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Exploring the Sequence-based 
Prediction of Folding Initiation 
Sites in Proteins
Daniele Raimondi1,2,3,4, Gabriele Orlando1,2,3,4, Rita Pancsa5, Taushif Khan1,3,4 &  
Wim F. Vranken   1,3,4

Protein folding is a complex process that can lead to disease when it fails. Especially poorly understood 
are the very early stages of protein folding, which are likely defined by intrinsic local interactions 
between amino acids close to each other in the protein sequence. We here present EFoldMine, a method 
that predicts, from the primary amino acid sequence of a protein, which amino acids are likely involved 
in early folding events. The method is based on early folding data from hydrogen deuterium exchange 
(HDX) data from NMR pulsed labelling experiments, and uses backbone and sidechain dynamics as 
well as secondary structure propensities as features. The EFoldMine predictions give insights into the 
folding process, as illustrated by a qualitative comparison with independent experimental observations. 
Furthermore, on a quantitative proteome scale, the predicted early folding residues tend to become 
the residues that interact the most in the folded structure, and they are often residues that display 
evolutionary covariation. The connection of the EFoldMine predictions with both folding pathway data 
and the folded protein structure suggests that the initial statistical behavior of the protein chain with 
respect to local structure formation has a lasting effect on its subsequent states.

Proteins perform a multitude of functions in organisms. To fulfill their function, a well-defined three-dimensional 
organization of the protein atoms is often required, with many proteins folding independently into such stable 
structures1. Others need help from chaperones to fold2, while some only fold upon binding their interaction 
partner(s)3 or do not fold at all4. In all cases, the protein sequence encodes its behavior and, by extension, the 
environmental context that is required for the protein to fold, whether that is the right temperature and/or pH5, 
another biomolecule or a post-translational modification6. Proteins that misfold, for example prions or in amyloid 
formation1, 7, can lead to disease. Different theories about how proteins fold independently have been suggested 
over the last decades1, 8–10, with the view of initial formation of foldons, which provide the right context for the 
rest of the protein to fold, recently strongly supported by hydrogen-deuterium exchange (HDX) based mass spec-
trometry (MS) experiments9, 11.

Foldons are essentially structural elements that likely form easily through favorable interactions between 
amino acids close to each other in the sequence. These interactions determine the initial conformational states in 
the pathway towards the native fold, and provide the context for other residues in the protein to fold themselves. 
The importance of local amino acid interactions was already pointed out decades ago based on information 
from folded protein structures12, 13. The structure of a protein is, however, an end product of the folding pro-
cess, and does not provide direct information about where the first local structural elements started to form. To 
obtain a more accurate picture of such ‘early folding’ residues in proteins, we recently created the Start2Fold data-
base, which collects data from pulsed labelling and related HDX experiments14. We showed that the DynaMine 
sequence-based protein backbone rigidity predictions15, 16 give the best results in discriminating early folding 
residues from other regions of the protein17. In addition, we observed that protein regions with higher backbone 
rigidity tend to preserve this rigidity in evolution17.
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Experimental early folding data remain difficult to obtain, however, and are only available for specific pro-
teins. We here present EFoldMine, a protein-sequence predictor of early folding residues trained on a set of 30 
proteins for which high-quality experimental HDX data is available in Start2Fold. The ‘early folding’ residues in 
the training set were identified by NMR pulsed labelling experiments, where protein folding is triggered from its 
unfolded state. These experiments can identify residues that form stable local structure very quickly, on the low 
millisecond timescale, under kinetic control without fast conformational exchange. Residues are only detected if 
their backbone amide proton is protected from exchange with water by hydrogen bond formation. Information 
on the type of local structure that is formed is not available from these experiments. EFoldMine therefore iden-
tifies the residues in proteins that are inclined to form structural elements unaided during the very first stage of 
the folding process, prior to the formation of specific defined interatomic contacts in the folded protein. We show 
that EFoldMine can provide mechanistic insights into the folding process, and can indicate regions of intrinsically 
disordered proteins poised to fold. On a proteome scale, the predictions pinpoint many of the residues that create 
the most interactions in the final folded protein structure, as well as detecting residues that tend to display evolu-
tionary covariation. These observations suggest that early folding events determined by local interactions shape 
the folding landscape of proteins, so influencing the fold the protein finally adopts.

