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a b s t r a c t

Stroke is the leading cause of death and disability worldwide, with a growing number of incidences in 
developing countries. However, there are currently few medical therapies for this disease. Emerged as an 
effective drug discovery strategy, drug repurposing which owns lower cost and shorter time, is able to 
identify new indications from existing drugs. In this study, we aimed at identifying potential drug candi-
dates for stroke via computationally repurposing approved drugs from Drugbank database. We first de-
veloped a drug-target network of approved drugs, employed network-based approach to repurpose these 
drugs, and altogether identified 185 drug candidates for stroke. To validate the prediction accuracy of our 
network-based approach, we next systematically searched for previous literature, and found 68 out of 185 
drug candidates (36.8 %) exerted therapeutic effects on stroke. We further selected several potential drug 
candidates with confirmed neuroprotective effects for testing their anti-stroke activity. Six drugs, including 
cinnarizine, orphenadrine, phenelzine, ketotifen, diclofenac and omeprazole, have exhibited good activity 
on oxygen-glucose deprivation/reoxygenation (OGD/R) induced BV2 cells. Finally, we showcased the anti- 
stroke mechanism of actions of cinnarizine and phenelzine via western blot and Olink inflammation panel. 
Experimental results revealed that they both played anti-stroke effects in the OGD/R induced BV2 cells via 
inhibiting the expressions of IL-6 and COX-2. In summary, this study provides efficient network-based 
methodologies for in silico identification of drug candidates toward stroke.

© 2023 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Stroke is a leading cause of death and disability globally [1]. This 
disease can be generally classified into ischemic stroke (IS) and he-
morrhagic stroke which result from arterial occlusion or rupture of 
cerebral arteries. Responsible for about 87 % of all stroke cases [2], IS 
gives rise to oxygen depletion in the brain, causing inflammation, 
vascular alterations as well as affecting neuronal and glial function 
[3]. To date, only intravenous thrombolysis with recombinant tissue 
plasminogen activator (rt-PA) is approved by the US Food and Drug 
Administration (FDA) for acute ischemic stroke. Unfortunately, the 
benefit from rt-PA therapy is limited due to the narrow therapeutic 
window and reperfusion injury resulting from recanalization of 

blood flow may also occur [4,5]. Hence, it is urgently needed to 
develop effective agents for stroke.

Over the last decades, de novo drug discovery is considered to be 
increasingly high cost and time-consuming while the number of 
novel candidates transformed into therapeutic agents has stagnated 
[6]. To overcome this problem, drug repurposing has emerged as an 
effective drug discovery strategy, which is able to identify new in-
dications from existing drugs for complex diseases, such as stroke. 
For example, a study in 2020 demonstrated that antimycotic ciclo-
pirox olamine (CPX) could be repurposed as a promising anti-IS 
agent since it effectively alleviated multiple ischemic injuries [7]. 
CCR5 inhibitors were also considered to be potentially repurposed 
for stroke recovery [8]. Li et al. has utilized the computational drug 
repositioning approach for IS and identified 252 drugs with potential 
neuroprotective effects [9]. Moreover, as a peroxisome proliferator- 
activated receptor gamma and cannabinoid receptor type 2 dual 
agonist, VCE-004.8 has shown the possibility of repurposing its use 
as a delayed treatment option for IS [10]. Since existing drugs may 
have good post-marketing experience and safety surveillance, drug 
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repurposing can sharply cut down the expense and reduce the time 
of drug development [11,12].

Several network-based methodologies also provide efficient tools 
to establish associations between drugs and diseases via assembling 
disease genes and drug-target interactions (DTIs) in human pro-
tein–protein interactome. For instance, our previous studies have 
demonstrated that network-based infrastructure is of great value for 
prioritizing potential drug candidates toward numerous diseases, 
such as SARS-CoV-2 [13] and Alzheimer’s disease [14,15].

