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ABSTRACT

Motivation: Single-particle cryo electron microscopy (cryoEM)
typically produces density maps of macromolecular assemblies at
intermediate to low resolution (∼5–30 Å). By fitting high-resolution
structures of assembly components into these maps, pseudo-
atomic models can be obtained. Optimizing the quality-of-fit of all
components simultaneously is challenging due to the large search
space that makes the exhaustive search over all possible component
configurations computationally unfeasible.
Results: We developed an efficient mathematical programming
algorithm that simultaneously fits all component structures into
an assembly density map. The fitting is formulated as a point
set matching problem involving several point sets that represent
component and assembly densities at a reduced complexity level.
In contrast to other point matching algorithms, our algorithm is
able to match multiple point sets simultaneously and not only
based on their geometrical equivalence, but also based on the
similarity of the density in the immediate point neighborhood. In
addition, we present an efficient refinement method based on the
Iterative Closest Point registration algorithm. The integer quadratic
programming method generates an assembly configuration in a few
seconds. This efficiency allows the generation of an ensemble of
candidate solutions that can be assessed by an independent scoring
function. We benchmarked the method using simulated density maps
of 11 protein assemblies at 20 Å, and an experimental cryoEM map
at 23.5 Å resolution. Our method was able to generate assembly
structures with root-mean-square errors <6.5 Å, which have been
further reduced to <1.8 Å by the local refinement procedure.
Availability: The program is available upon request as a Matlab code
package.
Contact: alber@usc.edu and m.topf@cryst.bbk.ac.uk
Supplementary information: Supplementary data are available at
Bioinformatics Online.

1 INTRODUCTION
To understand biological mechanisms of cellular processes, high-
resolution structures of macromolecular assemblies are needed
(Alber et al., 2008; Robinson et al, 2007). Single-particle cryo
electron microscopy (cryoEM) and image processing typically
produces 3D density maps of large assemblies at intermediate to
low levels of resolution (∼5–30 Å). Although the number of maps
at subnanometer resolution is increasing significantly in recent
years, allowing the identification of secondary structure elements
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and even the tracing of the backbone (Jiang et al., 2008; Lindert
et al., 2009; Yu et al., 2008), for most cryoEM maps the level of
resolution is still not sufficient to directly determine the structure
at atomic detail. However, a pseudo-atomic picture of the entire
macromolecule can be determined by integrating information about
the atomic structures of the individual components with the density
map of the assembly (Baumeister and Steven, 2000; Fabiola and
Chapman, 2005; Wriggers and Chacon, 2001). This integration
is done via a process called density fitting, where structures are
fitted into the density maps by optimizing a quality-of-fit measure
between the cryoEM map and the density of the probe structure at
a corresponding level of resolution (Ceulemans and Russell, 2004;
Chacón and Wriggers, 2002; Dror et al., 2007; Garzon et al., 2007;
Jiang et al., 2001; Kovacs et al., 2003; Navaza et al., 2002; Rath
et al., 2003; Roseman, 2000; Rossmann, 2000; Rossmann et al.,
2001; Topf et al., 2005; Velazquez-Muriel et al., 2006; Volkmann
and Hanein, 2003).

A considerable challenge is the fitting of multiple components
into the density map of an assembly if no a priori knowledge about
the location of the components is available. Sequential fitting of
components often fails when they cannot be unambiguously placed
in the density map as is often the case for maps of ∼10–30 Å
resolution and for assemblies with a large number of components.
In such cases, all components must be fitted simultaneously into the
map to identify the global optimum of the quality-of-fit measure. The
simultaneous fitting of components is difficult as the large search
space makes an exhaustive search protocol that uniformly samples
over all degrees of freedom computationally unfeasible.

To overcome this problem, Lasker et al. (2009) uses discrete
sampling in combination with an inference optimizer and expands
the quality-of-fit measure by additional information such as shape
complementarity between interacting components. Other fitting
strategies simplify the search problem by reducing the complexity of
the 3D volumetric density and structures. In one method, the initial
density distribution of assembly and components are approximated
by a small set of Gaussian functions to efficiently use gradient-based
optimization methods for the structural optimization of component
orientations (GMFIT) (Kawabata, 2008). Other methods reduce
the complexity of density maps to a small set of feature points
(so-called codebook vectors) that are meant to best reproduce the
density map’s gross features, such as its shape and mass distribution
(Birmanns and Wriggers, 2007). The optimal positions of feature
points can be determined by the vector quantization (VQ) technique
(Martinetz et al., 1993; Wriggers et al., 1998). The fitting problem
then effectively reduces into a common point set matching problem.
This matching has been achieved by an exhaustive search method
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(Wriggers et al., 1999) for single-molecule fitting and a heuristic
anchor-point registration method for component fitting into an
assembly map (Birmanns and Wriggers, 2007). The latter method
uses a hierarchical alignment of the point sets and reduces the search-
space complexity by an integrated tree pruning technique. Although
the method is very fast, it does not allow the simultaneous fitting of
all components.