Results
Method performance.  The NMR pulsed labelling HDX data that pinpoints the residues where folding starts 
are difficult to obtain experimentally. The EFoldMine training set encompasses the available high-quality entries 
from the public Start2Fold database14, in total 30 proteins comprising 3398 residues, of which 482 were classified 
as early folding. As features, EFoldMine uses sequence-based predictions of backbone and side-chain dynamics, 
as well as secondary structure propensities. These features are incorporated in an SVM with RBF kernel that was 
cross-validated on sequences stratified by identity (see Methods). To further guarantee the robustness of our 
method, we limited the dimensionality of the feature vectors, ending up with 25 dimensions for 3398 vectors. 
The performance measures of EFoldMine obtained through our stratified 27-fold cross-validation are shown 
in Table 1, while their changes with incrementing features (Table S1), and their full distribution over the leave-
one-out cross-validation (Supplementary Fig. S1) are provided as supplementary data. The sensitivity indicates 
that EFoldMine is able to detect 75% of early folding residues at the cost of over-predicting 25% of the non-early 
folding ones as false positives. The precision is quite low (36%), but becomes higher if only the most confident 
10% or 5% predictions are considered (respectively 45% and 48% of precision).

Mechanistic insights into protein folding.  Experimental studies that reveal details of the protein folding 
pathway with mechanistic descriptions are difficult to perform and their number remains limited14. Based on 
available data and computational studies that emulate folding, different theories for protein folding have been 
formulated, such as hierarchical and parallel ‘foldon’ formation9, 18. Mechanistically, the process seems to be gov-
erned by a balance between local residue interactions, which remain important in folded proteins19, as well as 
topological complexity20–22. This determines the order of formation of, or changes in, secondary structure, which 
in turn modulate the conformational heterogeneity of the protein. We first investigate how the predictions relate 
to two extensively investigated protein pairs that have a very similar topology but different folding pathways: (i) 
myoglobin and leghemoglobin, and (ii) proteins L and G.

Folding of myoglobin and leghemoglobin.  Myoglobin (PDB:1MYF) is an all-helical protein that is 
reported to fold through a kinetic intermediate state, with the presence of molten globule-like kinetic interme-
diate structures23–25. These studies also identified that helices A, G and H (Fig. 1) are the first stable secondary 
structure elements that are formed, with an absence of hydrogen bonds in the helices of the core regions resulting 
in transient intermediates in the molten globule state. The C-terminal half of helix B is also stabilised early in 
the folding process26. Leghemoglobin (PDB:1BIN) adopts a very similar fold to myoglobin, with a stable helical 
structure appearing in the G and H helices during folding, but now together with a small region in the center of 
the E helix, whereas the A and B helices are not stabilized until later27. The early folding scores for myoglobin and 
leghemoglobin were predicted from their primary amino acid sequence, without using heme information, using 
a jack-knifed version of EFoldMine where the myoglobin sequence was not included in the training set (Fig. 1). 

Parameter Performance %

Sensitivity (Sen) 73.1

Specificity (Spe) 75.2

Accuracy (Acc) 73.4

Balanced Accuracy (Bac) 74.1

Precision (Pre) 36.1

Matthews Correlation Coefficient (MCC) 35.4

ROC Area Under the Curve (AUC), cutoff 0.169 80.8

Best PPV, 10%, 5% 45.6, 48.8

Table 1.  Average of leave-one-out stratified cross-validation (27 sets) performance of EFoldMine based on 
the 30 proteins available in Start2Fold (see Supplementary section 1 for information on the performance 
indicators).
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In myoglobin, helices A, G, H and the C-terminal half of helix B have high early folding scores compared to the C, 
D, E and F helices. The predictions therefore agree well with the experimentally validated folding profile of myo-
globin, which computational folding studies were unable to reproduce28: the high helical content of myoglobin, 
with its reliance on local contacts, make the study of transition states starting from the final structure very chal-
lenging. In leghemoglobin, helices G, H and to a lesser extent B give higher scores and indeed do fold early. Helix 
A has low scores and does not fold early, in contrast to myoglobin. Interestingly, there is an early folding peak in 
the centre of helix E, which is also experimentally observed. The overall distribution of the early folding scores of 
helix E is in line with helices C and F, which have low overall scores (see Fig. 1 and Supplementary Fig. S2). The 
myoglobin D helix corresponds to a loop region in leghemoglobin, for which no experimental observations could 
be made27. The high early folding scores for this region indicate that it might nevertheless play a role in the fold-
ing process. The pattern of significant differences in early folding scores for the helix regions also highlights the 
dissimilarities between these two proteins in terms of their folding behaviour (Supplementary Fig. S2). The above 
study relates to sperm whale myoglobin, which raises the question whether the predicted early folding is similar 
in other organisms. We obtained a multiple sequence alignment for the human, mouse, chicken and zebrafish 
myglobin sequences and predicted their early folding scores (Supplementary Figs S3 and S4). Despite the low 
sequence variation between these sequences, there is considerable variation in the early folding scores, with how-
ever high values are maintained for helices A, G and H. The exception is a drop in early folding for helix H in 
zebrafish, which seems to be compensated by increased scores in other regions of the protein (helices C and F/G).

