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ABSTRACT
A growing need to evaluate risk-adapted treatments in multiple myeloma (MM) exists. Several clinical and molecular scores have been 
developed in the last decades, which individually explain some of the variability in the heterogeneous clinical behavior of this neoplasm. 
Recently, we presented Iacobus-50 (IAC-50), which is a machine learning-based survival model based on clinical, biochemical, and 
genomic data capable of risk-stratifying newly diagnosed MM patients and predicting the optimal upfront treatment scheme. In the 
present study, we evaluated the prognostic value of the IAC-50 gene expression signature in an external cohort composed of patients 
from the Total Therapy trials 3, 4, and 5. The prognostic value of IAC-50 was validated, and additionally we observed a better perfor-
mance in terms of progression-free survival and overall survival prediction compared with the UAMS70 gene expression signature. The 
combination of the IAC-50 gene expression signature with traditional prognostic variables (International Staging System [ISS] score, 
baseline B2-microglobulin, and age) improved the performance well above the predictability of the ISS score. IAC-50 emerges as a 
powerful risk stratification model which might be considered for risk stratification in newly diagnosed myeloma patients, in the context 
of clinical trials but also in real life.

INTRODUCTION

As the treatment landscape of multiple myeloma (MM) 
evolves, a growing interest exists to develop risk-adapted ther-
apeutic schemes based on personalized drug combinations and 
variable treatment durations.1 Most used risk scores, such as the 
International Staging System (ISS) and the Revised ISS (R-ISS),2,3 
though extensively validated, have limited accuracy in survival 
prediction, and assign a large fraction of the patients to an 
intermediate risk group whose outcomes are largely uncertain. 
On the other side, and even in properly stratified patients, opti-
mal drug combination schemes and duration of therapies are 
unknown. All these factors contribute to the fact that, unfortu-
nately, some patients will fail to respond or relapse earlier than 
expected after standard upfront drug combination schemes, 
which precludes a reduced survival.4

Therefore, a growing number of trials are evaluating innova-
tive strategies based on risk and response-adapted therapies. One 
such strategy relies on the application of highly effective treat-
ments (4 and even 5 drug combinations including monoclonal 
antibodies) to patient populations with high-risk factors, such 
as an elevated number of circulating plasma cells in peripheral 
blood or high-risk cytogenetics.5,6 Another strategy, explored 
in the MASTER trial, evaluates the possibility of adapting the 
intensity and duration of treatment to the sustained negative 
minimal residual disease (MRD).7

Different prognostic gene expression signatures have been 
developed in the field of MM.8 These scores have been designed 
with the intention to identify a group of high-risk patients. 
However, a great heterogeneity exists between the different 
signatures, and therefore a variable proportion of patients are 
assigned to the high-risk group. These models result of little 
utility to optimize treatment selection, and their application 
has been eminently restricted to the context of clinical trials. 
Recently, we presented the Iacobus-50 (IAC-50) prognostic and 
predictive model for newly diagnosed MM.9 This algorithm is 
a machine learning model of survival based on the integration 
of a 46-gene expression signature, B2-microglobulin, ISS stage, 
and first-line treatment scheme. IAC-50 proved to be highly 
discriminative to predict MM survival, and additionally, it was 
capable of predicting which of the different upfront treatment 
combinations maximized the probability of long-term survival 
for each patient.

The aim of this study was to validate the prognostic role 
of IAC-50 in an external cohort, and to compare its perfor-
mance with the 70 gene expression signature developed by the 
University of Arkansas for Medical Sciences (UAMS).10 Our 
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results indicate that the IAC-50 gene expression signature is 
reproducible and provides even more precise predictions about 
progression-free survival (PFS) and overall survival (OS) than 
the UAMS70 signature. Based on the results obtained, we dis-
cuss the future possibilities to introduce this model in the con-
text of clinical trials and in clinical practice.