In this study, we proposed network-based framework for drug 
repurposing for stroke from approved drugs (Fig. 1). We posited that 

a drug would hold high potential for stroke therapy if its drug targets 
were more likely to be stroke genes. Specifically, we firstly in-
tegrated stroke genes from numerous databases and constructed a 
drug-target network of all approved drugs. Subsequently, we applied 
statistical network model to identify promising anti-stroke drug 
candidates and performed the systems pharmacology analysis. We 
next selected several drugs without anti-stroke literature evidence 
for in vitro verification on BV2 cells. Finally, mechanism explorations 
of potential drug candidates (phenelzine and cinnarizine) were 
performed, which supported the effectiveness of our network-based 
approach.

Fig. 1. Network-based framework for identification of stroke therapy. Construction of approved drug-target network (A). Network-based identification of potential drug 
candidates (B). In vitro experimental validation and mechanisms exploration of promising candidates (C).
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2. Materials and methods

2.1. Collection of disease genes associated with stroke

The stroke disease genes were collected from six authoritative 
databases (access time in October 2019), including the DisGeNET 
(https://www.disgenet.org/), GWAS Catalog (https://www.ebi.ac.uk/ 
gwas/), the Phenopedia database (https://phgkb.cdc.gov/PHGKB/ 
startPagePhenoPedia.action), the ClinVar database (https://www. 
ncbi.nlm.nih.gov/clinvar/), the ClinGen database (https://www. 
clinicalgenome.org/) and the Open Targets Platform (https://www. 
targetvalidation.org/). We firstly searched the key word “stroke” in 
these six authoritative databases. For Phenopedia database, only 
genes with three or more publications were preserved. For DisGeNET 
database, we only kept the stroke genes with a DisGENET score ≥ 0.3 
and an evidence index (EI)  >  0. For ClinVar database, we only re-
served those genes owning number of golden stars higher than or 
equal to two. As for the Open Targets Platform, only those stroke 
genes with score values higher than 0.3 were preserved. After re-
moving the duplicates, 322 stroke genes were finally obtained 
(Supplementary Table 1).

2.2. Construction of drug-target (D-T) network

The high-quality DTIs were integrated from six recognized da-
tabases. The detailed information of integrative process can be found 
in the previous research [13]. In total, 15367 DTIs which connected 
1608 approved drugs to 2251 unique human targets/proteins were 
assembled. The D-T networks were constructed by Gephi (version 
0.9.2) and Cytoscape (version 3.2.1). In each graphical network, 
drugs or genes or targets were represented by nodes, while inter-
actions were encoded by edges. The degree of each node was also 
calculated since it characterized the most significant nodes in a 
network.

2.3. Integration of the human protein-protein interactome

We constructed an extensive human protein interactome via in-
tegrating six types of protein-protein interactions (PPIs) from mul-
tiple databases, including high-throughput Y2H binary (Y2H), 
protein three-dimensional (3D) interactomes, kinase-substrate in-
teractions, signaling networks, protein complexes and literature. The 
detailed data source and integration process can be found in pre-
vious study [16].

2.4. Identification of potential drug candidates for stroke

In this study, we developed statistical network model to prior-
itize potential anti-stroke drug candidates via integrating D–T net-
work and stroke genes. We assumed that a drug would hold high 
promise against stroke if its drug targets were more likely to be 
stroke genes. Then, Fisher’s exact test was applied to assess the 
statistical significance of the enrichment of stroke genes in target 
profiles of each drug in Drugbank database. The P-values were cor-
rected by Benjamini–Hochberg method and a cutoff adjusted P-value 
threshold (q)  <  0.001 was set to determine the significant DTIs.

2.5. Experimental validation

2.5.1. Cell cultures and oxygen-glucose deprivation/reoxygenation 
(OGD/R) model in vitro

Microglial cell line BV2 was purchased from Shanghai institute of 
life sciences, Chinese academy of sciences. Dulbecco’s modified 
Eagle’s medium (DMEM) (Gibco, USA), which contained 10 % fetal 
bovine serum (FBS) were used for BV2 cell culture in a humidified 
incubator at 37 °C with 5 % CO2 and 95 % air. Cinnarizine, 

orphenadrine, diclofenac, phenelzine, ketotifen and omeprazole 
were purchased from Macklin, China (http://www.macklin.cn/) and 
dissolved in DMSO. Before establishing OGD/R model, BV2 cells were 
treated with different concentrations of drugs for 2 h. Then the 
culture medium was replaced with glucose-free DMEM, and cells 
were incubated in the incubator of 95 % N2 and 5 % CO2 for 3 h. After 
OGD treatment, BV2 cells were transferred back to the culture 
medium containing drugs and recovered under normoxic conditions 
for 5 h.