Here, we present an efficient mathematical programming
algorithm to fit multiple component structures simultaneously into
density maps of assemblies. Integer quadratic programming (IQP) is
used for matching two point sets that represent the reduced density
distribution of components and assembly. Numerical computation
and theoretical analysis show that IQP can be relaxed into the
corresponding quadratic programming (QP) scheme, which almost
always ensures an integer solution. Therefore, a QP algorithm
can be adopted to efficiently solve IQP problems without any
approximation. In contrast to other point set matching approaches,
we are able to match multiple component point sets simultaneously
while considering both information about the geometric architecture
of the point distributions, as well as the consistency of the density in
the immediate neighborhood of the points. Other major advantages
of this method are the ability to fit all the components of a given
assembly simultaneously and its ability to allow straightforward
integration of additional information about the assembly into the
method.

Reducing the complexity of the density information to point
sets is accompanied by an inevitable loss in accuracy in the
fitting process. To overcome this challenge, we perform a large
number of independent point set matches and generate an ensemble
of candidate solutions. This ensemble is then assessed using
an independent scoring function that measures the quality-of-fit
between the components structures and the assembly map using
the cross-correlation function (CCF). Finally, the best scoring
structures are refined to locally optimize the fit between assembly
and component density maps. To this end, we also present an efficient
refinement procedure based on the weighted Iterative Closest Point
(wICP) registration algorithm for refining the coarse fitting. The
wICP procedure detects the optimal registration between weighted
points that represent the voxels of two density grids. The method
has a large radius of convergence and is able to refine the coarse
component positions in the assembly that were generated by the
IQP method.

Both theoretical and numerical results demonstrate that the
proposed method is effective and general. We tested the method
on a benchmark of 11 protein assemblies. The component structures
are fitted simultaneously and refined in the context of their native
assembly density maps simulated at 20 Å resolution. In addition, we
tested the method also on an experimental cryoEM density map at
23.5 Å resolution. We have implemented our method as a MATLAB
software package, which is available from the authors upon request.

2 MATERIALS AND METHODS
In the following section, we describe our protocol for simultaneous fitting
of component structures into density maps (Fig. 1). In the first stage, the
density of assembly and components are represented by sets of feature points,
whose optimal location are determined by VQ. At the location of each feature
point, a density value is calculated such that it captures the characteristic
properties of the density distribution in the proximity of the feature point. The

Fig. 1. Our protocol for simultaneous fitting of component structures into
density maps is divided into two stages. First, approximate positions of all
components are determined at a coarse information level by our IQP point
matching approach (upper grey shading). By varying the initial parameter
settings, an ensemble of solutions is generated. At a second stage, all
candidate structures are assessed and structurally refined using the initial
density map and the density of the component structures simulated at the
same resolution (lower grey shading).

simultaneous fitting of components into the assembly map is then achieved by
solving a point set matching problem that considers both information about
the geometric architecture of the point distributions and the consistency of
their density values. The point set matching problem between component
and assembly point sets is solved by IQP. By varying starting parameters in
individual fitting processes an ensemble of candidate configurations of the
assembly structure is generated. All the resulting candidate configurations are
then assessed by a quality-of-fit measure between the component structures
and the assembly density map. Finally, the best scoring candidate structures
are refined by performing a local optimization of the fit of the component
structures with respect to the assembly density map.

2.1 VQ
To extract feature points from a density map we follow a procedure by
Wriggers et al. (1999) and adopt a fast VQ technique based on the neural
gas clustering technique. Feature points are defined as the centers of density
clusters, which as a whole capture the characteristic features of the density
distribution. As the interior details of a density map take key roles in the
reduced point matching problem (Birmanns and Wriggers, 2007), we apply
the Laplacian edge enhancement filter to the density maps, which boosts the
contrast of the map and enhances the contour as well as the interior detail.
The Laplacian density map is normalized and only the more robust interior
map information is used in the VQ procedure by considering only voxels
with a Laplacian density value above a given threshold. As the optimal
value for this threshold is unknown beforehand we perform independent
VQ by varying the Laplacian density cutoff. Moreover, due to numerical
instabilities, independent VQ runs with identical starting conditions can
produce slightly different point configurations. To account for the variability
of feature point configurations, 10 independent VQ runs are performed for
each density map, with five different Laplacian density cutoffs for each run,
resulting in 50-point configurations. These configurations are used as input
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for the IQP-based fitting and are henceforth named the ‘point configuration
ensemble’. The variance for a given point position in the point configuration
ensemble can be up to 3 Å (observed for a component in 2REC).