MATERIALS AND METHODS

Data origin and preprocessing
Patient data were produced by the UAMS team. Gene expres-

sion data were derived from CD138+ bone marrow cells of 
patients with newly diagnosed MM recruited in the total ther-
apy (TT) trials 3, 4, and 5. Normalized gene expression esti-
mates were downloaded from the Gene Expression Omnibus 
(GEO) database, with identification GSE136400.

TT3 applied 2 cycles of VTD-PACE (bortezomib, thalidomide, 
dexamethasone; 4-day continuous infusions of cisplatin, doxo-
rubicin, cyclophosphamide, etoposide) as induction full doses 
and, at reduced doses, as consolidation after melphalan-based 
tandem transplantation.11 In 2008, UAMS70-defined low- and 
high-risk patients were assigned to TT412 and TT5,13 respec-
tively. TT4 was a phase 3 trial designed to determine whether 
low (L)-TT4 was associated with lesser toxicity by reducing 
induction and consolidation cycles after tandem transplants 
from 2 cycles each in standard (S)-TT4 to 1 cycle in L-TT4. To 
compensate for potentially reduced efficacy by this strategy, the 
transplant regimen was altered from a single melphalan dose 
of 200 mg/m2 (MEL200) to a fractionated 50 mg/m2/d × 4 days 
(MEL50x4) schedule with the addition of bortezomib and tha-
lidomide (VTD) to exploit synergism between MEL50 × 4 and 
VTD. TT5 included 1 cycle of M-VTD-PACE induction with 
hematopoietic stem cell collection. This was followed by tan-
dem autologous stem cell transplants with hybrid regimens 
Mel80 plus bortezomib, lenalidomide plus dexamethasone 
(VRD)-PACE. Sandwiched in between, 2 intertransplant cycles 
of MEL20-VTD-PACE were administered. Maintenance con-
sisted of 3 years of alternating VRD and VMD (M, melphalan). 
As relapses were observed during maintenance, bortezomib was 
increased from 1.3 to 1.5 mg/m2 weekly.

Our purpose was to validate the prognostic capacity of 
the IAC-50 and to evaluate its performance in comparison 
with UAMS70. IAC-50 was designed with data from the 
CoMMpass database, and it also included the different groups 
of upfront treatment schemes employed. IAC-50 was able to 
identify the best upfront therapy for each patient as these 
were significantly associated with survival.14 However, in the 
present case, all trials tested similar combinations with little 
modifications, all of which were based on bortezomib, immu-
nomodulatory drugs (IMIDs) and dexamethasone, so we could 
not evaluate the predictive value of IAC-50. Therefore, we 
focused on evaluating the prognostic value of the clinical and 
genomic parameters of IAC-50. Three hundred ninety-four 
patients had full annotation for all the clinical and biochemical 
variables included in IAC-50: age at diagnosis, b2-microglob-
ulin, and ISS stage. Gene expression data were obtained using 
Affymetrix Human Genome U133 Plus 2.0 Array gene expres-
sion chips. Expression data for 39 of 46 of the genes included 
in the IAC-50 gene expression signature was available (Suppl. 
Table S1). Data from the remaining genes were not included in 
the gene expression chips.

Statistical analysis
A random forest of survival model was created with the 

gene expression signature in the entire cohort.15 Harrel’s c-in-
dex was used to evaluate the discriminative power of the signa-
ture. Out-of-bag predictions derived from random forests were 
used to fit cox survival models. In these models, we computed 
time-dependent areas under the curve (AUCs) for OS and PFS 

prediction at different time points, with and without clinical 
and biochemical covariates.16 For comparison, we also tested 
the predictive power of UAMS70 with and without clinical 
and biochemical covariates in the same bootstrapped sam-
ples. Internal validation was performed using a bootstrapping 
without replacement algorithm (a cross-validation technique) 
with 500 cycles. In each cycle, 75% of the cohort was used 
for training and the remaining 25% of samples were used as 
a test set. Bootstrapped c-indexes were computed with the pec 
package using the bootstrapping cross-validation method with 
500 cycles.17

RESULTS

Baseline characteristics of the patients can be consulted in 
Table 1.