2.5.2. Cell viability assay
Cell viability was determined by the cell counting Kit-8 (CCK8) 

(Beyotime, China), according to the manufacturer’s instruction. 
Briefly, BV2 cells cultured in 96-well plate were incubated with CCK8 
for 2 h after treatment with different concentrations of drug candi-
dates. The optical density (OD) value was read at 450 nm using a 
microplate reader (Tecan Austria Gmbh Model-SUNRISE, AT).

2.5.3. Western blot analysis
Cells were lysed in RIPA lysis buffer (Cwbio, China) containing 

protease inhibitors cocktail (Cwbio, China) on ice. Protein con-
centrations were next determined using a BCA protein assay kit 
(Beyotime, China). Proteins were separated by 10–12 ％ SDS-PAGE, 
transferred onto PVDF membranes and sealed with 5 % nonfat milk. 
The membranes were incubated overnight at 4 °C with primary an-
tibodies, including anti-cyclooxygenase-2 (COX-2) (1:1000; CST; 
#12282), anti-interleukin-6 (IL-6) (1:1000; ABclonal; A2447) and 
anti-β-actin (1:1000; CST; #3700) followed by incubation with 
Peroxidase AffiniPure Goat Anti-Rabbit IgG (H + L) (1:5000; Jackson; 
111-035-003) or Peroxidase AffiniPure Rabbit Anti-Mouse IgG (H + L) 
(1:5000; Jackson; 315-035-003) at room temperature for 2 h. Protein 
bands were captured following adding an enhanced chemilumi-
nescence (ECL) developer and subsequently analyzed by Image J 
software.

2.5.4. Proteomic profiling with Olink inflammation panel
Proteins were measured using the Olink inflammation panel 

(Olink Proteomics AB, Uppsala, Sweden), according to the manu-
facturer’s instructions. The Olink panel was able to analyze 92 ana-
lytes simultaneously via using 1 µL of each sample. Based on the 
Proximity Extension Assay (PEA) technology, this platform involves a 
pair of oligonucleotide-labeled antibodies (“probes”), which bind to 
the target protein. Then, a unique PCR target could be formed via a 
proximity-dependent DNA polymerization event since the probes 
come in mutual close contact. Consequently, a new target is detected 
and quantified via using qPCR. The final assay read-out is presented 
with normalized protein expression (NPX) values. Usually, the larger 
the value is, the higher the protein expression is.

2.6. Molecular docking

The 2D structures of IL-6 and COX-2 were obtained from the 
Protein Data Bank database (http://www.rcsb.org/) while the struc-
tures of cinnarizine and phenelzine were downloaded from the 
PubChem database (https://pubchem.ncbi.nlm.nih.gov/). Molecular 
docking analyses were performed via using the AutoDock Vina and 
AutoDock Tools. The AutoDock Tools was utilized to generate the 
related receptor grid file, and the ligand structures and the receptor 
grid files were docked with the AutoDock Vina. It was asserted that 
the lower binding energy represented the better docking effect.

2.7. Statistical analysis

In this study, Gene ontology (GO) terms analysis, including bio-
logical process (BP), molecular function (MF) and cellular compo-
nent (CC) were performed by Omicshare webserver (https://www. 
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Fig. 2. Protein-protein interaction (PPI) network and enrichment analysis of stroke genes. PPI network consisting of 261 stroke genes and 937 edges (PPIs) (A) and KEGG 
pathway enrichment result of the top 20 stroke genes in PPI network (B). The sizes of node and label are proportional to degree. Edge colors represent six types of the PPI evidence, 
including binary, 3D, kinase-substrate, signaling, complexes and literature.
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omicshare.com/tools) while KEGG pathway enrichment results were 
obtained via DAVID (The Database for Annotation, Visualization and 
Integrated Discovery, http://david.abcc.ncifcrf.gov) database. All ex-
periments in this study were repeated at least three times. Data 
were represented as mean  ±  standard deprivation (SD) and analyzed 
using GraphPad Prism 5.01 (GraphPad Software). One-way analysis 
of variance (ANOVA) followed by Tukey’s post-hoc test was utilized 
to compare the data in multiple groups. P value smaller than 0.05 
was considered as statistically significant (#P vs. control group, *P vs. 
vehicle group).

