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Light reaction of photosynthesis is efficiently driven by protein complexes arranged in

an orderly in the thylakoid membrane. As the 5th complex, NAD(P)H dehydrogenase

complex (NDH-1) is involved in cyclic electron flow around photosystem I to protect

plants against environmental stresses for efficient photosynthesis. In addition, two

kinds of NDH-1 complexes participate in CO2 uptake for CO2 concentration in

cyanobacteria. In recent years, great progress has been made in the understanding

of the assembly and the structure of NDH-1. However, the regulatory mechanism

of NDH-1 in photosynthesis remains largely unknown. Therefore, understanding the

regulatory mechanism of NDH-1 is of great significance to reveal the mechanism of

efficient photosynthesis. In this mini-review, the author introduces current progress in

the research of cyanobacterial NDH-1. Finally, the author summarizes the possible

regulatory mechanism of cyanobacterial NDH-1 in photosynthesis and discusses the

research prospect.

Keywords: cyanobacteria (blue-green algae), NAD(P)H dehydrogenase complex, photosynthesis, cyclic electron

transport around photosystem I, CO2 uptake and concentrating mechanism

INTRODUCTION

Cyanobacteria belong to prokaryotic photosynthetic organisms. Like other green plants, the light
reaction of photosynthesis is carried out with the participation of two photosystems (photosystem I
and II, PSI and PSII). Light energy absorbed by antenna pigments is transferred to the photosystem
reaction centers and is converted to assimilative power (ATP and NADPH) via a series of electron
transporters. Electron transport between PSI and PSII is mediated by the cytochrome b6f complex
(Cyt b6f ), coupling the translocation of protons across the thylakoid membranes. The resulting
proton concentration difference (1pH) and membrane potential difference (1ψ) between inside
and outside the thylakoid membrane drive ATP synthase (ATPase) to synthesize ATP. The electron
transfer in this process is known as linear electron transport (LET). In addition, the donation
of electrons from the PSI reduction side to the electron carriers between two photosystems to
form circle electron transport is known as cyclic electron transport around PSI (CET-PSI). CET-
PSI is also coupled with the formation of ATP, but there is no accumulation of NADPH or
other reducing substances. NADPH and ATP produced by the light reaction are used for CO2

fixation (carbon assimilation). Compared with carbon assimilation, the light energy utilization
efficiency in the light reaction is higher. The light reaction is driven by protein complexes arranged
orderly on the thylakoid membrane. The protein complexes involved in LET include PSI, PSII,
cytochrome b6/f complex, and ATPase, while the complexes involved in CET-PSI include thylakoid
membrane-bound NAD(P)H dehydrogenase-like complex (chloroplast NDH or cyanobacterial
NDH-1). Studies have demonstrated that NDH/NDH-1 mediated CET-PSI (Mi et al., 1992, 1994,
1995) can protect plants from photoinhibition caused by various stress environmental conditions
(Endo et al., 1999; Mi et al., 2001; Wang et al., 2006) for efficient photosynthesis (Munekaga et al.,
2004).
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Cyanobacteria equip a series of environmental adaptations
to efficiently fixate inorganic carbon (Ci) under CO2-limited
conditions. All these adaptations, including the active uptake
of Ci, the subsequent localized elevation of CO2 around
the primary CO2-fixing enzyme, ribulose 1,5-bisphosphate
carboxylase/oxygenase (Rubisco), and the partitioning of
Rubisco into the carboxysome, are collectively considered as the
carbon concentrating mechanism (CCM) (Badger et al., 2002;
Badger and Price, 2003; Raven, 2003; Giordano et al., 2005).
CCM requires the coordination of two systems, an inorganic
carbon transporter system and the carboxysome containing
Rubisco. To date, five inorganic carbon transporters have been
found, including two Na+-dependent HCO−

3 transporters
(BicA and SbtA), one ATPase-dependent HCO−

3 transporter
(BCT1), and two CO2-uptake NDH-1 (type 1 NDH) complexes
in Synechocystis sp. PCC 6803 (hereafter Syne6803) and other
cyanobacterial strains (Ogawa and Kaplan, 2003; Ogawa and
Mi, 2007; Price, 2011). Therefore, cyanobacterial NDH-1
complexes function not only in light reactions but also in
carbon assimilation as an important regulator. This mini-review
summarizes the recent research progress of characterization
and functions of cyanobacterial NDH-1 in photosynthesis and
prospects for the future research direction.