Folding pathways of proteins G and L.  Protein topology is known to be the governing factor for the 
overall folding mechanism, but for similar topologies differences in folding can be traced to the residual compo-
sition of secondary structures during the folding process. The bacterial surface protein G and protein L have a 
very similar fold topology, with only minute differences in the orientation of their helices (Fig. 2a,c), despite their 
low sequence similarity (30%). Extensive experimental and computational studies have shown that their folding 
mechanisms are different29, 30, with an asymmetry in the folding transition state reported in different experimental 
studies by mutations to alanine in different structural regions30. Both experimental and computational results 
indicate that the C and N-terminal hairpin loops contribute to this difference, with the formation of these sec-
ondary structure elements triggering a topologically advantageous folding pathway for protein L, which thus folds 
into a native-like configuration more quickly than protein G.

The early folding scores for the secondary structure elements of protein G and L (Fig. 2b,d), again calculated 
with jack-knifed versions of EFoldMine, show that their N-terminal beta hairpins share a very similar pattern, 
with the first strand having a significantly higher score compared to the second strand (see Supplementary Fig. S5 
for significance of the difference between all distributions). On the other hand, the C-terminal hairpin motif 
composed of strands E3 and E4 is significantly different in protein G and L. The E3 strand in protein G has con-
sistently significantly lower early folding scores compared to protein L (Table S2), while the E4 strand distribu-
tions are reversed with a much wider distribution of the values in protein G. The consistently higher early folding 
scores for the E3 strand in protein L suggest that this strand is primed to form based on local interactions, so ena-
bling the formation of a stable C-terminal hairpin during early folding. Protein G, on the other hand, has higher 
early folding scores for the E4 strand, but they have a wider distribution, and the E4 strand itself likely experi-
ences more flexibility being located close to the C-terminus. This might complicate the formation of topological 

Figure 1.  Myoglobin and leghemoglobin in relation to early folding scores. Myoglobin (PDB: 1MYF) (a) cartoon 
representation with helices colored from of N to C terminal and (b) full per-residue EFoldMine prediction, with 
helix regions (A–H) indicated with colors as in a. Leghemoglobin (PDB:1BIN) (c) cartoon representation with 
helices colored from of N to C terminal and (b) full per-residue EFoldMine prediction, with helix regions (A–H) 
indicated with colors as in (c).
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connections to create the C-terminal hairpin in protein G, so delaying docking with the helix, which shares simi-
lar early folding profiles in both proteins. Overall, these early folding prediction profiles of protein G and L match 
extensive experimental studies29, 30 that suggest that here the C-terminal hairpin is the main topological influence 
on the folding pathway during the formation of transition state ensembles31, 32. Interestingly, mutants designed to 
increase folding speed and reduce transient structures through manipulation of the E2 strand of protein G33 show 
a correspondingly much higher early folding propensity for this strand (Supplementary Fig. S6).

These examples show that EFoldMine predictions can help in understanding the overall folding mechanism. 
The residues that are identified are not evident, and are excellent candidates for mutation studies aimed at manip-
ulating or disrupting overall folding.

