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Introduction
The cornea is located in the anterior part of the 
eyeball. It is directly exposed to the external envi-
ronment, which can easily be influenced by 

traumatic factors,1 environmental factors,2 and 
infectious and inflammatory diseases.3 The cor-
neal epithelium, as the outermost physiologi-
cal structure of the cornea, is particularly 
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Abstract
Background: Corneal fluorescein sodium staining is a valuable diagnostic method for various 
ocular surface diseases. However, the examination results are highly dependent on the 
subjective experience of ophthalmologists.
Objectives: To develop an artificial intelligence system based on deep learning to provide an 
accurate quantitative assessment of sodium fluorescein staining score and the size of cornea 
epithelial patchy defect.
Design: A prospective study.
Methods: We proposed an artificial intelligence system for automatically evaluating corneal 
staining scores and accurately measuring patchy corneal epithelial defects based on corneal 
fluorescein sodium staining images. The design incorporates two segmentation models and a 
classification model to forecast and assess the stained images. Meanwhile, we compare the 
evaluation findings from the system with ophthalmologists with varying expertise.
Results: For the segmentation task of cornea boundary and cornea epithelial patchy defect 
area, our proposed method can achieve the performance of dice similarity coefficient (DSC) 
is 0.98/0.97 and Hausdorff distance (HD) is 3.60/8.39, respectively, when compared with the 
manually labeled gold standard. This method significantly outperforms the four leading 
algorithms (Unet, Unet++, Swin-Unet, and TransUnet). For the classification task, our 
algorithm achieves the best performance in accuracy, recall, and F1-score, which are 91.2%, 
78.6%, and 79.2%, respectively. The performance of our developed system exceeds seven 
different approaches (Inception, ShuffleNet, Xception, EfficientNet_B7, DenseNet, ResNet, and 
VIT) in classification tasks. In addition, three ophthalmologists were selected to rate corneal 
staining images. The results showed that the performance of our artificial intelligence system 
significantly outperformed the junior doctors.
Conclusion: The system offers a promising automated assessment method for corneal 
fluorescein staining, decreasing incorrect evaluations caused by ophthalmologists’ subjective 
variance and limited knowledge.
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problematic.4–6 Ophthalmologists used corneal 
fluorescein sodium staining to test the integrity of 
the corneal epithelium.7 Different staining shapes, 
the number of stained dots, and the size of the 
staining area are often used to distinguish various 
illnesses or disease severity. In addition, accurate 
measurement of the defect area is essential to 
assess the corneal repair function and the effec-
tiveness of the treatment.8,9 However, the evalua-
tion of corneal sodium fluorescein staining relies 
heavily on the subjective perception of the clini-
cian. Therefore, there exists a great need for auto-
mated quantitative analysis of corneal sodium 
fluorescein staining.

Researchers have accomplished a wide variety of 
related work. Pritchard et  al.10 developed a 
method for digital imaging to evaluate punctate 
corneal staining. Gaussian edge detection and 
RGB color system were combined to detect cor-
neal erosions.11 The corneal ulcer area was identi-
fied by k-means clustering.12 A joint Otsu and 
Gaussian mixture modeling method was per-
formed to segment corneal ulcers.13 The limita-
tions of these studies are the relatively small 
amount of data studied, traditional insufficient 
digital technology, or the insufficient generaliza-
tion capacity of the model.

With the advent of massive data, the deep neural 
network has wildly succeeded in various visual 
tasks14–19 and achieved satisfactory results in the 
last decades. In the field of ophthalmology, deep 
neural network methods have been used for 
optic disk segmentation,20 cataract image classi-
fication,21 eye tracking,22 detection of diabetic 
retinopathy,23 and iris segmentation,24 which 
brings great convenience to multiple clinical 
tasks, such as disease screening, diagnosis, and 
prevention.

In this study, we showcase a novel and effective 
way to quantify corneal sodium fluorescein 
staining, which can accurately evaluate the 
sodium fluorescein staining of the entire corneal 
area. Furthermore, the evaluation system can 
automatically detect the corneal stained area. 
Our experimental results demonstrated that 
deep learning–based artificial intelligence tech-
nology could reduce the variability of clinicians 
in interpreting corneal staining results and 
improve the reliability of measurement results, 
which provides a powerful tool for disease 
management.

