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Abstract: The convergence properties of the absolute single-molecule configurational entropy
and the correction terms used to estimate it are investigated using microsecond molecular
dynamics simulation of a peptide test system and an improved methodology. The results are
compared with previous applications for systems of diverse chemical nature. It is shown that (i)
the effect of anharmonicity is small, (ii) the effect of pairwise correlation is typically large, and
(iii) the latter affects to a larger extent the entropy estimate of thermodynamic states characterized
by a higher motional correlation. The causes of such deviations from a quasi-harmonic behavior
are explained. This improved approach provides entropies also for molecular systems undergoing
conformational transitions and characterized by highly frustrated energy surfaces, thus not limited
to systems sampling a single quasi-harmonic basin. Overall, this study emphasizes the need
for extensive phase-space sampling in order to obtain a reliable estimation of entropic

contributions.

1. Introduction

Entropy is a key property to understand a wide variety of
physical, chemical, and biochemical phenomena. However,
the estimation of absolute entropies and entropy differences
from computer simulations is a long-standing problem' ~® and
one of the current challenges in computational chemistry.'~!'

The calculation of reliable absolute entropies from mo-
lecular dynamics (MD) simulations is intrinsically difficult
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because the absolute entropy is a measure of the overall
extent of phase space (PS) accessible to a molecular system.
However, absolute single-molecule entropies can be esti-
mated based on an analytical approximation to the configu-
rational probability distribution corresponding to the PS
accessed by a simulated system.” The underlying theory,
assumptions, approximations, and alternative practical imple-
mentations have been recently reviewed.'®!" The relationship
among quasi-harmonic (QH), essential-mode, and normal-
mode analyses has also been investigated.'' For an extensive
review of the subject, not limited to the QH approach, see
also refs 11 and 16—19 and references therein.

The difference between the true entropy of a simulated
system and its QH estimate arises from (i) anharmonicities
(i.e., non-Gaussian behavior) in the probability distributions
along individual QH modes and (ii) correlations among the
probability distributions associated with different QH modes
(beyond the pairwise linear correlations accounted for). These
effects are neglected in standard QH analysis'®!" and (nearly)
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always lead to a negative entropy contribution.'' A method
to correct for both artifacts was recently described.'' Point
ii is of particular relevance when trying to estimate entropy
differences between two conformational states of a molecular
system because error cancellation cannot be guaranteed a
priori.'"? By taking into account correlation effects of
increasing order, entropy estimates based on corrected QH
analysis aim at capturing the entropy corresponding to the
entire PS sampled (see Figure 1 in ref 11). Thus, this
approach is not limited to systems sampling single QH basins
and allows capturing conformational transitions.

In the present article, we expand the previous study in ref
11. A general formulation is proposed to account for
correction terms of increasing order, and its practical
implementation and limitations are discussed. We review
previous studies employing this novel approach on an array
of (bio)molecular systems providing a solid basis for its
application and demonstrating the importance of these
correction terms in the evaluation of absolute entropy and
entropy differences. Using microsecond MD simulation of
a test system, we analyze the convergence properties of the
absolute single-molecule entropy and of the correction terms
used to estimate it. The results emphasize that sufficient PS
sampling is required for a reliable estimation of entropic
contributions because convergence of both the QH upper
bound and the required correction terms should be achieved.

2. Methods

2.1. QH Analysis. QH analysis aims to account for
motions in the overall extent of PS accessible to a molecular
system at thermodynamic equilibrium. It relies on ap-
proximating the configurational probability distribution as a
multivariate Gaussian, the momenta of which can be
estimated, e.g., from molecular dynamics (MD) or Monte
Carlo simulations.

More precisely, for a given choice of generalized coor-
dinate system ¢ (of dimension M” = 3N, N being the number
of atoms), its input quantity is the covariance matrix C,
characterizing the atom-positional fluctuations (and their
correlations) around an average configuration g. Assuming
a canonical ensemble and fluctuations resulting from an
underlying harmonic potential of the form

@) = 3@ — 3" i,q — 3, ()

where Elq is an effective Hessian matrix and §, an effective
equilibrium configuration, it follows that''

g,=q and H,=p'C,’ 2

Note that the corresponding harmonic model only strictly
produces the correct average configuration g and covariance
matrix C, for generalized coordinate systems where the mass-
metric tensor A, is configuration independent.'’

In this study, we only consider the specific case of single-
molecule entropy (i.e., the entropy of individual distinguish-
able atoms in a covalently bound molecule) based on MD
simulation trajectories. As detailed elsewhere,?! single-
molecule entropy differs from molecular entropy in that the
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former estimate only accounts for intermolecular correlation
in terms of the effect of the solvent on the single-molecule
dynamics.

In practice, the QH analysis of an MD trajectory involves
the following steps.''

First, the average configuration g and the covariance matrix
C, in the chosen coordinate system are evaluated as

g={g and C, =g — 9 ®(q — q)) (3)

The equilibrium configuration §, and Hessian matrix Hq of
the effective underlying harmonic model are then defined
according to eq 2.