Prognostic impact of the IAC-50 gene expression signature and 
comparison with UAMS70 high-risk signature

We evaluated the model discriminative power of IAC-50 and 
UAMS70 using c-indexes. The IAC-50 gene expression signa-
ture achieved a bootstrapped c-index of 0.581 and 0.541 for 
OS and PFS prediction in the entire cohort, respectively. These 
results were superior to those of the UAMS70 high-risk gene 
expression signature (Table 2).

We therefore sought to evaluate the performance of IAC-50 
to predict PFS and OS at 6, 12, 18, 24, 48 and 60 months after 
diagnosis using time-dependent AUCs. Notably, the IAC-50 sig-
nature was superior to UAMS70 in the prediction of PFS and OS 
at most of the time points evaluated (Figure 1; Tables 3 and 4). 
Forty-eight-month PFS and OS predictions were similar overall 
between IAC-50 and the ISS score, but the UAMS70 high-risk 
profile showed a substantially lower prediction power. Notably, 
IAC-50 was superior to UAMS70 in the prediction of OS among 
patients <60, and it performed slightly better to UAMS70 in 
those ≥60 years (Suppl. Figure S1A and B, Suppl. Table S2). 
IAC-50 outperformed UAMS70 in the prediction of OS among 
ISS II and III patients, but not in the ISS I group (Suppl. Figure 
S2). In a similar fashion, we observed that IAC-50 was substan-
tially better than UAMS70 in the prediction of PFS only among 
younger (<60 years) patients (Suppl. Figure S3C and D, Suppl. 
Table S3). The IAC-50 score also appeared to perform better 
than UAMS70 for PFS prediction in ISS I and III groups, but not 
in the ISS II group (Suppl. Figure S4).

Table 1.

Patients’ Baseline Characteristics

Variable Results 

ISS stages I/ II/ III 39.84%/31.82%/28.32%
Median B2-microglobulin 3.7 mg/dL
Median age at diagosis 59.9 y [32.4–75.2]
TT3 trial 59.65%
TT4 trial 37.59%
TT5 trial 3.26%
Median follow-up 91.1 mo

ISS = International Staging System; TT = total therapy.

Table 2.

C-indexes for OS and PFS Prediction in the Whole Cohort

 OS PFS 

Signature Bootstrapped c-index Bootstrapped c-index
IAC-50 GEP 0.581 0.541
UAMS70 0.569 0.534

IAC-50 = Iacobus-50; OS = overall survival; PFS = progression-free survival.

http://links.lww.com/HS/A278
http://links.lww.com/HS/A278
http://links.lww.com/HS/A273
http://links.lww.com/HS/A273
http://links.lww.com/HS/A279
http://links.lww.com/HS/A274
http://links.lww.com/HS/A274
http://links.lww.com/HS/A275
http://links.lww.com/HS/A275
http://links.lww.com/HS/A280
http://links.lww.com/HS/A280
http://links.lww.com/HS/A276
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Evaluation of IAC-50 gene expression signature with prognostic 
clinical and biochemical covariates

The integration of IAC-50 and UAMS70 with ISS, 
B2-microglobulin, and patient age largely improved the perfor-
mance of any of these signatures in the prediction of PFS and OS 
(Figure 2; Tables 3 and 4). Importantly, these predictions were 
substantially better than those obtained from the ISS and the 
R-ISS score as an isolated prognostic model. Additionally, the 
R-ISS score appeared prognostically inferior to the ISS in this 
dataset (Suppl. Figure S5).