Materials and methods

Image data set collection
We stained the patient’s cornea after moistening 
the fluorescein impregnated strips with a drop of 
sterile normal saline without applying a local 
anesthetic. Subsequently, the patient was asked 
to blink three times to ensure that the fluorescein 
dye was evenly applied throughout the tear film. 
Images were taken with a digital slit-lamp camera 
3 min after the instillation of fluorescein sodium 
dye solution. The image was saved in JPG format, 
1624 × 1232 in size. In our experiment, we 
focused on the staining of the corneal region, so 
that, each photo was designed to put the corneal 
part in the center of the image. Considering the 
model’s generalization ability, images at different 
magnifications are retained. In this prospective 
study, 1896 slit-lamp images were consecutively 
collected between October 2021 and May 2022.

Inclusion and exclusion criteria
Inclusion criteria: Patients with corneal epithe-
lial injury of any cause should be included in this 
study.

Exclusion criteria: Patients with the following 
conditions will be excluded from the research 
plan because these factors may lead to false posi-
tive sodium fluorescein staining: severe corneal 
trauma, corneal mass, corneal edema, post-kera-
toplasty, pterygium, corneal leakage, and 
secretion.

Data set division
In the field of machine learning or deep learning, 
it is very important to divide the training set, vali-
dation set, and test set reasonably. To reduce 
information leakage and improve the efficiency of 
the reaction model, we split the data set in this 
experiment into a training set, validation set, and 
test set at a ratio of 7:1:2. One image per patient 
was selected to form the data set. Each image is 
augmented with a random enhancement algo-
rithm to make the training model more generaliz-
able. The details of each set of various computer 
vision tasks are presented in Table 1.

Image preprocessing
We labeled the corneal region with Labelme soft-
ware (version 4.6.0). The corneal region was 
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labeled as the foreground, while the other areas 
were labeled 0 as the background. Because of the 
particular corneal structure, padding resize is 
employed to transmit it into the neural network 
for segmentation. We used the steps in Figure 1 
to extract the corneal region. Patchy defects in 
corneal epithelium significantly affect the patient’s 
vision and, in severe cases, lead to blindness in 
patients.25,26 We selected bigger corneal epithelial 
defects for manual labeling; 254/249 images were 
used to train cornea and patchy defect area 

segmentation, respectively, and 73/70 images 
were used to verify the performance of model 
training.

Image segmentation
We proposed a novel U-shaped structure seg-
mentation network for successfully segmenting 
the cornea and huge defect region. The network 
employed the Swin-Transformer27 to replace the 
standard convolution process, allowing for a more 

Table 1. Data set division is used in this study.

Tasks All image Train image > Validation image Test image

Cornea segmentation 363 254 36 73

Lesion segmentation 254 249 35 70

Classification score 1279 895 128 256

Figure 1. Images segmentation neural network structure for cornea boundary and corneal lesion region.
C, channels of images; Conv., convolution; H, the height of the image; Norm, normalization; Up-Conv, up convolution; W, the 
weight of images.

https://journals.sagepub.com/home/taj
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significant consideration of global information in 
feature extraction. Simultaneously, Swin-
Transformer has a quicker reasoning speed than 
other vision transformers’ (VIT) structures.28 To 
extract image features at various scales, we 
employed a patch merge layer to accomplish 2 × 2 
feature map scaling. A convolutional neural net-
work was still used for feature recovery in the 
upper sampling part to ensure the image edge’s 
detailed features were better. The structure is 
shown in Figure 1.

Automatic corneal staining scoring system
We divided the extracted corneal region into five 
subdomains. We scored the stained images 
according to the NEI Workshop on Clinical Trials 
in Dry Eyes,29 and two experienced ophthalmolo-
gists scored each subdomain. When a picture was 
consistently scored, it was included in the study. 
We used the framework in Figure 2 to train a 
four-classification neural network model, which 
directs the allocation of five subareas of the cor-
nea to one of the four grades of 0–3. Of the 1279 
images, 895 scored by the experts in total were 
used for the training of the model. The remaining 
photos were used for the performance test of the 
neural network.

Implementation details
The software used in this experiment is Python 
(version 3.7.11). The network architecture is built 
on PyTorch (version 1.10.1), an open-source 

Python machine learning library primarily used in 
deep learning research. PyTorch supports GPU 
computing, which significantly speeds up applica-
tion execution. This is especially important in the 
era of big data. In this experiment, we used four 
RTX2080Ti graphics cards.