Second, the (symmetric) metric-tensor-weighted covari-
ance matrix is diagonalized

TA Y Y —
V,ACASNY, =F, “

where V, is a M x M-dimensional (orthogonal) matrix the
columns of which represent the M’ components of the
eigenvectors {v, | m =1, ..., M"} (called QH modes) of the
metric-tensor-weighted covariance matrix and F, is a diago-
nal matrix containing the corresponding eigenvalues. These
eigenvalues are related to the associated angular frequencies
of the underlying effective harmonic model as (see eqs 2
and 4)

®, = BF,) "m=1,2,...M Q)

The sum of the eigenvalues in F, is equal to the total mean-
square metric-tensor-weighted fluctuation of the system, i.e.

Tr(E,] = Tr{A,"C,A,"]

(A (g — D114, (g — D) ©

so that the eigenvalues can be interpreted as contributions
of individual QH modes to this quantity (a larger value
indicating a larger contribution to the total fluctuation of the
molecule).

Third, the simulated trajectory is projected onto the QH
modes, i.e., one considers the transformed coordinates b,
defined as

b,=YVIALg — )
These so-called QH coordinates satisfy the properties'
(b,) =0 and b, ® b,) = Y;A;/zgqé;/zyq =F ®

Because F, is diagonal, eq 8 enforces that the individual
components {b, | m =1, ..., M’} of the QH coordinates b,
are pairwise linearly uncorrelated, which, however, does not
imply the absence of higher order (i.e., pairwise supralinear
and higher order) correlations.

We previously motivated the choice of a Cartesian vs
internal coordinate system."' If a Cartesian coordinate system
r is employed®® (after removal of the overall translational
and rotational motion from the sampled trajectory??), the
mass-metric tensor A, is identical to the mass matrix M (thus
configuration independent, so that eq 2 is exactly satisfied).
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In this case, the QH analysis relies on the diagonalization
of the mass-weighted Cartesian covariance matrix, i.e.

D, = M"C,M" ©)

in place of A,'> C, A,"* in eq 4.

In the absence of geometric constraints, the corresponding
eigenvalue matrix F, contains 3N — 6 nonzero and 6
vanishing elements. If N. geometrical constraints are present
in the system (e.g., bond-length constraints), these will map
to an identical number of zero eigenvalues (see Appendix
A in ref 23 for a derivation in the mathematically similar
context of essential-mode analysis). Thus, the number of QH
modes with nonzero eigenvalues is M = 3N — N, — 6, where
M’ = 3N. When using a generalized coordinate system
excluding overall translation and rotation variables, one has
M = M = 3N — N. — 6. Note that the QH coordinates
have units of mass'? x length.!!

2.2. Entropies and Correction Terms. Single-molecule
entropies can be obtained as follows.'" In terms of QH
coordinates, the configurational probability distribution as-
sociated with the effective harmonic model of eq 2 corre-
sponds to that of M independent harmonic oscillators. Thus,
the associated entropy S, can be calculated analytically.
Assuming a canonical ensemble and a configuration-
independent mass-weighted metric tensor, this leads to!!

M
S, = 2 s(@x(BE,,)"" (10)

m=1

where s(w) is the canonical entropy of a one-dimensional
harmonic oscillator with angular frequency w. The classical
expression s.,(w) and the quantum-mechanical expression
Sqmo(w) for this quantity are

Sa10(@) = kp(1 = In fhow) (11)

and

S el @) = kg % — (1 - e ™| a2

where A = h(27) ! is the reduced Planck’s constant, leading
to eq 10 to corresponding total estimates S., and Sy,
respectively.

In practice, even if the underlying trajectory was generated
at the classical level, the QH entropy must be evaluated using
the quantum-mechanical oscillator formula because in the
high-frequency limit the classical entropy of a one-
dimensional harmonic oscillator diverges to the unphysical
limit of —oo rather than to the physical limit of zero.®'!
However, the QH entropy estimate S, , is not the absolute
configurational entropy of a single molecule but an upper
bound for this quantity due to the presence of QH mode
anharmonicities and correlations not accounted for in the
effective harmonic model of eq 2. Corresponding correction
terms can be formulated exactly at the classical level using
an approach previously described'' and briefly summarized
below.
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In the canonical ensemble, assuming a configuration-
independent mass-metric tensor, the exact classical single-
molecule entropy reads'’

M n
S, = —kB[E(l —1In g—ﬂ) — [ db,p@np®,)| (13)
where p(b,) is the probability distribution in the M-dimen-
sional space of the QH coordinates b, (eq 7). This expression
can be compared with the approximate (classical) QH
estimate S, based on eqs 10 and 11, i.e.