Comparison to Mass Spectrometry based studies on MBP and aTS.  The Start2Fold14 database also 
contains information on early folding regions from HDX-MS experiments for the apo-maltose binding (MBP)34 
and the alpha subunit of tryptophan synthase (aTS)35, 36. These data, which are not part of the EFoldMine train-
ing set, are at lower than individual residue-level resolution and also contain information about ‘intermediate’ 
stages of the folding process, where more complex structures are formed on the pathway toward the native fold. 
These data therefore provide a valuable independent qualitative comparison point for the EFoldMine predictions. 
We first subdivided the residues for each protein based on the ‘early’ and ‘intermediate’ classifications from the 
HDX-MS experiments. The distributions of the early folding predictions for the residues in each class were then 
compared to the remaining residues (Fig. 3). For MBP, the early folding predictions for the ‘early’ HDX-MS 
residues are significantly higher than for other residues, with no significance difference for the ‘intermediate’ 
HDX-MS residues. Both conclusions remain valid when the amino acid bias is removed from the comparison, 
which is necessary as especially hydrophobic amino acids are more prevalent in early folding regions17 (see 
Methods). In the original MBP HDX-MS paper34, the protection from solvent of the ‘early’ set of residues within 
0.5 s of starting folding, is attributed to a hydrophobic collapse, whereas the ‘intermediate’ set, emerging at longer 
timescales (7 s) is due to the first specific structural elements being formed. We therefore further investigated how 
the relative solvent accessibility (RSA) as determined by DSSP37, and the per-residue contact S2 parameter38 of 
the final fold of MBP relate to (i) the EFoldMine predictions, (ii) the residues identified by HDX-MS, and (iii) the 
hydrophobicity as determined by 22 scales. The EFoldMine and ‘early’ HDX-MS residues are both significantly 
enriched in residues buried in the final fold (low RSA), but this effect disappears when accounting for the amino 

Figure 2.  Protein G and L in relation to early folding scores. (a) Protein G (PDB:2GB1) with secondary 
structure elements (E1–E4, H1) indicated, and (b) the corresponding distributions of the protein G early folding 
scores as box plots. (c) Protein L (PDB:2PTL) with secondary structure elements (E1-E4, H1) indicated, and  
(d) the corresponding distributions of the protein L early folding scores as box plots.
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acid bias (Supplementary Fig. S7). Only the EFoldMine predicted residues are significantly enriched in residues 
that later form the most extensive contacts (high contact S2), even after removing amino acid bias. However, 
both the EFoldMine and ‘early’ HDX-MS residues give higher hydrophobicity scores in all 22 scales, likely due 
to the amino acid bias for early folding residues17, while the ‘intermediate’ HDX-MS residues are consistently 
more hydrophilic (Supplementary Table S3). This raises the question whether hydrophobicity scores can actively 
reproduce the separation between residues with high and low RSA and contact S2 values in MBP. We determined 
the optimal hydrophobicity cutoffs to do this, and all 22 hydrophobicity scales do indeed achieve a significant 
separation for the RSA values (Supplementary Table S4), also after removing the amino acid bias. This is however not 
the case for the contact S2, where only one scale achieves a significant difference after removing the amino acid bias 
(Supplementary Table S5). Importantly, these hydrophobicity-based results are not stable overall: for both RSA and 
contact S2 there is considerable variation in the number of points in the high and low distributions, in the difference 
between their median values, and in the ‘optimal’ hydrophobicity cutoffs between RSA and contact S2.

The data for aTS confirm the observations for MBP (Fig. 3). In addition, the relation between the EFoldMine 
values and high contact S2 is even stronger (Supplementary Fig. S8), while the hydrophobicity effect is less pro-
nounced (Supplementary Table S6) and the ‘intermediate’ residues as determined by HDX-MS are also more 
hydrophobic, in contrast to MBP (Supplementary Table S3). Again, the hydrophobicity scales can separate RSA 
distributions (Supplementary Table S7), but not the contact S2 distributions (Supplementary Table S8), with as in 
MBP great variability in content of the distributions separated by different hydrophobicity scales.

The EFoldMine predictions, in summary, relate very well to available HDX-MS data for the early folding 
stage. They also consistently encompass many of the residues that later form the most extensive contacts in the 
folded protein. The experimental HDX-MS data is not able to do so: these experiments resolve protein fragments, 
and so likely encompass many non-early folding residues, whereas the HDX-NMR data used for EFoldMine 
has individual amino acid resolution. Hydrophobicity scales do not provide a valid alternative to EFoldMine or 
the experimental HDX-MS data: although there tend to be more hydrophobic residues in early folding regions, 
hydrophobicity in itself is not sufficient to determine the location of early folding residues. This indicates that 
‘hydrophobic collapse’, as identified by hydrophobicity values, is too simple a mechanism to explain the complex 
interactions that happen at this stage of folding.