2.2 Multiple component matching by IQP
Our method for efficient rigid-body matching relies on the distance matrix
representation of 3D point sets, which is defined as the square matrix of
distances between all pairs of points in the system. The distance matrix
representation has been applied to many structural problems, including
protein structure alignment (Caprara et al., 2004; Holm and Sander, 1993).
The distance matrix as well as the related contact map overlap problem
(Caprara et al., 2004) are both NP-hard. Solutions for the distance matrix
problem were approximated by using Monte Carlo optimizations (Dali)
(Holm and Sander, 1993) and an algorithm involving heuristic cutoffs
on pairwise distance scores [Combinatorial Extension, (CE)] (Bourne and
Shindyalov, 1998), whereas the contact map overlap problem has been
addressed by using integer programming and Lagrangian relaxation (Caprara
et al., 2004). The point matching problem is also related with the weighted
maximum common subgraph problem (Jain and Lappe, 2007). In all these
methods, the matching between two configurations is based purely on the
geometrical equivalence and is applied only to two matching point sets. Here,
we introduce a method, that can not only consider simultaneous matching
of multiple components, but can also consider additional feature point
properties in the matching process. In the case of density fitting, each feature
point can be assigned a rotation invariant density measure that captures
the local density distribution in the immediate neighborhood of the point.
Two corresponding feature points should have roughly equivalent density
measures in addition to their geometric matching. In the following section,
we formulate the weighted points matching problem based on distance matrix
as well as density information.

Formally, we are given two point sets V1 ={v1
1,··· ,v1

m} and V2 =
{v2

1,··· ,v2
n}, with corresponding density values U1 ={u1

1,··· ,u1
m} and U2 =

{u2
1,··· ,u2

n}. Each density value ui is defined as an average over all voxels in
the neighborhood (within 5 units of distance) of the corresponding point vi.
The distance matrices of the point configurations V1 and V2 are A= (aij)m×m

and B= (bij)n×n, respectively, where aij =‖v1
i −v2

j ‖ is the Euclidean distance
between points i and j. The distances bij are defined in the same way.

In our approach, the matching between v1
i ∈V1 and v2

j ∈V2 is represented
by a binary variable xij ,

xij =
{

1 if v1
i ∈V1 matches v2

j ∈V2

0 otherwise

xij therefore indicates the relationship between one pair of points and X =
{xij} represents a complete point-by-point matching. The ‘optimal’ score
associated with X is defined by two objective functions, namely the point
density score and the point-to-point distance score.

The matching problem is to maximize the similarity score
F(U1,U2,V1,V2) between point sets V1 and V2 with density values
U1 and U2 among all feasible combinations X (Fig. 2). A solution can be
found using IQP:

max
X

F(U1,U2,V1,V2)=
m∑

i=1

n∑
j=1

S(u1
i ,u

2
j )xij

+
m∑

i=1

n∑
j=1

m∑
k=1

n∑
l=1

G(aik,bjl)xijxkl

(1)

s.t.

⎧⎨
⎩

∑n
j=1 xij ≤1 i=1,2,···m∑m
i=1 xij ≤1 j=1,2,···n

xij =0,1 i=1,2,···m;j=1,2,··· ,n
where the functions S and G represent the contributions of density matching
and geometric matching, respectively. They are defined as follows:

S(a,b)=G(a,b)=e− 2×|a−b|
a+b . (2)

Fig. 2. An illustration of the feature point matching procedure. The goal is
to match simultaneously the point sets of Component 1 and Component 2
with the Assembly point set. All point sets are shown as spheres, where the
size of a sphere represents the averaged density value in a defined volume
of the density map, which is within five grid voxels of the corresponding
feature point. The dashed lines between the spheres represent all possible
distances within each component and within the assembly. aik and bjl are
the distances between points i and k in Component 1 and points j and l in
the Assembly, respectively. The value of the binary variable xij is set to 1 if
point i in Component 1 matches with point j in the Assembly and xij is set
to zero otherwise. Correspondingly, the product xijxkl is 1 if distance aik in
Component 1 matches with distance bjl in the Assembly and is 0 otherwise.
The aim of IQP is to find the best matching xij with maximized IQP score
F(U1,U2,V1,V2) (see Section 2).

The objective function is subject to three constraints. First, each point in V1

can match at most one point in V2. Second, each point in V2 can match at
most one point in V1. Third, the variable xij is binary.

Since we are simultaneously matching several structural components to
the overall assembly map, we can combine the individual distance matrices
of the components into a single composite matrix, that is then compared to
the assembly matrix. The composite matrix A is defined as follows:

A=

⎛
⎜⎜⎝

A1 R12 ··· R1S

R21 A2 ··· R2S

··· ··· ··· ···
RS1 RS2 ··· AS

⎞
⎟⎟⎠ , (3)

where As is the distance matrix of component s, s=1,··· ,S (number of
components) and each submatrix R of appropriate size describes the possible
distance values between feature points of two components. If no information
about the interaction between two components is available, all elements
of the corresponding submatrix R are set to zero. Moreover, the function
G(a,b) is set to zero for these elements, so that the corresponding pairs of
elements do not contribute to the objective function. In this article, we assume
that no additional knowledge about component interactions is available.
The aforementioned IQP constraints prevent any structural overlap between
components in the resulting assembly, because each feature point can be
matched to at most one component point. Therefore, the IQP constraints
enable simultaneous fitting of all components into an assembly map.