M 2
Suy=—kg (1 - %m gi) (14)

m=1 q.m

A series of increasingly accurate estimates {S.x K =0, 1,
..., M} may now be formulated as

M
SL‘I,K = Scl,o - kB[%C(K,m z (1 + In 2.7TFq’m) +
m=1

C(K.M)

> f dbf;')p“kbf;))lnp<”)<bf;'>>] (15)
c=1

where ¢ denotes a combination of K QH modes, C(K,M) =
[(M — K)!K!IM! for K > 0 along with C(0,M) = 0 represents
the total number of possible combinations ¢ of K modes
among the M QH modes and p“(b,“) is the K-dimensional
probability distribution in the subspace of the QH coordinates
b, within b, that are involved in a combination c¢. The
derivation of this equation is given in the Appendix in the
Supporting Information.

It is easily verified that S, x—0 = Se, (eq 14, i.e., the
uncorrected classical QH entropy) and S, x—y = S. (eq 13,
i.e., the exact classical entropy). Substituting the classical
estimate S, by the corresponding quantum-mechanical
estimate S, (eqs 10 with 12) into eq 15 and introducing
successive correction terms defined as

AScl,K =Sux — Scl,(K*l) (16)

leads to a (classically) corrected QH entropy estimate
M
§U4 =8, + 2 AS.k (17)
K=1

The successive correction terms of eq 17 involve integrals
over the probability distributions p(b,) in eq 15 with
increasing dimensionality K. Note that these terms are all
individually negative (or vanishing). The first correction term
AS,,; involves one-dimensional (1D) integrals and accounts
for anharmonicities in the individual QH modes. The second
correction term AS,;, involves two-dimensional (2D) inte-
grals and accounts for pairwise (supralinear) correlations
between the QH modes. For simplicity, these two terms will
be renamed ASY and ASY, respectively, to match the notation
used in other studies.'?%-24728

The following higher order correction terms account for
correlations among QH modes beyond the pairwise ones.
Although the classical QH entropy estimate S, usually
represents a poor approximation to its quantum-mechanical
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counterpart S, ,, the evaluation of the correction terms at
the classical level remains accurate because anharmonicities
and correlations principally affect the low-frequency QH
modes for which the classical approximation holds.""

The successive correction terms in the series of eq 17 are
increasingly difficult to evaluate because both (i) the number
of terms C(K,M) involved in the evaluation of AS. x and
(ii) the sparseness in the required multiple-mode probability
distributions p“(b,)) increase exponentially with K. For this
reason, their evaluation is restricted in practice to the first
two terms and implies an intrinsic uncertainty on the final
estimate compared to the frue single-molecule entropy (i.e.,
persisting in the limit of infinite sampling).

However, note that, in a different context, alternative
approximate formulations to estimate terms of increasing
order mutual information have been proposed and seem to
suggest that the first two correction terms in eq 17 are indeed
dominant.?® *! No study heretofore investigated the con-
vergence properties of these terms along a simulation
trajectory.

Following from eqs 16 and 17, the expressions for the
first two correction terms are

cl

M
' 1
AS = _kB[E Zl (1 +In2xF,,) +

M
D f db,,, p™(b,,)In p(m)(bq’m)] (18)
m=1

and

M
. M- 1
AS = kB[Tz(l +In 2aF,,) +

m=1

3 [ b1 by b0 "y

m=1 n=m+1

— ASy

19

leading to the corrected absolute single-molecule entropy
estimate

S =Sy T ASTC = 8,,, + ASI +ASY(20)

cl

cre  fah

The relative magnitudes f5¢, f4', and f2§ of the correction
terms ASSC, ASY, and ASY with respect to the QH entropy
upper-bound S, , (expressed in percent), i.e.

- 100AS?;

cl

100AS5° - 100ASY Lo )
cl S sJel T S an Jf‘l - S ( )

qm,o qm,o qm.,o

cre

may then serve as a measure for the importance of the
aforementioned corrections.

In practice, the 1D and 2D integrals involved in eqs 18
and 19 are evaluated numerically in the form of sums over
corresponding histograms. It is reasonable to choose the bin
width along a given QH mode in proportion to the width
(first moment) of the probability distribution along this mode
with proportionality factors k) and «, for 1D and 2D integrals,
respectively. However, k; and «, values must be selected
carefully in order to keep both finite-sampling and binning
errors to a minimum, i.e., to ensure the independence of the
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results on these two parameters.” For this reason, we
monitored the dependence of such numerical integrals on
the width of histogram bins for increasing periods of time,
as described in section 3.4.

Note, finally, that the absolute single-molecule entropies
so far discussed exclude roto-translational contributions. In
principle, a translational entropy contribution can be included
using the quantum-mechanical expression of the Sackur—
Tetrode equation for a specified standard state of the pressure
(molecule in the gas phase) or of the concentration (molecule
in solution). Similarly, the rotational entropy contribution
could be included using the appropriate quantum-mechanical
expression (e.g., rigid-rotor approximation, based on the
average inertia tensor of the molecule32_34). However, these
two contributions are likely to be highly coupled with each
other and with § i.e., they are not strictly additive, and
their rigorous treatment is therefore still challenging. A recent
study reported on relatively small effects of motional
correlation on changes of reorientational entropy using
selected QH modes from a 1.5 ns simulation of the ubiquitin
protein.*® In the present article, single-molecule configura-
tional entropies refer to entropies excluding roto-translational
effects.