COMPOSITION AND STRUCTURAL
CHARACTERISTICS OF NDH-1 COMPLEX
IN CYANOBACTERIA

Through the genome comparison of chloroplast and
cyanobacteria, 15 highly homologous ndh genes, namely NdhA-
O, were found in cyanobacteria (Kaneko et al., 1996) and the
corresponding homologous proteins (NdhA-O) were identified
(Friedrich and Scheide, 2000; Prommeenate et al., 2004; Rumeau
et al., 2005). An additional 4 proteins NdhP, NdhQ, NdhS,
and NdhV were successively identified (Battchikova et al.,
2011a; Nowaczyk et al., 2011; Chen et al., 2016). In contrast
to the crystal structure of Complex I (Baradaran et al., 2013),
cyanobacterial NDH-1 is speculated to possess an oxygenic
photosynthesis-specific (OPS) domain (Birungi et al., 2010)
comprised of NdhL-NdhQ, -NdhS, -NdhV. NdhL is necessary
for the docking of hydrophilic subcomplex to hydrophobic
subcomplex in both cyanobacteria (Battchikova et al., 2005) and
plants (Shimizu et al., 2008). Deletion of NdhL lowered CET-PSI
activity in cyanobacteria (Mi et al., 1992). By studying NDH-1
mutants and protein-protein interaction of multiple subunits,
our group found that NdhM locates in the core of the NDH-1
hydrophilic arm of cyanobacteria and plays a key role in the
assembly and activity of the NDH-1 hydrophilic arm (He et al.,
2016). NdhN also affects the assembly and activity of NDH-1
(He and Mi, 2016). In contrast, although the little contribution
of NdhO to CET-PSI activity, it plays an important role in
respiratory metabolism under the condition of limited inorganic
carbon (He and Mi, 2016). NdhV is a subunit which functions
in regulation of NDH-1 activity. Mutation of NdhV resulted
in the instability and decrease of NDH activity in Arabidopsis
(Fan et al., 2015), loss of the upregulation of NDH-1 level and

activity induced at high light (Chen et al., 2016), and causing
heat sensitivity (Gao et al., 2016) in cyanobacteria. E. coliNDH-1
complex is the mode of complex I with the smallest components
of protein subunits, composed of 14 subunits from NuoA to
NuoN. This smallest module carries out the most basic energy
conversion reaction (Friedrich and Scheide, 2000). Comparing
the NDH composition of E. coli, cyanobacteria and chloroplasts
indicate that NdhA-K is a conserved component of NDH-1
in prokaryotes and eukaryotes. However, the homologous
proteins of three subunits NuoE, NuoF, and NuoG involved
in NADH oxidation in E. coli were not found in chloroplasts
and cyanobacteria. Since these three subunits contain NADH-
binding sites, cofactor FMN, and iron-sulfur clusters, whether
thylakoid membrane NDH-1 can directly oxidize NADH, or
NADPH remains to be confirmed. Experiment using thylakoid
membranes has demonstrated that ferredoxin (Fd) can donate
an electron to PQ via cyanobacterial NDH-1 (Mi et al., 1995).
At present, it is believed that the electron donor of chloroplast
NDH is Fd rather than NAD (P) H (Shikanai, 2014), which is
based on their laboratory study that the C-terminal of CRR31
(NdhS) subunit from Arabidopsis (Yamamoto et al., 2011;
Yamamoto and Shikanai, 2013) and cyanobacterium Syne 6803
(Battchikova et al., 2011a), contains SH3 (Src homology 3)
domain-like fold, which serves as Fd docking site. In addition,
in vitro experiments have proved that the reduction of PQ is
required for binding Fd and catalytic activity (Yamamoto et al.,
2011). The C-terminal of NdhS of cyanobacteria is conserved,
indicating that the electron donor element of thylakoid
membrane NDH is conserved (Battchikova et al., 2011b).
It was also demonstrated that thermophilic cyanobacterial
Fd can interact with NDH-1 probably via the interaction
of NdhS with NdhH or NdhI by using surface plasmon
resonance (SPR) (He et al., 2015). Recently, cyanobacterial
NDH-1 structures provided strong evidence that Fd binds with
cyanobacterial NDH-1 via extensive contact with NdhI and
NdhH (Pan et al., 2020; Zhang et al., 2020).