Model evaluation and data analysis
Segmentation: Two commonly used objective 
criteria, dice similarity coefficient (DSC)30 and 
the Hausdorff distance (HD),31 are used to eval-
uate the medical image segmentation perfor-
mance quantitatively. The DSC is often used to 
calculate the similarity of closed regions. The 
value range is [0,1]. The higher the value, the 
nearer the two sets are. HD calculates the dis-
tance between two sets. The smaller the value, 
the greater the similarity between the two sets. 
Images labeled by experts are considered the 
ground truth (GT).

Classification: In the classification task, accu-
racy means the percentage of correctly classified 
instances, precision represents the proportion of 
the true positives against all the positives, recall 
reveals the ratio of the true positive against the 
sum of true positive and false negative, while 
F1-score shows the harmonic mean of precision 
and sensitivity.32,33 Here, we used the above four 
indicators to evaluate the performance of the 
corneal fluorescein sodium staining score sys-
tem, also called four-classification neural 
network.

Figure 2. Flow chart of corneal fluorescein sodium staining score system.
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Results

Segmentation of corneal boundary
In this research, we focused on the staining of the 
corneal region. Therefore, we first identified the 
corneal boundary from the original image using a 
segmentation model based on Swin-Transformers 
(Figure 1). In our approach, the DSC for identi-
fication of cornea boundary was 0.9824, while 
HD was 3.605 (Table 2). In addition, classic and 
excellent performance methods of medical image 
segmentation, such as Unet,34 Unet++,35 Swin-
Unet,36 and TransUnet,37 were performed to 
compare with our proposed method in the task of 
corneal region segmentation. Compared with 
Unet, Unet++, TransUnet, and Swin-Unet can 
improve DSC by 12.6%, 7.25%, and 23.2%, 
respectively, while decreasing HD by 56.1%, 
55.9%, and 77.9%, respectively. Among the 
methods mentioned above, our proposed method 
achieves the best performance; it can increase 
DSC by 24.4% and decrease HD by 84.4%.

In addition, we presented visualization results of 
corneal segmentation using five different segmen-
tation methods (Figure 3). Visually, we can intui-
tively find that the segmentation performance of 
our process is the closest to GT. In addition, it 
can be seen that our model has good performance 
in corneal staining images of different enlarged 
sizes, which indicates that our model has good 
generalization ability.

Segmentation of corneal lesion area
Similar to the corneal boundary segmentation 
task, we used several different methods the above-
mentioned for patchy corneal staining region seg-
mentation. Using our way, the DSC for detecting 
corneal staining lesions was 0.9776, while HD 
was 8.3909 (Table 3). Compared with Unet, the 
three methods, including Unet++, TransUnet, 
and Swin-Unet, can improve DSC by 20.3%, 
18.5%, and 22.9%, respectively, while decreasing 
HD by 37.1%, 35.3%, and 66.9% respectively. 

Table 2. Quantitative evaluation of corneal boundary segmentation performance.

Indicators Our Swin-Unet TransUnet Unet++ Unet

DSC 0.98236 0.97284 0.84684 0.88959 0.78959

HD 3.60555 5.12714 10.22517 10.16368 23.16368

DSC, dice similarity coefficient; HD, Hausdorff distance; Our, our proposed method. Bold values indicate that the result is 
the best of this metric.

Figure 3. Performance of corneal area segmentation on various methods.
Visualization results of corneal region segmentation by the above five different segmentation methods. From left to right: 
original image, ground truth, Swin-Unet, TransUnet, Unet+ +, Unet. Red represents the region segmented from the neural 
network model.
DSC, dice similarity coefficient; HD, Hausdorff distance; GT, ground truth; Our, our proposed method.
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Our proposed method increased DSC by 31.5% 
and reduced HD by 77.4%. We finally achieved 
the best performance in identifying corneal stain-
ing lesions by far surpassing the second place.

We visually generated the corneal patchy defect 
area’s mask (the red region) and drew it automat-
ically on the original image. Three representative 
segmentation outcomes with different methods 
are shown in Figure 4. It can be seen that whether 
the defect shape is complex or simple, our model 
can reasonably identify the location and bound-
ary of the cornea defect. Our proposed method 
achieved the best segmentation results.