3. Results

3.1. PPI network and enrichment analysis of stroke genes

To investigate the effects of different stroke genes on an inter-
actome network, we first constructed a comprehensive human PPI 
network by assembling six types of PPIs mentioned above. This PPI 
network comprises 261 stroke genes and 937 edges (Fig. 2A). Among 
these genes, 14 out of them have degree higher than 10: F2, ESR1, 
TP53, APOA1, HNF1A, ALB, HSPA1A, PLG, FGA, FGG, RUVBL2, VKORC1, 
APEX1 and F10, suggesting their important roles in stroke. For ex-
ample, it is demonstrated that TP53-induced glycolysis and apop-
tosis regulator is able to exert neuroprotection against ischemic 
injury via increasing the flow of pentose phosphate pathway [17]. 
Moreover, HNF1A polymorphisms are likely to be the genetic risk 
factors for IS [18]. To explore the potential pathways they may 
function on, we further performed KEGG pathway analysis (Fig. 2B) 
on the top 20 stroke genes in PPI network. The enrichment results 
indicated that these genes might be involved with multiple path-
ways which exerted significant effects on stroke, such as platelet 
activation [19] and estrogen signaling pathway [20]. The in-
appropriate activation of platelets might result in the formation of 
occlusive thrombi within the circulation which would finally induce 
the IS under several pathological circumstances [19]. Recent litera-
ture also reported that inhibiting platelet activation could attenuate 
experimental IS [21]. As for the estrogen signaling pathway, emer-
ging evidence has revealed that the selective estrogen receptor 
modulator could serve as an effective and safer alternative which 
benefits for diabetic IS outcome after successful reperfusion [20]. 
Overall, these genes mentioned above do play vital roles in stroke- 
related KEGG pathways.

3.2. D-T network analysis

We next constructed a D-T network for FDA approved drugs 
through assembling curated physical DTIs that connected to stroke 
genes. The D-T network covers 4568 DTIs interacting 1514 drug 
candidates with 236 stroke genes (Supplementary Table 2, Fig. 3). 
Among these genes, the top 10 are HTR2A (D = 183), SLC6A2 
(D = 150), SLC6A4 (D = 146), SLC6A3 (D = 131), DRD3 (D = 131), ESR1 
(D = 115), ABCB1 (D = 105), ADRB2 (D = 99), ADRB1 (D = 97) and 
PTGS1 (D = 95). Meta-analysis indicates that ESR1 rs2234693 poly-
morphism is highly associated with an increased risk of stroke, 
especially IS [22]. Also, ESR1 genetic polymorphisms may accelerate 
the development of cerebral infarction, which more easily happened 
in the female population [23]. Meanwhile, network analysis shows 
that 10 drugs have more network connections to stroke genes than 
other drugs in the D-T network, including caffeine (K = 22), pento-
barbital (K = 23), olanzapine (K = 21), amoxapine (K = 22), acampro-
sate (K = 23), prasterone (K = 27), trapidil (K = 20), propofol (K = 19), 
halothane (K = 19) and midazolam (K = 18), indicating their high 
promise for stroke therapies. In fact, multiple literature has con-
firmed the possibilities. For instance, in vivo study deciphered that 
olanzapine attenuated brain damage after focal cerebral ischemia 
[24] and case report showed that an adolescent with abulia from left 

middle cerebral artery stroke was treated successfully by using short 
duration olanzapine [25]. Recent literature has verified that propofol 
plays a protective role on regulatory T cells, suppresses neurotoxic 
astrogliosis, and enhances neurological recovery after IS [26]. Pro-
pofol is also reported to protect against cerebral ischemia/reperfu-
sion injury though inhibiting long noncoding RNA SNHG14 [27]. To 
sum up, the D-T network reveals that these approved drugs interact 
with multiple stroke genes, which may own higher possibilities 
against stroke.