Proteomic analysis of cyanobacterial NDH-1 complexes has

revealed the presence of three complexes NDH-1L/-1L’ (large

size), NDH-1M (medium size), and NDH-1S (small size) in

Synechosystis PCC 6803 (Herranen et al., 2004). NDH-1L/-

1L’ is composed of NDH-1M, NdhD1/D2, NdhF1, NdhP, and

NdhQ, which are involved in respiration and CET-PSI, while

NDH-MS is composed of NDH-1M and NDH-1S (including

NdhD3, NdhF3, CupA, and CupS) and NDH-MS’ composed of
NDH-1M and NDH-1S’ (including NdhD3, NdhF3, CupB, and
CupS’) participate in CO2 uptake (Ogawa and Mi, 2007). Three
types of cyanobacteria NDH-1 complexes contain NDH-1M as
a skeleton. The expression of NDH-1L is stable under different
growth conditions; however, the NDH-1L’ has not been detected
on the protein level (Zhang et al., 2004). Similar to bacterial
complex I, NDH-1L forms an L-shaped architecture by analysis
of the complex isolated from Thermosynechococcus elongatus
strain earlier with electron microscopy in low resolution (Arteni
et al., 2006) and recently with cryo-EM in high resolution: the
previous two structures contained no NdhV (Laughlin et al.,
2019; Schuller et al., 2019) and the latter two structures contained
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NdhV and Fd (Pan et al., 2020; Zhang et al., 2020). NDH-
1MS is inducible at limiting inorganic carbon conditions and
has a high uptake affinity for CO2, which is easily dissociated
into NDH-1M and NDH-1S (Herranen et al., 2004). The NDH-
1MS complex has been isolated from a Thermosynechococcus
elongatus strain in which the C terminus of NdhL has been
tagged with 6-His. This complex is easily dissociated into NDH-
1M and NDH-1S complexes (Zhang et al., 2005). Single-particle
electron microscopy analysis of purified thylakoid membrane
components indicated that NDH-1MS had a U-shaped structure
(Arteni et al., 2006). CupA is responsible for the formation of
a U-shape by binding at the tip of the membrane-bound arm
of NDH-1MS in both T. elongatus and Syne 6803 (Folea et al.,
2008). The structure of NDH-1MS has also been resolved by
cryo-EM (Schuller et al., 2020). NDH-1MS’ is involved in the
complex of constitutive CO2 uptake, and its key gene CupB is
homologous with CupA (Madsen et al., 2002; Shibata et al., 2002).
CupB protein is dependent on NdhD4 to locate on the thylakoid
membrane, and a 450 kDa NDH-1MS’ complex was identified by
isolation and purification (Xu et al., 2008).

The plastid coding subunits of NDH in terrestrial plant
chloroplast are highly homolog to NDH-1L in cyanobacteria.
In addition, plant chloroplast NDH contains at least 18
nucleus-encoded subunits formed from different subcomplexes
(Ifuku et al., 2011; Ueda et al., 2012). Chloroplast NDH can
form a supercomplex with a PSI core via two minor light-
harvesting complexes I (LHCI) subunits, Lhca5 and Lhca5, for
the association of PSI-LHCI (Kouril et al., 2014; Otani et al.,
2018). Recently, two research works have reported the structure
of chloroplast PSI-NDH supercomplex that the PSI-NDH is
composed of two copies of the PSI-LHCI subcomplex, one NDH
complex, and two monomeric LHCI proteins, Lhca5 and Lhca6,
mediate the binding of two PSI complexes to NDH (Shen et al.,
2022; Su et al., 2022).

POSSIBLE MECHANISM OF NDH-1

As the fifth complex, chloroplast NDH only participates in
CET-PSI and cyanobacterial NDH-1 is also involved in CCM,
playing important role in regulating photosynthesis. Figure 1
summarizes the possible mechanism of NDH-1 based on a series
of research works.

Supplement ATP for Effective Carbon
Assimilation
Cyanobacteria could survive in a low CO2 environment in
water due to their CCMs, which can increase the CO2

concentration around the active site of Rubisco, the key
enzyme of photosynthetic carbon assimilation, and overcome
their low affinity for CO2, thereby effectively assimilating CO2

(Price et al., 1998; Kaplan and Reinhold, 1999). The CCMs
and inorganic carbon transport of cyanobacteria are ATP-
consuming processes. The Syne6803 mutant defective in NdhB
(Ogawa, 1991a), NdhH, NdhJ, NdhN, or NdhM (He and
Mi, 2016; He et al., 2016) completely lost CET-PSI activity
mediated by HDH-1 and could not survive in the concentration

FIGURE 1 | A schematic representation of the possible mechanism of

cyanobacterial NDH-1 in photosynthesis. As NDH-1L is involved in CET-PSI

and respiratory pathways, NDH-1MS’ and NDH-MS participate in CO2 uptake.

