1 in the log-normalised data indicates a
two-times change with respect to the best estimate. PCA of the log-
normalised parameter data was performed using the princomp function in
Matlab (R2010a), with parameters in the columns and estimation results
(runs) in the rows. We considered a parameter direction unidentifiable, if
the associated variance as revealed by PCA is >1.
Remark: Although related, this identifiability analysis is different from

parameter sloppiness, which analyses how variable the directions are with
respect to each other.37 If all parameters are variable, the system is not
“sloppy”, yet it can be unidentifiable if the variance is large36, 45).

Code and data availability
PEPSSBI is freely available at https://bitbucket.org/andreadega/systems-
biology-compiler. Version 2.1 was used. The code implementing the test
problems (including models and data) and scripts used to produce the
results are available at https://bitbucket.org/andreadega/systems-biology-
compiler/downloads/2017_03_30_PEPSSBI_performance_scripts.zip.
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