Application to an Intrinsically Disordered Protein.  The cell cycle regulatory human p27 Kip1 protein 
folds upon binding to its Cdk/cyclin targets. Before binding, p27 Kip1 is at least partially disordered, with parts of 

Figure 3.  The distribution of the EFoldMine predictions separated by residues experimentally identified by 
HDX Mass Spectrometry (MS). (a) Apo-Maltose binding protein and (b) the alpha subunit of tryptophan 
synthase. The separation by MS data for early (brown) and intermediate (purple) folding residues is shown, 
with the experimentally identified residues in dark shade, the remaining residues in light shade, and with the 
amino acid bias-corrected distributions included (no bias). The number of data points is indicated above each 
distribution, the p-value of the significance of the difference between two distributions below the compared 
distributions. The protein structures show the early folding (brown) and intermediate folding (purple) regions.
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its kinase inhibitory domain (KID) exhibiting intrinsic structure that resembles the bound form39. The highest 
EFoldMine-predicted values for this protein correspond exactly to the parts of KID that display strong nascent 
secondary structure propensity based on NMR studies combined with molecular dynamics simulations39, and 
that are ultimately stabilized in the complex40 (Fig. 4). The regions outside the KID, such as the bipartite nuclear 
localization signal (NLS) motif that usually does not obtain regular secondary structure even when bound by 
importin-alpha41, and a degradation-linked ubiquitination site of the SCF(SKP2) complex that frequently resides 
within disordered protein segments42, have considerably lower prediction values, in line with their intrinsically 
disordered nature43. The correct identification of the pre-structured regions of p27 by EFoldMine suggest that 
the underlying dynamics features and secondary structure propensities are not only relevant for the folding of 
globular proteins, but could also advance the prediction of functionally relevant elements within intrinsically 
disordered proteins (IDPs)44, by indicating where the sequence is poised to fold.

Early folding in relation to the final fold.  The early folding residue predictions are available for any 
protein with a known sequence, albeit with a lower accuracy than experimental data. From this broader bioin-
formatics perspective, we can cover a wide range of proteins to address questions concerning the general relation 
between early folding and the experimentally determined final fold of a protein. The first question we address is 
whether early folding residues also become key residues in maintaining the final fold. If the early folding residues 
form local structures that provide the context for the rest of the protein to fold, then they shape the folding land-
scape: the not-yet folded residues have to interact with these local structures in order to fold themselves. From 
this assumption, the early folding residues are also essential for the final fold, and should on average become the 
residues that create the most interactions with other residues in the protein, including long-range ones. Two 
parameters that reflect such a role in the final fold are the RSA37, and the per-residue contact S2 parameter38, 
which estimates the rigidity of residues based on the number of heavy atoms in close contact with the backbone 
amide proton of a residue and the carbonyl atom of the previous residue. Figure 5a shows the distributions of the 
RSA and contact S2 values for the residues in the Pisces dataset of 2939 non-homologous (<20% sequence iden-
tity) proteins with high resolution (<1.6 Å) x-ray structures, separated on being predicted as early folding (green) 
or not (brown). For the RSA, there is a highly significant difference between the two distributions, although not 
all buried residues are necessarily involved in folding: side-chains might be buried later on during the folding 
pathway, when key structural elements are already formed. A clearer difference with less overlap between the 
distributions is observed for the contact S2 parameter (Fig. 5a), a measure that is in our opinion more indicative 
of how important a residue is to the fold. The contact S2 reflects how many heavy atoms of other residues are 
close to the backbone of a residue, and it is less likely that such contacts are formed further along the folding 
process without requiring significant fold rearrangements. The overall differences in distribution from Fig. 5a are 
also present when the data is subdivided into individual amino acid types: for both the RSA and the contact S2 
there are significant differences between the distributions of early folding and other residues for all amino acids 
(Supplementary Fig. S9). Although the EFoldMine predictions will not be able identify all residues that are core 
to the final fold, they do reliably identify a subset of these residues, and importantly they do so beyond the typical 
(hydrophobic) structure-forming residues. This supports the concept that early folding residues shape the fold-
ing process by providing the initial context for folding through foldons with native-like interactions, which are 
maintained in the final fold.