These pathways couple the generation of trans-thylakoid membrane proton

gradient to synthesize ATP for photoprotection, photosynthetic machinery

regulation, and energy supply for carbon assimilation, especially under

changing environments.

of air CO2. The mutants lost partial NDH-1 activity and
grew slower in air CO2 (Ogawa, 1991b; He and Mi, 2016).
Klughammer et al. (Klughammer et al., 1999) used NdhD3-,
NdhF3-mutants of Synechococcus PCC7002, to study the CO2

uptake efficiency. They observed that these mutants could
neither induce efficient CO2 uptake nor efficient carbonate
transport. They proposed that NDH-1 special subunits encoded
by NdhD3 and NdhF participate in high-affinity CO2 uptake.
Ogawa’s group proposed the involvement of NDH-1 in energy
conduction and induction of a high-affinity inorganic carbon
transport by studying mutants involved in CCM (Ohkawa
et al., 2000). Further research indicated that deletion of NdhDs
suppressed the building up of the trans-thylakoidal 1pH
resulting in the loss of the CO2 uptake function (Han et al.,
2017). Therefore, cyanobacterial NDH-1 would provide ATP
for CCM.

As the assimilation force, ATP and NADPH produced in
photoreaction are used for CO2 assimilation. According to
theoretical calculations, the ratio of ATP/NADPH required to
assimilate each molecule of CO2 is 1.5. However, in C3 plants,
due to the existence of photorespiration, the required theoretical
value of ATP/NADPH increases to 1.66. When plants are in
various developmental stages with different energy requirements
or facing environmental changes, the fixed proportion of ATP
and NADPH produced by LET often could not meet the
needs of CO2 assimilation. Since CET-PSI only produces ATP,
additional ATP can be provided (Shikanai, 2007) to meet
the needs of ATP for photosynthetic carbon assimilation. In
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Syne6803, deletion of NdhV caused a decrease in a trans-
thylakoid membrane 1pH and loss of the upregulation of
CET-PSI activity at high light (Chen et al., 2016). Also, the
mutant that deleted either NdhD3 or NdhD4 significantly
lowered the trans-thylakoid membrane’s proton gradient (Han
et al., 2017) and could not survive under CO2 conditions.
Therefore, the 1pH generated by NDH-1 drives the ATPase to
synthesize ATP for active CO2 uptake and regulation of pH in
the cytosol.

Hibino et al. reported that the expression of NdhK and NdhI
genes was increased under high salt concentration, and CET-
PSI mediated by NDH-1 was accordingly promoted (Hibino
et al., 1996). Under the shock of a high concentration of salt,
the ndhB deletion mutant could not restore its photosynthetic
ability (Tanaka et al., 1997). Therefore, it is considered that
CET-PSI mediated by NDH-1 is essential for cyanobacteria
to adapt to salt-stressed condition. Based on plants, adapting
to stressed conditions is an energy-consuming process; it is
suggested that CET-PSI mediated by NDH-1 might provide
extra ATP for cells to adapt to these energy-consuming
reactions. The demand and proportion of ATP and NADPH
in cyanobacteria and higher plants vary with the change
in the photosynthetic environment or developmental stages.
When the CO2 concentration becomes low, it is necessary to
concentrate CO2 by consuming energy, to increase the demand
for ATP. The proportion of ATP and NADPH produced by
LET is certain and could not be adjusted. However, through
CET-PSI, it is possible to adjust the proportion of ATP
and NADPH.

Regulation of Photosynthetic Machinery
In studying the kinetics of NADPH fluorescence (blue-green
fluorescence), we observed that when the inhibitor of Calvin
cycle iodoacetic acid (IAA) was added, the amplitude of rapid
NADP reduction is approximately doubled in wild-type but not
in the ndhB gene deletion mutant M55 cells. Apparently, in wild-
type cells, the rate of the Calvin cycle is sufficiently high to
prevent full NADP reduction even upon the onset of saturating
illumination. This is possible only if there is a correspondingly
high ATP supply. On the other hand, in M55 cells, full NADP
reduction is obtained. This suggests that in M55 cells, ATP limits
the activity of the Calvin cycle due to the lack of CET-PSI
phosphorylation (Mi, 2000).