3.3. Network-based drug repurposing for stroke

In this study, we applied the state-of-the-art network-based 
approach to prioritize US FDA-approved drug candidates for stroke. 
In total, statistical network model identified 185 drug candidates 
(q  <  0.001) (Fig. 4). It is obvious that most of the drug candidates 
belong to nervous system (n = 85), followed by cardiovascular 
system (n = 21) and genito urinary system and sex hormones (n = 10), 
except “unknown & others”. Since stroke is deemed to a neurological 
deficit caused by an acute focal injury of the central nervous system 
(CNS) by a vascular cause [28], nervous system drugs are naturally 
designed as stroke candidates. Cardiac causes of stroke, such as 
permanent and paroxysmal atrial fibrillation, both increase the risk 
of cardioembolic IS [29]. Thus, cardiovascular system drug may hold 
high promise against stroke. Moreover, drug candidates belonging to 
genito urinary system and sex hormones are likely to be repurposed 
since gonadal hormones are reported to regulate stroke risk and 
severity [30], showing their potentials in stroke.

To identify the most promising ones, we next developed a D-T 
network of these drug candidates (Fig. 5A) mentioned above. This 
network comprises 1888 edges interacting 185 drugs with 160 stroke 
genes. Most drug candidates are connected to multiple genes with 
the average degree of 10.2 for each drug. Among them, prasterone 
has the largest gene interactions (D = 27), followed by pentobarbital 
(D = 23) and acamprosate (D = 23), indicating their synergistic effects 
against stroke. Taking pentobarbital for example, it is claimed that 
delayed pentobarbital administration in gerbils could limit ischemic 
brain damage [31]. Pentobarbital also reduces infarct size and at-
tenuates the expected time course of ischemic edema in cats [32]. 
Besides, acamprosate was reported to significantly reduce the neu-
rological deficits following transient hemispheric ischemia [33] and 
another in vivo study has demonstrated that acamprosate is an in-
triguing candidate for adjuvant future stroke treatment [34]. To 
further decipher the biological process (BP) they may function on, 
we performed enrichment analysis on the top 20 stroke genes 
(Fig. 5B). These drug candidates may be involved in lots of BPs, such 
as gamma-aminobutyric acid (GABA) signaling pathway and dopa-
mine transport. Recent study implies that environmental enrich-
ment could reduce GABA inhibition and facilitate phasic GABA 
inhibition in the peri-infarct cortex, thus promoting the recovery of 
stroke [35]. GABA signaling was demonstrated to mediate the pro-
tective effects of continuous theta burst stimulation against cerebral 
ischemia in mice [36]. Moreover, molecular function (MF) results 
suggested that these potential candidates could participant in neu-
rotransmitter receptor activity and transmitter-gated channel ac-
tivity etc. Sigma-1 receptor activation could alleviate blood brain 
barrier (BBB) disruption post cerebral IS via the stimulation of the 
GDNF-GFRα1-RET pathway [37]. Indeed, Sigma-1 receptor agonists 
are regarded as potential treatment for stroke [38]. As for the cellular 
component (CC), seven items (ie, GABA receptor complex and sy-
naptic membrane) were obtained. Intriguing, we found that BP, MF 
and CC items were simultaneously involved with GABA, indicating 
its significance in stroke.