2.3. Computational Details. A 1.1 us long MD simula-
tion of the ccf peptide (CH3-CO-S-I-R-E-L-E-A-R-I-R-E-
L-E-L-R-I-COO™) at 300 K was performed with the AMBER
9 software,>® the AMBER 99SB parameter set,’” and the
compatible TIP3P water model.*® The simulation was
initialized from the o-helical configuration based on a X-ray
model structure of the ccf coiled coil (PDB ID 159z).%
Trajectory snapshots were saved every 10 ps for analysis.
The simulation setup and trajectory analyses are detailed
elsewhere.*® Backbone atom-positional root-mean-square
deviations (RMSD) from the initial folded structure and
radius of gyration (RGYR) were calculated using all C*
atoms.

Independent QH analyses were performed for 22 increas-
ingly long segments of the simulation (differing in length
by 50 ns) by calculation of the solute all-atom mass-weighted
covariance matrix D, (eq 9) in Cartesian coordinates after
least-squares fit superposition of all configurations onto the
initial structure to eliminate overall translation and rotation
and diagonalization (eq 4 with A}* C, A/> = D,). A total of
534 (M = 3 x 297 — 351 — 6) modes associated with
nonvanishing eigenvalues were considered. After determi-
nation of the QH modes (columns of the matrix V, in eq 4;
sorted in order of decreasing eigenvalues, i.e., increasing w,,
frequency in eq 5), the trajectory was projected in this basis
set to obtain the time series of the corresponding QH
coordinates b, (eq 7). This first part of the analysis was
performed using the S_correction program as implemented
in the gromos++ module of the GROMOSO05 software*! for
biomolecular simulation.

The QH entropy upper bound, S,,,, (eq 10 with eq 12),
the corrections for mode anharmonicity, ASY (eq 18), and
pairwise supralinear mode correlation, AS?f (eq 19), their
sum, ASS¢ (eq 20), the improved absolute single-molecule

cre rah

entropy, S (eq 20), the relative terms £, &, and f% (eq
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21), and the sum of the eigenvalues, Tr[F,] (eq 6), were then
calculated for each of the 22 trajectory segments.

Note that this analysis is computationally intensive be-
cause, as discussed in section 3.3, each of the 22 AS% values
requires the estimation of 534 1D integrals, while each of
the 22 ASY values requires the estimation of 142 311 2D
integrals (eq 15). In addition, for each of these integrals the
optimized proportionality factors «; and «, were determined
based on multiple integral calculations for an accurate
numerical integration (see section 3.4). As an indication of
the actual computational cost, using an Intel Xeon X5450
3.0 GHz, dedicated software, and the above procedure, each
1D or 2D integral can be estimated with an average CPU
time of 0.07 or 0.21 s, respectively, from 50 ns trajectory
windows. Overall, the analyses presented in this work require
a CPU time that sums up to ~6 months.

3. Results and Discussion

3.1. Review of Previous Studies. The key findings of
previous studies concerning the uncorrected QH upper bound,
Sqmo (eq 10 with eq 12), the improved absolute single-
molecule entropy S (eq 20), and the relative magnitude of
the cumulative correction term f¢° (eq 21) are summarized
graphically in Figure 1.

These results span systems with different chemical nature:
2 B-peptides in methanol,'" the 11 disaccharides of gluscose
in water,?® the dipalmitoylphosphatidylcholine (DPPC) lipid
in a hydrated bilayer,”* the W191G mutant cavity and its
gating loop within cytochrome ¢ peroxidase in water,? the
H-ras lipopetide anchor in water or inserted into a model
lipid membrane,?’ and the ccf-peptide in water (this study).
In some cases, the QH analysis was also performed separately
for different chemical environments or conformational states
of the molecule, which permits estimating relative entropies,
thereby quantifying the impact of the correction terms on
the thermodynamic process of interest. These processes
include reversible peptide folding (ref 11 and this study),
conformational changes in carbohydrates®® and lipids,?*
lipopeptide insertion in a model membrane bilayer,?’ ligand
binding to a protein cavity,?® and protein-loop gating.?” The
results presented in Figure 1 are scaled by the number, N.
of atoms to allow for a comparison among molecules of
varying size (the raw data is available as Supporting
Information, Table S1).