The second question is how the early folding predictions relate to the evolutionary co-variation signal derived 
from multiple sequence alignments and used in the contact prediction field45, 46. Such a signal indicates that those 
residues co-evolved and that they are likely to be spatially close to each other in the (functional) protein fold. 
Based on the ContactPred dataset, we do observe that residues with covariance signals tend to have elevated early 
folding predictions (Fig. 5b); this tendency is present on the individual amino acid level and is very pronounced 
for some residues, in particular Cys, Met, Leu and Trp (Supplementary Fig. S10). Early folding residues therefore 
tend to co-evolve and tend to be part of the core of the final fold, which suggests that in particular the interactions 
between these residues have to be conserved in order to maintain the protein fold in evolution. This conclusion 
is in line with our previous observation that regions with high predicted backbone rigidity tend to be preserved 
in evolution17.

Figure 4.  The domain map of p27 Kip1 with the EFoldMine prediction. The blue shaded areas indicate known 
interaction sites, the red and green shaded areas within the cyclin A/CDK2 interacting region indicate helix and 
sheet forming segments, respectively.
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Discussion.  EFoldMine is based on carefully curated pulsed labelling HDX data from NMR, and predicts 
where proteins are likely to form kinetically determined local structural elements very early in the folding process, 
generally in the low millisecond range. At that time, the conformations proteins adopt are still largely statistically 
determined, forming highly dynamic ensembles. There is a crucial experimental difference with native exchange 
HDX experiments, where residues protected from solvent in the native folded state are identified: the hydrogen/
deuterium exchange regime as well as existing conformations and their equilibria play key roles in the native 
exchange setting. We showed earlier that, although there is overlap between the residues identified by ‘pulsed 
labelling’ and ‘native exchange’ HDX, they form distinct sets17. A predictor primed to identify native exchange 
residues47, for example, does not achieve performances of nearly the same level as EFoldMine on the pulsed label-
ling data (Supplementary Table S9). In times of big data, a concern might be the size of our training data set: first, 
these early folding data are experimentally difficult to obtain, and we have selected only the data sets of the high-
est quality to ensure only residues in the very first stage of folding were included. Secondly, we have been careful 
to avoid overfitting during the training stage while avoiding sequence identity overlap, with the individual pre-
dictors trained on each cross-validation set behaving very similarly. In terms of data bias, our training data relates 
to smaller proteins, but since early folding behavior is local to the protein sequence the effects we predict come 
from short-range interactions, which should not be different in longer proteins. A shortcoming of the HDX train-
ing data is that only the residues that form hydrogen bonds as donor in the early stages of folding are detected, 
which increases the importance of residues that are part of secondary structure elements and can form stable 
hydrogen bonds. Residues that might form transient, non-standard local structure are not included in these data. 
However, the excellent overlap of the predictions with independent HDX-MS data (Fig. 3) shows that they are do 
pick up where early folding starts, also in larger proteins. While molecular dynamics (MD) is now also capable of 
simulating the full folding process48, the identification of early folding residues from these simulations presents 
interesting challenges. The simulations have to extend to the longer millisecond timescale, which is a barrier for 
larger proteins, and the results continue to depend strongly on the force field used49. In addition, the definition 
of what constitutes an early folding residue based on the MD simulation is interesting but not immediately clear. 
This likely requires an extensive comparison between MD simulations and experimental data from HDX-NMR, 
with multiple MD simulations from different starting structures required to obtain a statistically sound picture. 
Unravelling this connection, and the relation to the EFoldMine predictions, would be very interesting and could 
lead to further insights on the local amino acid interactions that drive early folding.