The multivariate model including IAC-50 was superior to the 
model including UAMS70 for the prediction of overall survival, 
particularly in the first 2 years after diagnosis (Figure 3). This 
was particularly true for younger patients (<60 years), but no 
differences between both models were observed among older 
patients (Suppl. Figure S1C and D, Suppl. Table S2). Concerning 
PFS, we observed that, although in the global cohort there was 
a similar performance between both models (with a minor 
overperformance of UAMS70), there were again differences by 
age stratum: IAC-50 was superior among patients <60 years, 
whereas UAMS70 was superior in older individuals (Suppl. 
Figure S3C and D, Suppl. Table S3).

DISCUSSION

The progressive untangling of cancer genomics coupled with 
advanced information technologies brings the opportunity 
to optimize risk stratification in MM with the possibility of 

implementing risk-adapted therapeutic strategies. The new risk 
stratification models that are emerging, such as IAC-50, need to 
validate their performance in additional external cohorts, ide-
ally in comparison with other well-established risk stratification 
scores. In the present work, we have implemented IAC-50 in 
patients recruited in the TT trials 3–5, which included borte-
zomib and IMID-based triplets in newly diagnosed MM. Our 
results indicate not only that the IAC-50 gene expression signa-
ture is reproducible, but also it is superior to the UAMS70 high-
risk signature in the prediction of both PFS and OS. Moreover, 
the combination of IAC-50 gene expression signature with tra-
ditional covariates originally included in the model (ISS, age, 
and B2-microglobulin) also outperforms UAMS70 in the predic-
tion of OS, particularly in the first 2 years after diagnosis.

Prognostic gene expression profiles in MM have been 
developed with the aim of identifying subgroups of high-risk 
patients.18 These signatures are very heterogeneous in com-
position, and classify a remarkably different proportion of 
patients as high-risk. Additionally, as new and more effec-
tive drugs are being developed for the treatment of MM, the 
identification of low-risk patients is important to evaluate the 
possibility of achieving optimal disease responses with less 
intensive schemes than high-risk patients. Indeed, most trials 
evaluate the performance of treatment schemes by subgroups 
of risk, and even some relevant trials have been focused on 
standard or high-risk patients.19–21 However, the identification 
of such patients has not been the focus of traditional gene 
expression signatures. On the contrary, IAC-50 has been 

Figure 1. Representation of time-dependent AUCs for the prediction of OS (A) and PFS (B) for the IAC-50 and UAMS70 gene expression signa-
tures.  AUCs =areas under the curve; IAC-50 = Iacobus-50; OS = overall survival; PFS = progression-free survival.

Table 3.

Cross-validated Time-dependent AUCs of the Different Models for the Prediction of OS at 6, 12, 18, 24, 48, and 60 Months

Model 6 mo 12 mo 18 mo 24 mo 48 mo 60 mo 

ISS 0.713 0.709 0.676 0.655 0.658 0.676
IAC-50 GEP 0.648 0.644 0.638 0.629 0.642 0.631
UAMS70 0.566 0.583 0.562 0.580 0.619 0.600
IAC-50 GEP + ISS +B2-mg + Age 0.805 0.822 0.789 0.780 0.729 0.736
UAMS70 + ISS +B2-mg + Age 0.774 0.803 0.759 0.772 0.734 0.736

AUCs = areas under the curve; IAC-50 = Iacobus-50; ISS = International Staging System; OS = overall survival; PFS = progression-free survival.

http://links.lww.com/HS/A277
http://links.lww.com/HS/A273
http://links.lww.com/HS/A273
http://links.lww.com/HS/A279
http://links.lww.com/HS/A275
http://links.lww.com/HS/A275
http://links.lww.com/HS/A275
http://links.lww.com/HS/A280
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designed as a survival predictor, which is substantially more 
versatile because it can provide a precise and personalized 
risk prediction, enabling the identification of different strata 
of risk for patients with newly diagnosed MM at a glance. 
Our confrontation with the UAMS70 high-risk profile sug-
gests that our approach yields superior prognostic results. 
Nonetheless, comparison with other signatures is needed, and 
particularly with SKY-92,22 as this has been observed to per-
form even better than UAMS70 by some authors.23