Some clear qualitative trends are evident, although a direct
comparison among these studies is not possible due to the
different MD time scales and physicochemical conditions.
In all systems the cumulative correction term AS¢ (eq 20)
is generally sizable, demonstrating an overall large dev1at10n
from a QH behavior as evaluated up to the pairwise
supralinear level. The corresponding relative magnitudes, /4,
display values from 9% to 73% of the QH upper-bound value
Symo (Figure 1). In detail, these important cumulative terms
result from the sum of correction terms for mode anharmo-
nicity (AS%; eq 18) that are always relatively small (up to
3% of the upper-bound value S,,,) and for pairwise
supralinear mode correlation (AS%f; eq 19) that are always
dominant. The latter correction term has a magnitude that
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Figure 1. Summary of previous studies investigating the
improved absolute single-molecule entropy. The QH entropy
upper-bound S;n, (eq 10 with eq 12; empty bars) and the
improved entropy estimate S (eq 20; hatched areas) are
displayed scaled by the number N of system particles. The
relative (%) values of the cumulative correction term ¢ (eq
21; bar labels) are reported as a measure of the importance
of the deviation from the QH approximation. From left to right:
two S-peptides in methanol at high temperature (F, folded;
U, unfolded; A, all; T, 298 instead of 340 K),"" the 11 glucose-
based disaccharides (W, free in water),?® dipalmitoylphos-
phatidylcholine, DPPC (l, inserted in a hydrated bilayer),?* the
cavity and its gating loop of the W191G mutant of cytochrome
¢ peroxidase (K, bound to a K* ion with closed gating loop;
B, bound to 2-amino-5-methylthiazole with closed gating loop;
O, bound to a K ion with open gating loop),2° the H-ras
lipopetide anchor,?” and the ccp-peptide (this study). For the
disaccharides,?® corresponding mean entropy values are
displayed (a vertical bar represents the range of values). See
Supporting Information for details.

depends on the physical nature of the molecular motional
correlation experienced by the molecular system in a given
thermodynamic state.

The largest relative corrections, ¢/, are expected and
found for intrinsically more ordered systems (Figure 1). This
can be explained by considering that restricted flexibility is
typically promoted by inter- and/or intramolecular interac-
tions, simultaneously inducing increased motional correlation.
For example, the ligand-bound state of the W191G protein
cavity?® displays the largest f§¢ value (73%), i.e., the
thermodynamic ensemble involving the largest motional
correlations and lowest entropy content among those studied.
On the other end of the spectrum and in line with this
qualitative picture, the smallest £ values were reported for
the DPPC lipid in a bilayer (9%),24 i.e., the ensemble
characterized by the highest molecular flexibility and thus
the lowest motional correlations. Interestingly, the 11 dis-
accharides of glucose in water® display high variability and
always large f¢ values (45—72%). This behavior can be
explained con51dering that these molecules involve a reduced
number of degrees of freedom overall and the linkage
between rather stiff glucose rings is the torsion defining major
conformational changes.**°
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Figure 2. ccp peptide dynamics on the microseconds time scale and entropy convergence. (a) The backbone atom-positional
root-mean-square deviation (rmsd; black) from the initial helical fold and of the backbone radius of gyration (RGYR; gray) are
shown along the time, t. The cartoon representations highlight example configurations (oriented with the CH3;—CO terminus
down). (b) Build-up curves of the QH entropy upper bound Sy, (€qs 10 with 12; dashed line) and of the improved absolute
single-molecule entropy S (eq 20; solid line). Convergence of (c) the cumulative correction term ASZ° (eq 20) and its contribution
to the free energy TASE, (d) its relative value f§° (eq 21), and (e) the sum of the eigenvalues TrHF,] (eq 6).

These qualitative trends are also in agreement with the
observation that entropy is the measure of PS sampling for
a molecular system. The QH upper bound, S,,,, and the
improved absolute single-molecule entropy, S, are esti-
mated based on the PS that has been accessed during a MD
simulation of finite time scale, i.e., only a fraction of the PS
accessible to the system. These time scales ranged from 50
ns (W191G mutant®® showing the lowest entropy) to 25.6
us (concatenated trajectory of the DPPC lipid,** showing
the largest entropy). However, this hampers a quantitative
comparison of Sy, 0, S and ASS¢ values among previous
studies.

Prompted by these observations, the dependence of these
quantities on the extent of accessed PS was assessed on the
microsecond time scale for a peptide test system.

3.2. Convergence of the QH Analysis. The ccf peptide
in water was chosen as a test system to investigate entropy
convergence properties because of its small size and broad

PS accessibility. Figure 2a shows the time series of the
backbone atom-positional root-mean-square deviation (RMSD)
from the folded structure and of the backbone radius of
gyration (RGYR) along a 1.1 us of MD simulation. The
peptide undergoes several reversible folding/unfolding events
and samples a variety of unfolded configurations and compact
folds.*"