Figure 5.  Comparison of early folding scores to structure-related data. The early folding prediction scores 
(black graph, top) indicate which residues in the sequences will form structure first through local interaction 
between amino acids (green circle, top). These predictions are compared to (a) the relative solvent accessibility 
and the contact-S2 calculated from 2939 non-redundant PDB structures, with significant differences between 
the distribution of their values for the early folding residues (green) and other residues (brown), and (b) 
residues with evolutionary co-variation signals (light blue), which have higher early folding prediction scores 
than other residues (dark blue).
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The heterogeneity of the conformations that a protein might adopt during the folding process makes interpre-
tation of the progressive folding stages very complex. The EFoldMine predictions can provide a piece of this puz-
zle: comparison with experimental data for the well-studied myoglobin and leghemoglobin (Fig. 1) and proteins 
G and L (Fig. 2) show salient differences between the early folding propensity of secondary structure elements, 
which relates well to the experimental observations. Although we predict in essence short-range interactions, not 
only alpha-helix (Fig. 1) but also sheet formation is picked up (Fig. 2), with some sheets having higher overall 
early folding propensities than the alpha-helix in case of protein L. In terms of the folding process, it is likely the 
combination of early folding propensity and the secondary structure type to be formed that matters, and we hope 
our contribution will contribute a piece to the puzzle by highlighting the regions and/or secondary structure 
elements that initiate folding. These region are important for folding but that is not necessarily obvious from the 
final folded state.

The large-scale investigation of the EFoldMine predictions with independent observations for folded proteins 
shows that early folding residues (i) also tend to be the residues that make the most backbone interactions in the 
native fold, and (ii) are likely to co-evolve. This hints at their importance for maintaining the protein fold, which 
has further implications for structural bioinformatics approaches. Such approaches are typically based on struc-
tural data for folded proteins at a highly precise atomic level, even though folded proteins represent a restricted 
subset of the range of behaviors proteins can exhibit. This is strikingly attested by intrinsically disordered pro-
teins50–52. The interactions in folded proteins are also highly context-dependent, i.e. some precise atomic interac-
tions between residues can only be formed because local structural elements are already present. The early folding 
predictions we present here instead reflect a more statistical view of proteins that is based on local interactions 
between amino acids. This perspective should greatly assist in structural bioinformatics analyses for more flexible 
proteins, but also in relation to the folded state, where dynamic and allosteric characteristics are often impor-
tant for function53. We therefore propose that EFoldMine provides information that is complementary and at 
least partially orthogonal to the precise and defined protein structure data. By providing information about early 
folding, EFoldMine adds a piece to the protein folding landscape puzzle, and might help to understand how this 
affects the final folded state. The conformational preferences of early folding regions are further likely relevant in 
determining whether a downstream path is taken towards native fold or aggregation, and might be very useful in 
contact prediction as well as computational protein design.

Methods
All data described in this section are available online via doi:10.6084/m9.figshare.4598047.

Target.  The prediction target is based on a dataset containing 30 sequences from the Start2Fold database17, 
which cover the full range of CATH and SCOP structural protein families (Table S10). For these sequences, with 
a length varying between 56 and 164 residues and a median length of 121 residues, high-quality experimental 
pulsed-labelling (or related) HDX data is available at an individual residue level covering a total of 3398 residues. 
Only the 482 residues classified as ‘EARLY’ in these Start2Fold data were annotated as early folding. These resi-
dues are the first to be involved in sufficient local structure formation so that their backbone HN is protected from 
solvent by a hydrogen bond: these are the residues that EFoldMine predicts. The secondary structure elements 
of the folded protein where these residues are found indicate, not unexpectedly, a bias towards helix and sheet 
(comprising about 20–25% of all early folding residues), with other secondary structure elements also covered 
(Table S11).

Features.  We used 5 kinds of macro-features computed from the protein sequence using various tools. First, 
we used DynaMine15, 16 to predict the backbone dynamics of each protein. After the prediction, we shifted the 
dynamics values within each sequence constraining their range between 0 and 1, analogously to Pancsa et al.17. 
For each target residue at position i we then considered the DynaMine scores falling within the window of flank-
ing residues between i-2 and i + 2. The final DynaMine macro-feature thus consists of a 5-dimensional vector for 
each target residue. We refer to this score as DYNA in Table S1. We also computed a new set of predictions for 
side-chain dynamics and secondary structure propensity using a linear regression approach with exactly the same 
procedure as DynaMine from NMR chemical shift-based estimations of the side-chain dynamics through the 
side-chain RCI54 and the secondary structure propensity from δ2d55. This resulted in 3 prediction scores targeting 
secondary structure formation propensity (alpha-helix, beta-strand and coil) and one score targeting the dynam-
ics of residues side-chain. From each one of these scores we extracted the features by using a 5-residues window 
(as for DYNA). The final macro-features related to secondary structure propensity and side-chain dynamics are 
thus each 5 dimensions long and are respectively called HELIX, STRAND, COIL and SIDE in Table S1. The final 
feature vector used in this study is composed of these 5 macro-features and is 5*5 = 25 dimensions long, resulting 
in 3398 feature vectors of 25 dimensions, of which 482 are positive hits and 2916 are negative hits. The amino acid 
type itself is not directly taken into account for the prediction.