The redistribution of excitation energy between the two light
systems (state transitions) is mainly to adjust the excitation
imbalance of the two photosystems. It is a mechanism for
plants to resist the light damage caused by excessive excitation
energy. In cyanobacteria, it has been reported that NDH-1
participates in state transitions of excitation energy between PS
I and II by CET-PSI. NDH-1 inactivated mutants, M55, lost
the function of state transitions and were locked in state 1
(Schreiber et al., 1995). The mobility of the major accessory’s
light-harvesting complex phycobilisome (PBS) is related to state
transitions, CET-PSI, and respiration. The immobilization of
PBS at PSII inhibited the increase in CET-PSI and decrease in
respiration that occurred during the movement of PBS from

PSII to PSI. In contrast, the immobilization of PBS at PSI
inhibited the increase in respiration and decrease in CET-PSI that
occurred when PBS moved from PSI to PSII (Ma et al., 2007).
State transitions in cyanobacteria, dependent on “spillover” and
membrane fluidity, are induced by redox changes in the PQ pool.
The light-induced state transitions induced by PBS movement
caused redox poise of the PQ pool. A protein kinase known
as Stt7/Stn7 has been implicated in state transitions by acting
as the LHC II kinase, it seems necessary to assume that a
bifurcated redox signaling pathway carries information from the
PQ pool (Allen et al., 2011). NDH-I-mediated CET-PSI might
participate in the redistribution of excitation energy by affecting
the redox state of plastoquinone (Ma et al., 2007, 2008). However,
how the redox state is sensed in cyanobacterial state transition
is not clear. Plants balance their redox system by regulating
CET-PSI or respiratory electron transport so that it will not
be over oxidized or over-reduced. Under normal physiological
conditions, when the Calvin cycle is fully active, the reduction
is mainly caused by LET, and the proportion of CET-PSI is
small enough to be ignored. However, when CO2 assimilation
is decreased, NADPH and reduced ferredoxin will accumulate
too much, and CET-PSI would be promoted under stressed
conditions. We observed that when dark-adapted Syne6803
cells were moved to light, NDH-1 expression was significantly
induced, and NDH-1 mediated CET-PSI and respiratory electron
transport were upregulated (Mi et al., 2001). Therefore, it is
suggested that NDH-1 mediated CET-PSI might co-operate
with respiratory alternative oxidase transfer electrons to O2,
thereby avoiding the over-reduction of the PQ pool under
various stresses.

Our group found that the CO2 uptake systems NDH-
1MS and NDH-1MS’ are associated with a carbonic anhydrase
EcaB, which catalyzes the conversion of CO2 into HCO−

3
in response to high pH values, high light, or low CO2

concentrations, thereby helping to balance the redox state
of inter photosystem electron carriers and maintain efficient
photosynthesis (Sun et al., 2019).

Photoprotection
Photosynthesis needs light energy, but the excess excitation
energy would cause photoinhibition and even cause
photodamage of PSII. The CET-PSI is involved in eliminating
excess light energy through the mechanism of heat dissipation
to protect plants from light damage caused by strong light.
CET-PSI can also reduce photoinhibition by downstream
regulation of PSII by generating transmembrane proton
gradient (Heber, 1992). We found that the deletion of ndhc-
j-k in tobacco leads to the accumulation of reactive oxygen
species under low or high-temperature stresses (Wang
et al., 2006). In addition, a low concentration of NaHSO3

promotes CET-PSI in Syne6803 (Wang et al., 2003) and
tobacco under the condition of dark-light transition, alleviating
photooxidative damage and improving photosynthesis by
promoting photosynthetic phosphorylation mediated by NDH-1
(Wu et al., 2011, 2012).
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CONCLUSION REMARKS

The NDH-1 plays an important role in the regulation of
efficient operation of photosynthetic apparatus under changed
environmental conditions. Structure bases have been made in
NDH-1L and NDH-1MS. It is not clear whether there is a
cross-talk between NDH-1L mediated CET-PS I and NDH-
1MS/NDH-1MS’ involvement in CO2 uptake. How does NDH-
1 function in coordination with light reaction and carbon
assimilation? In the future, we may use a high-resolution cryo-
EM to observe and analyze active forms and states of NDH-1,
and deeply study the dynamic regulation mechanism of NDH-
1. With the development of molecular biology, proteomics,

metabolomics, computational biology, and structural biology,
it is possible to reveal the complicated regulatory network of
NDH-1 in photosynthesis.
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