Corneal fluorescein sodium staining  
score system
A score for each cornea subdomain was obtained 
using the method in Figure 2. Accuracy, as the 
most commonly used index in classification 
models, cannot reasonably reflect the prediction 
ability of models when there are unbalanced 

samples. Therefore, we also introduced preci-
sion, recall, and F1-score to more comprehen-
sively evaluate the performance of the 
classification model. Inception,38 ShuffleNet,39 
Xception,40 EfficientNet_B7,41 DenseNet,42,43 
ResNet, and VIT44 have been used for medical 
image classification tasks and achieved promising 
performance. Here, compared with the other 
seven methods, our developed model achieves 
the best performance in accuracy, precision, and 
F1-score, which are 91.2%, 78.6%, and 79.2%, 
respectively, and the implementation of precision 
achieved 84.244% (Table 4).

Comparison of artificial intelligence  
technology and ophthalmologists in  
corneal staining evaluation
We randomly selected three doctors who were 
asked to rate corneal staining images. Then, we 
compared the evaluation results of these three 
doctors with the results of machine learning. Our 
developed artificial intelligence-based approach 

Table 3. Quantitative evaluation of patchy corneal lesion segmentation performance.

Indicators Our Swin-Unet TransUnet Unet++ Unet

DSC 0.97763 0.91376 0.88089 0.89431 0.74340

HD 8.39098 12.26036 23.97022 23.32689 37.06745

DSC, dice similarity coefficient; HD, Hausdorff distance; Our, our proposed method. Bold values indicate that the result is 
the best of this metric.

Figure 4. Performance of detection of patchy corneal staining region on several methods.
Visualization results of patchy lesion area segmentation using the above five different segmentation ways. From left to 
right: original image, ground truth, our proposed method, Swin-Unet, TransUnet, Unet++, Unet. Red represents the region 
segmented from the model.
DSC, dice similarity coefficient; HD, Hausdorff distance; GT, ground truth; Our, our proposed method.
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far outperformed junior ophthalmologists on all 
four measures. In addition, we can see a big dif-
ference between the three ophthalmologists in the 
evaluation of corneal staining, especially in preci-
sion, recall, and F1-score. Table 5 shows their 
respective performance.

Discussion
Corneal fluorescein sodium staining is the most 
commonly used way in ophthalmology to assess 
corneal integrity. The evaluation of corneal stain-
ing and accurate automatic detection of the 
stained lesion area is very important for various 
clinical purposes, such as the evaluation of patient 
symptoms, quantitative study of lesions, monitor-
ing of drug treatment, and management of the 
patient’s condition.45

At present, the emerging field of deep learning 
has exerted a significant impact on medical imag-
ing. As effective methods used in biomedical 
image segmentation, Unet, Unet++, TransUnet, 
and Swin-Unet deep learning frameworks have 
achieved promising performance on many medi-
cal vision tasks, such as iris segmentation,46 pupil 
segmentation,47 retinal vessel segmentation,48 
skin lesion segmentation, and classification.49 
However, these methods cannot model global 
features well and are prone to lose a wealth of 
detailed local information. Deep learning tech-
niques suitable for massive data have yet to be 
fully utilized to solve the aforementioned clinical 
problem.

This article introduces an artificial intelligence 
method based on deep learning to automatically 

Table 4. Performance of corneal fluorescein staining evaluation system using different frameworks.

Methods Accuracy (%) Precision (%) Recall (%) F1-score (%)

Inception 85.7 73.5 63.9 68.5

ShuffleNet 69.1 35.6 40.3 37.8

Xception 87.4 76.2 45.3 56.8

EfficientNet_B7 80.5 84.2 49.6 62.4

DenseNet 79.1 57.8 69.2 63.0

ResNet 85.9 91.4 63.2 74.7

VIT+ mask 87.6 82.1 73.5 77.6

Our 92.5 86.3 79.2 82.6

Our, our proposed method. Bold values indicate that the result is the best of this metric.

Table 5. Comparison of artificial intelligence system with various ophthalmologists in corneal staining 
evaluation results.

Methods Accuracy (%) Precision (%) Recall (%) F1-score (%)

Our 91.2 84.2 78.6 79.2

Junior ophthalmologist 1 53.9 26.4 29.7 27.3

Junior ophthalmologist 2 52.0 26.0 25.0 24.9

Junior ophthalmologist 3 58.0 45.8 56.7 42.4

Senior ophthalmologist 1 90.5 84.9 76.4 80.4

Senior ophthalmologist 2 91.3 84.2 75.9 79.8

Our, our proposed method. Bold values indicates that the result is the best of this metric.
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and accurately assess corneal fluorescein sodium 
staining. As shown in Figures 3 and 4, our pro-
posed method can perfectly identify the corneal 
region and the corneal epithelial defect area. The 
best performance of the segmentation task may 
result from Swin-Transformer. It is used as the 
backbone in the segmentation model’s down-
sampling part. It can model global features better 
than the backbone based on convolution. Patch 
merging is also used for scaling to extract global 
features at different sizes and decrease computer 
resources. The patch reconstructs module trans-
forms the patch-based feature map into the stand-
ard feature matrix. In the up-sampling part, 
residual basic is used as the foundation to achieve 
pixel-level restoration. Finally, the corneal and 
lesion region segmentation is accomplished.