The a priori knowledge of the protein interactions can be incorporated by
defining specific values in the corresponding inter-component matrices (R).
In such a case, the estimated distance between the corresponding feature
points in the two interacting components can be added to the R matrix.
Any positive value in A ensures that the corresponding pairwise distance
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will be considered in the objective function, while setting an element to
0 excludes the distance between two feature points from the optimization
process. Therefore inter-component matrices are an efficient tool to integrate
additional information such as chemical cross-linking or yeast two-hybrid
experiments into the IQP framework (see Supplementary Figure S1 for an
illustrative example for this).

It can be shown that IQP belongs to the class of NP-hard problems.
However, it can easily be demonstrated that in some cases, the types of
IQP constraints used here make such problems unimodular. This property
implies that the system of equations can be reduced to a QP problem with
an integral solution. Furthermore, even if unimodularity does not apply, the
corresponding QP still has an optimal integer solution in most cases (Li et al.,
2007). For a non-integer solution, a rounding strategy can be adopted to
determine an approximate integer solution of the QP procedure. The relaxed
QP problem has been solved and implemented in Matlab based on an efficient
interior algorithm (Ye, 1992). Although IQP is a local optimization method,
it is still expected to determine the global optimum because the number of
feature points is relatively small.

2.3 Ensemble of candidate structures
IQP is a local method, therefore, we must sample several IQP runs with the
identical feature point sets to ensure that the global minimum in the scoring
function is found. To test the scope of the necessary sampling, we analyzed
the variability of the outcome of multiple IQP runs. When for each feature
point set 10 independent IQP runs are performed, we can observe on average
only around three different configurations (Supplementary Figure S2).
Therefore, in each of our test cases, 10 IQP runs are sufficient to determine
the global minimum for IQP point matching. The IQP generally converges to
a stable solution within a small number of iterative steps (<20). As described
earlier, the density map of an assembly is represented by 50 VQ point
configurations. For each of these point configurations IQP point matching
is repeated 10 times with random initial values for the variables {xij} set
between 0 and 1. As a result, a total of 500 structures is generated from
independent IQP and VQ runs, some of which may not be unique. These 500
structures are henceforth refereed to as the ‘ensemble’.

2.4 Scoring of candidate structures
An independent criteria for the fitting quality is performed by a scoring
scheme that was not used in generating the structures. To pick the best set
of results from the IQP fitting, each arrangement of assembly components is
scored within the density map using a normalized CCF. For this calculation,
each component structure needs to be converted into a probe density with the
same size and sampling as the target density. First, the atomic coordinates
are mapped out on to a grid sampled at 1 Å/pixel. Then it is convoluted in
Fourier space with a Gaussian function of σ =0.356 • resolution (so that the
Gaussian width at 1/e maximum height equals the resolution). The resultant
grid is then resampled to match the spacing in the target density map.

The CCF between the target and probe densities is given by:

CCF = 1

N

N∑
i=1

(ρt(i)−<ρt >)(ρp(i)−<ρp >)

σtσp
(4)

where ρt(i) is the density value at position i in the target map, ρp(i) is the
density value at position i in the probe density, <ρt > and <ρp > are the
mean values of the target density and the probe density, respectively. σt and
σp are the standard deviation of the target and probe densities respectively.
The IQP results are additionally scored using the CCF Equation (4) on the
Laplacian-filtered probe (Laplacian-CCF) and target densities, as described
in Chacón and Wriggers (2002). All of the above was implemented in Python
with components from the Scipy package (http://www.scipy.org/).

2.5 Refinement with weighted ICP algorithm
After having established the position and orientations of all the components,
we refine their positions using the density maps at their initial resolution.

We define a variant of the Iterative Closest Point (ICP) algorithm, originally
introduced by (Besl and McKay, 1992 and Rusinkiewicz and Levoy, 2001)
and commonly used in computer vision and pattern recognition. Here,
we introduce a weighted registration formalism (wICP) where the density
contribution of the maps is considered in the registration process. Each grid
voxel in the density maps is treated as a weighted point with a position
and density value, and the task of registration is to determine the optimal
transformation that minimizes the deviation of position and density values
between two point sets. Given the initial orientation of two 3D rigid point sets
X and Y , the wICP algorithm in its simplest form iterates two steps repeatedly.
First, the correspondence between points in the two configurations is
identified based on the proximity between them. A point in one configuration
corresponds to the closest point in the second configuration. Based on the
correspondence, a transformation matrix is then calculated by singular value
decompositions (SVD) and applied to X to determine its new point positions,
which in effect leads to a new correspondence relationship between the
points. Iterations of these two steps progressively reduces a given error
metric. To balance the density consistency and the 3D rigid matching, we
introduce the following weighted root-mean-square (RMS) error metric,

wRMS =
√√√√ 1

n

n∑
i=1

wiφ(i)(‖Xi −Yφ(i)‖)2.