Training.  For the training, we used a SVM with RBF kernel (with parameters C = 100 and gamma = 0.04) 
from the Python scikit-learn56 library. The class weight was modified within the SVM optimization to account for 
the intrinsic imbalance of the positive cases, since early folding residues are expected to account for 5–10% of the 
total residues17. In order to perform a fair validation of our method, the prediction performances were evaluated 
in strict stratified cross-validation settings. We used BLASTCLUST to stratify the 30 sequences in function of a 
25% sequence identity (SI) cutoff at 90% coverage, obtaining 27 disjoint sets to use for cross-validation. We then 
performed a 27-fold cross-validation by dividing the 3398 vectors in function of the SI sets and averaging the 
performances scores obtained. Note that for examination of the case studies, we used a predictor version where 
the respective case study protein was left out of the training set. The estimated probabilities were computed by 
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applying Platt scaling57 to the hyperplane distance scores obtained from the SVM. We used these probabilities to 
compute the ROC curve, from which we inferred the best decision thresholds, which were used to calculate all the 
binary classification scores: 0.163 for the estimated probabilities.

Code availability.  The EFoldMine code is available from https://www.dropbox.com/s/eslk4bkpflsgiia/code.
zip (note: this is a temporary link, will be replaced when accepted), for academic use only as a stand-alone 
package with the following dependencies: Python2.7 including numpy (> = 1.6.1), ScipPy (> = 0.9) and the 
scikit-learn package (http://scikit-learn.org/stable/install.html).

Structure dataset.  The PDB entries with an X-ray resolution of 1.6 Å or less and with less than 20% shared 
sequence identity were taken from the PISCES database. The DSSP-determined per-residue relative solvent acces-
sibility (RSA)37 and the per-residue contact S2 value38 were calculated from the PDB structure coordinates using 
BioPython-based scripts58, and the early folding probabilities were calculated from the sequences as reported in 
the PDB file. This resulted in the Pisces dataset with 2939 PDB entries with a total of 3033 chains and 658597 
residues.

Contact prediction.  Based on an analysis of the PSICOV dataset46, we identified residues that give at least 
one co-variation signal in the multiple sequence alignment (MSA). We applied EFoldMine to the target sequences 
in this ContactPred dataset (Supplementary Dataset 2) and divided the scores into two classes: ones for which 
at least one co-variation signal to another residue was found (C) and ones for which no co-variation signal was 
identified (N). These distributions were then compared on a per-amino acid type and overall basis.

Distribution comparisons and plot generation.  Plot generation was done in R59 through custom 
Python scripts. In the notched box plots, the coloured box shows the interquartile range, the whiskers indicate 
the maximum value or the respective quartile value times 1.5 the interquartile range, whichever is less. The notch 
displays a confidence interval based on the median plus/minus 1.57 times the interquartile range divided by the 
square root of the number of points. If the notches of two boxes do not overlap, this is strong evidence that their 
medians differ significantly60. A filled circle shows the mean of each distribution. The number of data points for 
each distribution is, for the per-amino acid plots, indicated above the boxes. Distributions were also compared 
using the Wilcoxon rank-sum test in R61, and for the per-amino acid comparisons only p-values that remained 
significant after applying the Benjamini-Hochberg multiple hypotheses testing correction were retained62. 
Throughout the paper we indicate the retained p-values with *** for a highly significant one less than 0.001, ** a 
very significant one less than 0.01, and * a significant one less than 0.05.

Bias correction.  The comparisons of distributions over all amino acids are biased because some amino acids 
are inherently more likely to fold early than others. This bias is strong enough to create significant differences, so 
we corrected it by subtracting first, for each amino acid type, the median value (relative solvent accessibility, con-
tact S2) over all classes for that amino acid type from each actual value, and then renormalizing to the expected 
value range by adding the median value over all amino acids to their actual value. These bias-corrected distribu-
tions are indicated by (no bias) in the plots, and are only to be interpreted relatively, i.e. to assess the difference 
between the distributions.
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