In contrast to the typical convolution-based clas-
sification model, the classification model’s back-
bone uses a Swin-Transformer, which pays more 
attention to the context information and can have 
global modeling features. Based on the segmenta-
tion results, this article uses a patch mask to mask 
the padding region. It does not involve feature 
modeling to decrease interference to the target 
region and lower the degree of computation. 
Therefore, we achieved the best accuracy, recall, 
and F1-score (Table 4). As for failing to reach the 

best precision, we argue that the transformer 
model has global features, and the input image is 
significantly unbalanced, which results in poor 
performance of our proposed model in this task. 
Moreover, the mask mechanism is also intro-
duced into the traditional VIT model (VIT+ 
mask) to optimize it to ensure the fairness of the 
comparative experiment. Ultimately, our artificial 
intelligence system outperformed the young oph-
thalmologists (Table 5). We hypothesize that the 
following reasons may explain the above phenom-
enon. First of all, the excess sodium fluorescein 
dye on the corneal surface may also be one of the 
reasons for the poor performance of young doc-
tors, who may mistakenly believe that this is a 
region of corneal epithelial defect. Second, young 
ophthalmologists lack rich clinical experience and 
may have poor judgment in Grades 1 and 2 of 
corneal staining, but machine learning has learned 
the knowledge of experts. Finally, the interpreta-
tion of corneal staining results depends heavily on 
the doctor’s individual subjective feelings. At the 
same time, the machine’s standard is fixed and 
will not be affected by multiple factors, such as 
working environment and mental state.

This study also has limitations. Punctate staining 
areas may be challenging to detect and count. 
Kourukmas and Rodriguez analyzed punctate 

Figure 5. Schematic overview of the entire corneal staining evaluation system.
The corneal region was manually labeled with a small amount of original image to train a neural network model to identify 
the corneal boundary accurately. For the extracted cornea, first of all, we divided the cornea into five regions, with 0–3 
grades in each subdomain, sequentially manual scoring, and then trained a four-part neural network model to evaluate 
the score of corneal fluorescein sodium staining automatically. Furthermore, for the staining pictures of patchy defects, we 
leveraged the image segmentation method to train a neural network model to segment the patchy defects automatically.
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corneal lesion staining regions using digital image 
analysis techniques,50,51 but such methods are 
suitable for a small amount of data, and their 
ways perform poorly in the era of massive data. 
Therefore, the future research direction is imple-
menting the accurate quantification of fine punc-
tate staining, which is still very challenging work. 
In addition, it is costly and time-consuming for 
doctors to label images, so researchers need to 
consider unsupervised machine learning methods 
to process the big data generated in outpatient 
clinics in future work. Finally, in deep learning 
for image segmentation and classification, one 
image is regarded as a sample, and the gap 
between the image and the target region is viewed 
as a loss to leverage backpropagation to update 
the neural network parameters and carry out net-
work optimization. Power analysis is not used in 
this application scenario. It is well-known that the 
cost of image labeling by physicians is prohibitive. 
Furthermore, according to expert experience, in 
the sample collection labeling stage, as far as pos-
sible to be consistent with the distribution of 
actual samples, and to ensure the diversity and 
complexity of samples, each sample has a certain 
independence and representativeness. In a word, 
incremental learning was used in our study; that 
is to say, when the sample size we collected is 
enough to allow the neural network model to 
learn the characteristics and perform well, we do 
not collect data.

Conclusion
Our proposed method performs state-of-the-art 
vision tasks, including identifying corneal regions, 
detecting patchy corneal epithelial defects, and 
automatically assessing corneal staining scores 
(Figure 5). Moreover, this method is a fast, sim-
ple and trustworthy way. Besides, our proposed 
deep neural network framework has better gener-
alization ability. The development of such a sys-
tem offers the possibility of future applications in 
practical clinical scenarios.
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