where X and Y are the coordinates of two voxel point sets and φ(i) is the
index function representing the corresponding points in the two sets. In order
to incorporate the density information into the registration procedure, we use
a Gaussian weighting parameter. The weight is defined as

wij =e
|ρ(xi )−ρ(yj )|

c

where ρ(xi) and ρ(yj) are the density values for voxel points xi and yj ; c=0.2
is a scaling factor whose optimal value was determined by test calculations.
Varying c between 0.1 and 0.3 does not affect the outcome of our calculations.
In this context, the fitting of two density maps is equivalent to finding an
optimal correspondence index φ : i→ j and a transformation that minimizes
the wRMS (Supplementary Material for a detailed flowchart of the method).
The wICP algorithm that has been proven to converge monotonically to
a local minimum, allows the optimization of the component position and
orientation without the need to calculate a gradient of an objective function.

The computational complexity of the above algorithm is of O(CMN),
where C is the number of iterated steps. The complexity of the SVD-
based least square fitting is of the order O(N). So, the most computationally
expensive part of both wICP and ICP is the exhaustive search for the point
correspondence with a time of the order O(MN). The complexity of this
search can be reduced to O(NlogM) by employing a k dimensional binary
search tree (k-D tree) (Akca and Gruen, 2005; Besl and McKay, 1992). Other
types of acceleration strategies include reducing the number of iterations and
the number of employed points (Akca and Gruen, 2005).

2.6 Assessment of structural solutions
Two criteria were used to assess the accuracy of the IQP-fitted conformations.
First, the Cα RMS error (referred to here as the RMS error) between the
corresponding Cα atoms in the fitted and correct structures is calculated.
However, since RMS error is highly dependent on the size and shape of each
component, a second assessment score is used—the component placement
score (CPS) is also used for assessment (Lasker et al., 2009; Topf et al.,
2008). The CPS calculates the difference between the orientation and position
of equivalent components in the fitted and native structure. This gives two
values for each assembly component, i.e. the shift and rotation angle needed
to superpose the fitted component onto the native one.

We define a correctly predicted structure as one with a RMS error <7 Å
to its native structure, and a CPS shift score and angle score <6 Å and 25◦,
respectively.
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3 RESULTS AND DISCUSSIONS
We tested our approach on a set of 11 protein assemblies that
are diverse in assembly size, number of components (between two
and seven components, including symmetrical and unsymmetrical
assemblies), and global shape of the assemblies (Table 1). The
density maps for each assembly were simulated at 20 Å resolution
using the PDB2VOL program of the Situs 2.0 package with voxel
size of 3 Å.

3.1 IQP-based fitting and generation of ensemble
structures

To test if the IQP procedure can sample accurate results, we
examined if the correctly predicted structures are present in the
ensemble. A correctly predicted structure for each assembly is a
structure for which all the components are occupying their correct
positions and are oriented correctly (Section 2). Here, this is typically
the case if the RMS error of a structure with respect to the native
structure is <7 Å.

We now discuss the accuracy of the structures in the ensemble with
the lowest RMS error with respect to the native structures (Table 1).
The RMS errors for all of these structures range between 0.4 Å
and 6.5 Å, which corresponds to an average shift of a component
from its native position by ≤5.6 Å and an average difference of the
orientation of each component by ≤24.0◦ (see Section 2). At such
values, our local refinement method was able to produce improved
structures with RMS errors between 0.4 and 1.8 Å (see below).
This result indicates that for all the test cases correct solutions can
be identified in the ensemble of 500 structures, and the proposed
IQP matching procedure can efficiently produce accurate fitting
results. For example, the best fitted structure of the four-component
assembly 2BO9 has an RMS error of 1.7 Å. This structure can be
further optimized by the local wICP refinement protocol to an RMS
error of only 1.1 Å (Table 1). Our results indicate, therefore, that
the IQP matching procedure is able to efficiently produce accurate
fitting results.

We also tested our approach on a 23.5 Å resolution experimental
cryoEM map of Apo-GroEL. Specifically, we used the density map
of Escherichia coli GroES-ADP7-GroEL-APT7 (EMD id: 1046;
Ranson et al., 2001) and generated the apo-GroEL ring by manual
segmentation. For the fitting, we used seven identical copies of one
of the apo-GroEL components taken from an x-ray crystal structure
of GroEL-GroES (PDB id: 1AON). After simultaneous IQP fitting,
the lowest RMS error for the fitted structure is 8.6 Å with respect
to the crystal structure, and only slightly larger than our results
observed for simulated maps. The average shift of a component with
respect to the crystal structure is 5.7 Å and the average difference
in the orientation of each component is 17.7◦. This result is not
surprising because experimental maps are a greater challenge due
to the inherent noise levels.

We now analyze the structural variability among the structures
in the ensemble. Indeed, not all the structures in each ensemble
are correct solutions. For instance, in the case of 2REC the range
of observed RMS errors for structures in the ensemble ranges
between 1.7 Å and 35.4 Å. This observation indicates the need for an
independent scoring system to identify the correct solutions in the
ensemble. Such a scoring system should preferably use the initial
density maps as input information instead of the reduced feature
point representation.