The probability distributions p(b, ) of the transformed
QH coordinates b, (eq 7) along selected QH modes (m = 1,
2, 6, 10, 50, and 500) are shown in Figure 3a. The reference
Gaussian functions with identical variances and vanishing
averages are also represented. The actual distributions
become increasingly narrow and similar to the Gaussian
functions for higher m indices, i.e., the corresponding QH
modes become increasingly stiff and harmonic. However,
the distributions along the lowest frequency modes (e.g.,
Figure 3a, m = 1 or 2) differ significantly from Gaussian
functions and evidently result from the superposition of
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Figure 3. Probability distributions along selected components of the QH coordinate b for the ccf peptide. The actual distributions

(gray line) are displayed together with the corresponding Gaussians, i.e., p’o m(br.m)

(27F; ) Y2 V2 Fim ' b’ (dashed lines) for

(a) increasing component indices, m, and (b) increasing periods of time, f. The distributions employed for optimal numerical
integration of the actual distributions (eq 18) are also displayed (solid lines). All probability distributions are normalized. Note
that different scaling may be employed for graphical purposes. The letter “u” stands for atomic mass unit.
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multiple off-center Gaussian-like distributions. A similar
observation was previously reported in the context of two
[B-peptides in methanol for which two main subensembles
of folded and unfolded configurations could be disentangled
based on the lowest frequency modes (Figures 3—5 in ref
11). In the present case, the most pronounced peaks for the
ccf peptide arise from folded configurations (see Figure 3a,
m = 1 and 2, leftmost peak).

The time dependence of these results was investigated as
summarized in Figure 3b for the two coordinates b, with
lowest frequencies, i.e., those contributing the most to the
total mean-square metric-tensor-weighted fluctuation of the
system (eq 6). The corresponding distributions vary signifi-
cantly with the extent of PS sampling, as revealed by
averaging over the first 0.2, 0.4, and 0.8 us periods, or over
the entire 1.1 us ensemble (cf. Figure 3b vs Figure 3a for m
= 1 and 2). Increasing the simulation time results into
broader distributions due to the larger extent of PS sampled.
The intensity of the leftmost peak, corresponding to the
contribution of the folded configurations, clearly reduces
along the simulation initialized from the ccf helical fold and
evolving through a broad range of heterogeneous configura-
tions (Figure 1a). The data indicate that convergence of the
probability distributions associated with the low-frequency
QH coordinates in b, requires sampling times longer than 1
us, considering that such differences persist when comparing
results from the first 800 ns period with the whole 1.1 us
simulation.

3.3. Entropy Convergence. The entropy convergence for
the ccf peptide in water as a function of sampling time is
illustrated in Figure 2b. The upper-bound curve obtained by
application of the uncorrected QH formula (S,,,; eq 10 with
eq 12) is compared to the build-up curve of the improved
absolute single-molecule entropy (S eq 20). Both curves
require periods of several hundred nanoseconds to reach a
first plateau. Interestingly, the QH upper bound reaches
convergence noticeably faster than the improved absolute
single-molecule entropy. In detail, ~0.3 or ~0.7 us is needed
to sample 90% or 99% of the final S, , estimate of 6922 J
K ™! mol !, while larger sampling times of ~0.5 or ~1.0 us
are needed to sample 90% or 99% of the final S estimate
0f 5916 J K~! mol™! (see also Supporting Information, Table
S2). These results clearly demonstrate that the convergence
of the S, , upper bound does not imply the convergence of
the absolute single-molecule entropy, S, In fact, the first
quantity relies on the convergence of linear motional
correlations only (following from the definition of linearly
independent QH modes in eq 7 with eq 8). Instead, as
described below, the second quantity requires in addition the
convergence of supralinear motional correlations. For this
reason, S seems to represent a better indicator of conver-
gence (compared to S,,,) for the absolute single-molecule
entropy.

The convergence behavior of the cumulative correction
term, ASS (eq 20), was also monitored (Figure 2¢). This
entropy term describes the overall deviation from the QH
model due to mode anharmonicity (ASe], eq 18; 4 J K!
mol ! after 1.1 us) and correlation (AS%, eq 19; 1002 J K™

mol ! after 1.1 us) effects, associated with all unique
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combinations of modes m and n. Its convergence behavior
can be used as well as a measure of uncertainty on the
entropy estimate. For comparison with previous studies
(Figure 1), the time evolution of the corresponding relative
contribution f7¢ (eq 21) to the uncorrected S, , estimate (eq
10 with eq 12) is also displayed (Figure 2d). In all studies,
the dominant part of this correction arises from QH pairwise
(supralinear) mode correlations (4" values are <0.05%; see
also Supporting Information, Tables S1 and S2).

Importantly, it is found that the magnitude of the correction
term AS¢¢ monotonically decreases from an initial value of
—2745 J K~! mol ™! (first 0.5 us sampling) to a final value
of —1006 J K~! mol~! (entire 1.1 us sampling), showing an
initial convergence behavior. This suggests that limited PS
sampling results in both the underestimation of S, , and the
overestimation of ASS¢ (predominantly through its ASEf
component), both artifacts leading to an underestimation of
the final absolute single-molecule entropy S

This result can be explained considering that motional
correlations are larger for a molecular system sampling a
confined part of PS as opposed to sampling of a multiple-
minima landscape. For the ccf3 test system these results
demonstrate that a limited PS sampling leads to the over-
estimation of corresponding motional correlations, thus of
AS?f values with respect to that expected for a canonical
ensemble of the same system at thermodynamic equilibrium.