Notably, optimal risk stratification is obtained by combin-
ing molecular profiles with clinical risk scores. In this line, 
different studies have already evaluated the role of several 
gene expression signatures combined with the ISS and the 
R-ISS.22,23 However, compelling evidence indicates the limited 
performance of R-ISS over the ISS score, a fact which was 
also observed in this study.24 As a consequence, new prognos-
tic scores are being proposed, such as the R2-ISS, the Mayo 
Additive Staging System (MASS) and unsupervised machine 
learning classifications proposed by the Spanish Myeloma 
Group (GEM/Pethema).25–27 These new scores propose the 
inclusion of other prognostic variables (eg, 1q amplification 
and Durie-Salmon staging) coupled with the definition of 
new patient groups based on advanced data analytics (addi-
tive scores and machine learning models). Such scores need to 
be evaluated in future studies and compared with each other. 
Furthermore, it will be important to incorporate performance 
status metrics in the models, as molecular profiles loose their 
importance in older unfit individuals with hematological can-
cer because of treatment toxicities.28 Indeed, this could be 
the reason behind the poor performance of both molecular 
prognostic signatures in older patients observed in this study. 

Importantly for the case, a comparison of the different molec-
ular signatures with the same set of clinical predictor scores 
and considering frailty and/or comorbidity is needed, so as to 
derive the optimal combinations of variables. The adequate 
integration of clinical and molecular risk features will be of 
the utmost importance in order to produce a net gain of accu-
racy that can justify the implementation of molecular tests in 
clinical trials and in real life.

The present study has some limitations. First, only 39 of the 
46 genes included in the IAC-50 signature were available for 
analysis. In our opinion, this should be viewed as a strength of 
the analysis because missing transcripts might even increase 
the precision of IAC-50. Second, the UAMS70 score was orig-
inally developed in patients from the TT 2 and 3 trials.11 On 
the contrary, IAC-50 was developed taking information from 
patients treated with a variety of upfront schemes from a dif-
ferent study. It is possible that UAMS70 predictions in this 
cohort are overoptimistic because of 2 factors: (1) some degree 
of overfitting to this particular cohort and (2) a skewed predic-
tion accuracy towards patients treated with IMID plus dexa-
methasone or bortezomib, IMID plus dexamethasone-based 
upfront schemes. In both cases, the UAMS70 signature would 
be biased toward more positive results. Another relevant issue 
is the fact that clinical characteristics (and particularly age) 
explain a large part of mortality, overriding the role of biolog-
ical variables when very heterogeneous cohorts are considered. 
Ideally, these scores should be evaluated in very homogeneous 
patient subgroups with similar age and comorbidities, proba-
bly in the context of well-designed clinical trials. This would 
provide a more sophisticated approximation about the role of 
biological risk in MM prognostication. Furthermore, the treat-
ment schemes evaluated in these trials are not the standard of 
care in MM at the present moment, and therefore, evaluation 
of the molecular predictors in more recent populations should 
be pursued. Finally, we did not evaluate the predictability of 
the IAC-50 model, which was described in the original paper. 
This was because all treatments evaluated in the TT trials 3–5 
were combinations of IMIDS, bortezomib, and dexametha-
sone, and indeed, we observed no association between overall 
survival and trial assignment.

In conclusion, we have externally validated the prognos-
tic role of the IAC-50 gene expression signature in patients 
from the TT 3–5 trials. The accuracy of this signature was 
superior to UAMS70 in the prediction of overall survival and 
PFS. Combining the signature with traditional prognostic 
variables improved the performance well above the predict-
ability of the ISS score. Future approaches should be pursued 
to compare this signature with additional key players in the 
field, such as SKY-92. IAC-50 should be considered for risk 
stratification in real life and, particularly, within the context 
of clinical trials.
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