A B

Fig. 3. Simultaneous fitting of all seven components of the APO-GroEL
into the experimental density map of GroEL-GroES at 23.5 Å resolution.
(A) Experimental map and fitted atomic model, as provided by Ranson et al.
(2001). (B) Fitted component structures with an RMS error of 8.6 Å with
respect to the native structure in (A).

Next, we analyze how the number of feature points and the
resolution of the density map affect the outcome of the IQP
calculations. For example, the assembly 2REC has been fitted
using IQP point matching with various numbers of feature points
per component. All these IQP runs produce results with RMS
errors <4.2 Å (Fig. 4A), indicating that the correct structure can
be predicted. This result shows the robustness of the method and
indicates that accurate results can already be generated with a
relatively small number of feature points. In addition, for 2REC
density maps at resolutions between 10 Å and 30 Å produces
very similar IQP fitting results. This observation is not surprising
considering that the VQ process produces a reduced representation
of the density maps, and consequently, the accuracy of the IQP fitting
is less dependent on the initial resolution of the map.

IQP-based matching of multicomponent assemblies is very fast
and the run time for each of the test cases is <3 s allowing for
multiple fitting runs and the generation of an ensemble of structural
solutions. Although, the running time increases exponentially with
the number of points, IQP is sufficiently fast to deal with large
number of points (∼54) (Fig. 4B), enabling the fitting of protein
assemblies with a large number of components.

3.2 Density-based scoring of ensemble structures
To identify the correctly predicted solutions in the ensemble, we
used two density-based scoring systems: the CCF that measures
a quality-of-fit between the density maps of the assembly and its
components, and the corresponding CCF for the Laplacian of the
density maps (Laplacian-CCF) (see Section 2). We assessed the
different scores by calculating the rank of the most accurate structure
in the ensemble, which is the solution with the lowest RMS error
from the native structure (Table 1). For all cases, except 2DQJ
(see discussion below), this structure lies within the top 10 ranked
solutions (out of 500) for both scores (Table 1), indicating their
equally good performance.

Next, we analyze the accuracy of the best scoring structures in the
ensemble. In eight out of the 11 test cases, the best scoring structure
correctly predicts the positions and orientations of all its components
with RMS errors from the native structures ranging between 1.6 Å
and 5.9 Å and corresponding average component placement score
ranging from 0.6 Å to 5.6 Å for the shifts and 2.9◦ to 16.2◦ for the
angles of the components relative to the native positions (Table 1).
When the wICP refinement is applied to these structures (see below)
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Table 1. Summary of benchmark results

Assembly Comp. Sym. Feat. Points Time (s) (Total
time in min)

Lowest RMSD structure Best CCF ranking structure

CCF (Lapl.-CCF) CPS (Å, ◦) RMSD RMSD* CPS (Å, ◦) RMSD RMSD*

1DOR 2 Y 10 0.16 (1.33) 2 (1) (1.1, 6.8) 2.1 1.1 (0.6, 9.5) 2.5 1.2
1AFW 2 Y 10 0.15 (1.25) 2 (1) (2.3, 14.4) 4.8 0.9 (2.5, 15.0) 4.9 0.9
1PC8 2 N 10 0.10 (0.83) 6 (10) (1.1, 3.1) 1.3 0.5 (0.8, 6.4) 1.6 0.5
1TX4 2 N 11 0.14 (1.17) 8 (6) (1.2, 2.8) 2.6 0.4 (0.7, 2.9) 3.0 0.4
1NIC 3 Y 15 0.65 (5.42) 1 (1) (5.6, 5.1) 5.9 1.1 (5.6, 5.1) 5.9 1.1
1CS4 3 N 11 0.16 (1.33) 8 (7) (2.4, 24.0) 6.5 1.8 (2.3, 55.5) 12.8 11.7
2DQJ 3 N 12 0.20 (1.67) 34(11) (2.0, 21.1) 4.5 1.7 (1.4, 62.1) 9.5 7.8
1F1X 4 Y 12 0.42 (3.50) 2 (18) (2.4, 14.6) 4.6 0.9 (2.3, 168.4) 28.2 26.1
2BO9 4 N 18 0.75 (6.25) 1 (1) (1.1, 4.6) 1.7 1.1 (1.1, 4.6) 1.7 1.1
2REC 6 Y 30 2.56 (21.33) 1 (1) (1.3, 4.2) 1.7 1.0 (1.3, 4.2) 1.7 1.0
1J2P 7 Y 28 2.48 (20.67) 1 (3) (1.6, 16.2) 4.4 1.5 (1.6, 16.2) 4.4 1.5

The individual columns are: Assembly, the PDB ID (Bernstein et al., 1977) of the assembly structure being used; Comp., the number of components of the assembly; Sym., indicates if
the assembly structure is symmetric (Y) or non symmetric (N); Feat. Points, the number of feature points being used; Time, the average running time for an IQP run, and the total time
of 500 IQP runs is shown in brackets; CCF (Lapl. -CCF), the rank of the structure with the lowest RMS error based on the CCF and Laplacian CCF, respectively; CPS, Component
placement score composed of two elements (the shift and orientation). The average component placement score for all components is shown. RMSD, the root-mean-square error
(RMS error) between the corresponding Cα atoms in the fitted and the native structures. RMSD∗, the RMS error of the assembly after wICP refinement.