The mass-weigthed root-mean-squared fluctuation, i.e., the
sum of the eigenvalues of the mass-weighted covariance
matrix, 7r[F,] (eq 9), was also monitored along time as an
independent measure of convergence (Figure 2e). In terms
of Tr[F,], we note that a first plateau region is reached after
~1.1 us (Figure 2e¢), in line with the S values (Figure 2b).
This observation confirms as well that the ccf peptide is
not trapped in a few local minima. Instead, it explores new
configurations even after several hundreds of nanoseconds
(Figure 2a).

Three important general points are worth noting.

First, the magnitude of the cumulative correction term
AS¢ is large. This is evident when the term is expressed in
the form of its contribution to the system free energy, TAS:*
(Figure 2c, right axis). The resulting value (302 kJ mol !
based on 1.1 us) is about an order of magnitude larger than
the free energy changes of typical (bio)chemical processes.
Thus, although partial cancellation of this term can be
expected for entropy differences between two different
molecular environments or conformational states, small
differences will still lead to large free-energy contributions
(of sign and magnitude difficult to be predicted a priori).
The importance of this correction for reliable entropy
calculations is therefore evident. In addition, this result
suggests that time convergence of the entropy estimate should
be taken into account as well when comparing the efficiency
and accuracy of alternative computational approaches.

Second, we stress that all M per-mode contributions need
to be included for an accurate estimation of eqs 10 and 18
because modes with large m indices (high frequencies) also
contribute to S,,,, (data not shown; see Figure 8 in ref 11
for a similar analysis). This marks a difference with what is
typically observed for the contribution of a reduced number
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of essential modes to the total system fluctuation.®> Due to
the similar mathematical formalism,'" this argument can be
easily demonstrated as well for the calculation of entropies
from normal-mode analysis for systems sampling one local
PS minimum.

Third, the analysis of the leading correction AS?f in terms
of all C(2,M) = [(M — 2)!2!IM! unique pair combinations
reveals that not only modes with low indexes (high ampli-
tudes, low frequencies) contribute substantially. Thus, all
pairs of QH modes need to be considered in eqs 15 and 19.
This requirement arises from the observation that high
correlations can be present among modes with either large
or small m and n indices (low or high frequencies; Figure 12
inref 11). Interestingly, this behavior was observed for highly
flexible systems (e.g., the ccf3 peptide of this study or the
reversibly folding 3-peptides in ref 11) but not for more rigid
systems confined to a local PS sampling (e.g., the W191G
cavity in ref 20, unpublished results). Whether the latter result
depends on a limited PS accessed or on the physical nature
of QH-mode correlation remains to be addressed.

3.4. Numerical Integration of the Correction Terms.
The analysis presented in this work relies on the numerical
integration of the actual probability distributions p™(b,.,)
and p™(b,.,.b,,) evaluated based on the MD trajectory (eqs
18 and 19). Two alternative procedures were described to
estimate these 1D and 2D integrals with optimal (nonarbi-
trary) histogram bin widths, as detailed in Appendix C of
ref 11. In this study, optimal parameters «,° and «,° were
chosen as the midpoint between the intersections of a
horizontal line with the limiting lines for too fine and too
coarse integration at the optimal value of the 1D or 2D
integrals in the graph showing these values as a function of
In k; or In «,, as summarized in Figure 4.

Figure 4a shows the values of the 1D integrals for a sample
set of eigenvectors (m = 1, 50, and 500), evaluated
numerically using different values of ;. Both limiting lines
are shown, together with the optimal «,° values. Values
approaching these limiting curves are incorrect because they
show a dependence of the evaluated integral on the bin size.
However, for each curve, a clear plateau defines the range
of k; values for which the integration result is essentially
independent of the bin size. Finite-sampling artifacts affect
the integration with the smallest values of «, while coarse-
binning artifacts affect the integration with the largest values.
Note that 1D integrals may be individually negative or
positive.

Figure 4b shows the values of the 2D integrals for a sample
group of eigenvector pairs (m,n = 1,2; 1,100; 1,500),
evaluated numerically with different values of «,, together
with the corresponding limiting lines and the optimal «,°
values. Here, the plateau regions are narrower and the value
of k, has to be chosen more carefully. Note that 2D integrals
are always negative when estimated using the optimal «,°
values, but incorrect positive values would be obtained based
on too small «, values.