A B

C

Fig. 4. Simultaneous fitting of six components into the symmetric hexamer
2REC. (A) The dependency of fitting accuracy, measured by the RMS error
(RMSD) with respect to the number of feature points M of the assembly.
(B) The dependency of running time (in seconds) on the number of feature
points M of the assembly. (A) and (B) are calculated using density maps at
20 Å resolution. (C) The fitting accuracy at different resolutions of the initial
density map. The calculations for (C) are performed with 30 feature points
per assembly. Results are shown after IQP fitting (IQP) and after additional
refinement with wICP (IQP*).

the RMS errors are further reduced and range only between 0.4 Å
and 1.5 Å (Table 1). Thus, our method allows us to predict the correct
assembly structure with relatively high accuracy.

For two cases (2DQJ and 1CS4), the best scoring solution predicts
the positions of all components correctly, but the orientation of
one of the component proteins differs significantly from the native
structure. For example, for the three component assembly 2DQJ,
the best CCF-scoring structure correctly predicts two components in

position and orientation, with an RMS error of only 3.4 and 2.2 Å and
component placement scores of {0.6 Å, 20.6◦} and {2.1 Å, 8.6◦},
respectively. The third component shows a component placement
score of {1.6 Å, 158.1◦}, indicating that the position of the center
of mass is close to the native structure. However, the component
is wrongly oriented, which leads to an RMS error of 15.4 Å with
respect to the native structure. For the homotetramer 1F1X, the
best CCF-ranked structure positions the component’s center of mass
within 2.5 Å from the native structure. However, all the components
show an incorrect orientation that leads to a large RMS error
of ∼28 Å.

For all these three cases, the correctly predicted structures are
not top-ranked by the CCF score. Here, we discuss in more detail
the possible cause of these scoring problems. The densities of
all the components that were incorrectly ranked share specific
self-symmetric characteristics. In 1CS4, the misaligned component
protein is formed by two domains of the same fold family (adenylyl
and guanylyl cyclase catalytic domain). This peculiarity may cause
difficulties in CCF-based scoring systems when low resolution
density maps are used, because a rotation along the pseudo-
symmetry axis could in principle lead to similar CCF-scoring
results. We observe a similar situation for the structure 1F1X,
where all four components are formed by two domains of the same
fold family (extradiol dioxygenases scope family). The misaligned
protein component in 2DQJ is formed by the immunoglobulin-
like fold, which is composed of two similar β-strands that are
stacked in such a way that a rotation along the central pseudo-
symmetric axis of the protein may produce similar cross-correlation
scores at low resolution densities. In summary, the three problematic
proteins include pseudo-symmetric components for which the
correct orientation could not be identified by CCF-based scoring
in low-resolution density maps.

In conclusion, the IQP method in combination with CCF-based
scoring is an efficient tool to simultaneously fit components into
assembly density maps. To further improve the accuracy of the
fitting, the IQP point matching and scoring must be combined with
a refinement strategy that uses the initial density maps as input
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Table 2. Comparison of the performance between IQP and GMFIT fitting

Assembly Comp. GMFIT IQP

Time (s) RMSD Time (s) RMSD RMSD∗

1AFW 2 7.1 1.0 0.15 4.8 0.9
1NIC 3 16.0 1.8 0.65 5.9 1.1
2REC 6 110.9 2.3 2.56 1.7 1.0

RMS errors between the fitted and native structures are shown for three different
assemblies. GMFIT used 16 GDFs (Gaussian distribution functions) to represent the
atomic structures of each component and 12 GDFs to represent the density map of the
assembly (Kawabata, 2008). The IQP model used 5 feature points per component for
each assembly. The individual columns are: Assembly, the PDB ID (Bernstein et al.,
1977) of the assembly structure being used; Comp., the number of components of the
assembly; RMSD, RMS error between the corresponding Cα atoms in the fitted and
assembly structures; RMSD∗, the RMS error after refinement.

information. To this end, we have developed a refinement method
to improve the placement of components. In the following section,
we describe the results of our wICP refinement method.

3.3 wICP refinement
Structures determined by IQP are refined by the wICP method
using the density maps of components and assembly as input
information. wICP is an iterative optimization procedure, which
does not depend on the gradient of the objective function. The
wICP refinement significantly reduces the RMS error after initial
IQP-based fitting from ∼6 Å to very low values (between 0.4 Å and
1.8 Å) (Table 1). For instance, for the seven component assembly
1J2P, wICP refinement reduces the RMS error from 4.4 Å to 1.5 Å
(Table 1).

To test the efficiency of the wICP refinement, we systematically
explored a number of random starting configurations that can
be refined to assembly structures with an RMS error <1 Å. A
suite of random rotation matrices is generated, which increasingly
deviate from the native orientation. For all test cases, the result
of wICP refinement converges to the native orientation even if the
starting orientation differs by an angle of ∼50◦ (Supplementary
Figure S3). wICP is therefore an efficient tool to refine the IQP-
derived structures. As the wICP refinement relies on the density
maps of assemblies and components, the method is sensitive to the
resolution of the maps (Fig. 4C). The RMS error increases slightly as
the resolution is reduced (Fig. 4C); however, even for low resolutions
(∼30 Å) assembly structures can be fitted with high accuracy (RMS
error ∼1 Å); (Fig. 4C).

3.4 Comparison with other methods
The present work aims to develop a tool for fitting components
into the density map of an assembly. To achieve this goal, we have
proposed an efficient point matching method that uses sets of feature
points obtained by VQ. Compared with the initial fitting method
(QDOCK program) that introduced the usage of VQ (Birmanns
and Wriggers, 2007; Wriggers et al., 1999) for density fitting,
the proposed IQP procedure is competitively fast [within a few
seconds even for large complexes with six components (Table 2)].
In contrast to QDOCK, the IQP framework can simultaneously fit
all the components into the assembly, while QDOCK can only fit
one component at a time.

Most of the existing fitting tools are not able to perform
simultaneous fitting of assembly components. An exception is
the program GMFIT, that was recently developed based on the
Gaussian Mixture Model (Kawabata, 2008). Here, we have used
three homo-oligomers to directly compare the performance of our
method to GMFIT. IQP-based fitting is significantly faster than
GMFIT. Although IQP produces structures with slightly larger
RMS error values in comparison to those generated by GMFIT,
the resulting structures still capture the correct orientation and
position of all components. However, the combination of IQP
with wICP refinement produces more accurate results than GMFIT
(Table 2). These results demonstrate that the combination of IQP
point matching with wICP refinement is an efficient simultaneous
fitting procedure.

4 CONCLUSIONS
The VQ technique provides an efficient way to transform low-
resolution density maps of a macromolecular structure into a
set of feature points. The fitting of structures into density maps
can then be formulated as a point matching problem, which has
been solved by exhaustive or heuristic search methods (Birmanns
and Wriggers, 2007; Wriggers et al., 1999). Here, we describe
a more flexible framework for solving this problem based on an
efficient mathematical programming procedure (IQP) that considers
information about the geometry of the point configurations, as well
as the consistency of the density distribution in the neighborhood
of feature points. The proposed IQP procedure enables a fast and
reliable fitting of atomic structures into density maps (or maps
into maps) within few seconds even for very large assemblies.
More importantly, in contrast to previous methods, the proposed
IQP procedure can tackle the simultaneous fitting of multiple
components into an assembly map without adding computational
complexity. Moreover, it is possible to incorporate existing
knowledge about protein interactions and protein binding interfaces
in the point matching procedure, providing an ideal framework
for comprehensive data integration. These advantages could help
increase the applicability of the method to large complexes, which
most existing fitting methods cannot handle. It could also be used
to generate an ensemble of solutions that would be further refined
and assessed by flexible fitting methods.

The applicability of the IQP procedure depends on the intrinsic
limitations and robustness of the VQ technique for feature point
determination. For some proteins, the positions of feature points
in the isolated components can vary greatly in comparison to
the corresponding positions observed for the same component
in the environment of the assembly. This problem occurs when
components differ largely in size or when the binding interface
between the proteins occupies a large fraction of the protein
surfaces. These problems explain the observed errors in our IQP
calculations (∼1.3–6.5 Å RMS errors), which are due to inaccurate
positioning of feature points. Moreover, the VQ algorithm is
based on stochastic gradient descent optimizations. Therefore,
it is possible that for different runs slightly different feature
point positions are generated. For each VQ solution, an optimal
matching can then be determined by our IQP procedure and the
structure with the best density-based CCF score among all solutions
is selected. To further improve the results, we also introduced
an efficient wICP algorithm for the refinement of position and
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orientation of assembly components based on the initial density
maps. wICP shows a large radius of convergence and therefore
it can serve as an efficient refinement procedure (Supplementary
Figure S3).

Our fitting of components into density maps of assemblies were
performed with component structures in their bound conformational
state. It is possible that in some cases large conformational
differences between bound and unbound states could reduce the
accuracy of the presented fitting process. In our future work, we will
address these cases by including flexible fitting approaches (Topf
et al., 2008) in our framework.

In summary, we have proposed a fast mathematical programming
method and an efficient refinement procedure for determining
the accurate positions and orientations of atomic structures of
components in 3D density maps of their assembly. The present
method is time efficient, can be applied to simultaneous fitting of
multiple components and allows an effective way to incorporate
additional experimental information about an assembly. Future
directions will include the improvement of the scoring as well as
the extension with flexible fitting.
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