The dependence of these curves on the simulation time
was also monitored (Figure 4). All 1D and 2D curves show
a coarse-integration limit that is essentially independent of
the MD period considered. Yet, they also show that the fine-
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Figure 4. Dependence of the numerical integration of prob-
ability distributions on the width of histogram bins for increas-
ing periods of time, t. (a) Integrals over the 1D distributions
involved in eq 18 are shown for eigenvectors 1 (circles), 50
(squares), and 500 (crosses). (b) Integrals over the 2D
distributions involved in eq 19 are shown for eigenvector pairs
1,2 (circles), 1,100 (squares), and 1,500 (crosses). The results
are displayed for the whole ensemble (1.1 us; black) or t =
200 (red), 400 (green), 600 (blue), 800 (cyan) ns as a function
of In k4 (a) or In ko (b), where « is the ratio of the bin width
along each dimension to the corresponding distribution width.
The middle point between a pair of limiting lines for too fine
(left side) and too coarse (right side) numerical integrations
(dashed lines) defines optimal «° or «,° values. A black
dot—dashed reference line is drawn at zero.

integration-limiting curves shift to lower «; and «, values
upon increasing the simulation time, thus reducing the
dependence on the integration bin size. This effect is more
pronounced for the 2D integrals because they require more
data points than 1D integrals.

Overall, these results demonstrate that the procedure
employed in this work allows estimating both 1D and 2D
integrals of eqs 18 and 19 in a nonarbitrary way as a function
of the simulation time. The presence of plateau regions
independent of the integration bin size for all MD periods
considered shows that the observed change of integral values
along the simulation time largely depends on the extent of
PS sampled yet not on the numerical procedure employed.
A similar analysis performed in the case of corresponding
3D integrals (triplewise combinations of QH modes) revealed
that indeed no such behavior can be achieved, although using
a 1.1 us trajectory. In practice, eq 15 can be only estimated
for the first two terms owing to finite sampling artifacts and
data sparseness.
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4. Conclusion

The theory and practical implementation of an approach
recently proposed'' to estimate improved configurational
entropies from quasi-harmonic analysis of molecular dynam-
ics simulations are briefly reviewed. It involves the calcula-
tion of correction terms of increasingly high order to account
for deviations from the quasi-harmonic approximation in
frustrated molecular systems. The convergence properties of
the absolute single-molecule entropy are critically investi-
gated using microsecond molecular dynamics simulation of
the ccf peptide in water. Prompted by the comparison of
the results with previous studies addressing mode anharmo-
nicity and correlation effects, the convergence behavior of
individual quasi-harmonic modes, of the absolute single-
molecule entropy, and of the correction terms for anharmo-
nicity and pairwise (supralinear) correlations are analyzed.
Our data provide a number of new insights to tackle the
challenge of accurate entropy estimation by computer
simulation.

In line with a previous study,'" the probability distributions
associated with components of the quasi-harmonic coordi-
nates only deviate significantly from Gaussian functions for
the first few components, resembling the behavior observed
in the different context of a single-atom displacement for
an o-helical peptide*? and of essential modes for protein
dynamics.** For these components, the probability distribu-
tions result from a superposition of clearly distinguishable
contributions from the folded and unfolded ensembles.
However, it is shown that the components of these eigen-
vectors converge slowly (>1 us), consistent with the observa-
tion that the ccf3 peptide steadily explores new configurations.

In line with previous studies,''%?>2%2% the entropic
contribution of anharmonicity is small while the pairwise
(supralinear) correlation correction to the entropy is large.
The deviation from the quasi-harmonic assumption affects
more significantly conformational states dominated by high
motional correlation. Using microsecond molecular dynamics
simulation of a peptide test system we show that limited
phase-space sampling results in an overestimation of cor-
relation effects, and we discuss its implications for entropy
estimation.

This study demonstrates that the convergence of the quasi-
harmonic upper-bound entropy with simulation time does
not imply the convergence of the system absolute single-
molecule entropy. As a consequence, our study also suggests
that the convergence of the absolute single-molecule entropy
rather than that of the quasi-harmonic upper bound should
be preferably monitored. Because the cumulative correction
term accounting for both mode anharmonicity and pairwise
(supralinear) correlation effects converges slowly and mono-
tonically decreases, previous studies based on shorter time
scales may have, in some cases, partly overestimated this
correction term, thus leading to underestimated absolute
entropy estimates.

Overall, the present study emphasizes the need of sufficient
phase-space sampling to estimate entropic contributions from
computer simulations. Ideally, only thermodynamic en-
sembles at equilibrium should be considered to this end, i.e.,
full phase-space sampling obtained from simulations on time

J. Chem. Theory Comput., Vol. 5, No. 12, 2009 3159

scales of several microseconds. In practice, we suggest that
enhanced sampling techniques®*** and/or concatenated cop-
ies of independent simulation trajectories®'** will be useful
tools to alleviate these problems in the future if properly
combined with the correction terms used herein.?® This
strategy will open the possibility to include as well
correlation effects of higher order than the pairwise
(supralinear) explicitly considered in this study. A bright
future opens for the estimation of accurate thermodynamic
properties for biomolecular systems using chemical theory
and computation.
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