To determine the prediction accuracy of our statistical network 
model, we next systematically searched the previous literature for 
these 185 drug candidates. Totally, 68 out of them (36.8 %) have been 
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confirmed with anti-stroke effects by in vivo, in vitro or other lit-
erature evidence (Supplementary Table 3). Taking midazolam for 
example, abundant research indicated that midazolam exerted 
beneficial effects on focal cerebral ischemia in rats via anti-apoptotic 
mechanisms [39]. Diazepam was also demonstrated to reduce brain 
lesion size in a photothrombotic rat model of focal ischemia [40]. 
Moreover, it is proposed that sildenafil treatment could induce mi-
croglial modulation which acts as a potential strategy for neonatal IS 
treatment/recovery [41]. As for the other 117 drugs without stroke 
evidence, we interestingly found that 20 out of them were reported 
to show neuroprotection, indicating their potentials against stroke 
(Fig. 6). For instance, stiripentol (adj-p = 2.28E-26), significantly 
promoted the number of surviving neurons relative to controls, 
suggesting its neuroprotective activity [42]. To further narrow up the 
scope of drug candidates and improve the verification efficiency, we 
preserved those drugs satisfied with the following factors: (i) con-
firmed neuroprotective effects in vivo and in vitro; (ii) availability of 
drugs; and (iii) strength of the network-based prediction. As shown 
in Fig. 6, 7 drug candidates owned neuroprotective effects both in 
vivo and in vitro. However, drotrecogin alfa was excluded since this 
drug could not be obtained, which was not satisfied with the avail-
ability of drugs. Thus, we prioritized 6 drugs, including ketotifen 
(adj-p = 1.95E-10), cinnarizine (adj-p = 1.19E-06), diclofenac (adj- 
p = 3.08E-06), phenelzine (adj-p = 5.76E-06), orphenadrine (adj- 

p = 3.02E-04) and omeprazole (adj-p = 6.06E-04), to test their anti- 
stroke effects.

3.4. Experimental validation and mechanism exploration of drug 
candidates for stroke

3.4.1. Evaluation of drug candidates on cell viability
Based on the encouraging findings discussed above, we next 

validated the anti-stroke activity of 6 drug candidates, including 
cinnarizine, orphenadrine phenelzine, ketotifen, diclofenac and 
omeprazole. Fig. 7 revealed that OGD/R insult group and vehicle 
group extremely lowered the BV2 cells viability. Compared to the 
vehicle group, treatment with cinnarizine (10, 20, and 40 μM), or-
phenadrine(25 μM), phenelzine (20, 40 and 60 μM), ketotifen 
(40 μM), diclofenac (20 and 40 μM) significantly increased the BV2 
cells viability productively (Fig. 7A–E, P  <  0.05 and P  <  0.01, re-
spectively). Intriguingly, we found that omeprazole, a proton pump 
inhibitor commonly used for gastric acid hypersecretion, also 
showed good activity on BV2 cells (Fig. 7F, P  <  0.05), suggesting its 
positive role in stroke. Especially, the survival rates of BV2 cells were 
significantly increased after treatment with three different con-
centrations of cinnarizine (10, 20, and 40 μM), and phenelzine (20, 
40 and 60 μM) (Fig. 7, P  <  0.05, P  <  0.01), indicating their excellent 
neuroprotective activity on stroke.

Fig. 3. Drug-target network for approved drugs. This network contains 4568 DTIs interacting 1514 drug candidates with 236 stroke genes. Drug nodes were classified by the 
degree (K). Labels of the top 10 drug candidates and stroke genes with the highest degree were displayed. The network was generated by the Gephi (version 0.9.2). The square 
node represents the drug while the dot denotes the stroke gene. The sizes of node and label are proportional to degree.
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3.4.2. Mechanisms exploration of cinnarizine and phenelzine for stroke
Since cinnarizine and phenelzine showed good anti-stroke effects, 

we next performed mechanisms exploration for cinnarizine and phe-
nelzine via constructing a D-T and PPI network. As a specific calcium 
channel blocker, cinnarizine can be used for the management of la-
byrinthine disorder symptoms, including vertigo, tinnitus, nystagmus, 
nausea, and vomiting [43]. It also has been found to act as an alter-
native recommendation for migraine prophylaxis and has a potential 
antipsychotic effect with an atypical profile [44]. Interestingly, both in 
vivo and in vitro studies uncovered that cinnarizine could protect dorsal 
root ganglion neurons [45], while the molecular mechanism still re-
mains unknown. Fig. 8A displayed that cinnarizine connected to 9 
stroke genes and 12 PPI partners (e.g., IL-6, COX-2). Recent literature 
has revealed that polymorphism of IL-6 receptor gene is related with IS 
in patients with metabolic syndrome [46]. Moreover, intravenously 
administered IL-6 was reported to show beneficial effect in experi-
mental stroke of C57BL/6 mice [47], indicating the potential anti-stroke 
mechanism of cinnarizine. As for COX-2, evidence indicated that ad-
ditional pharmacological properties of individual COX-2 inhibitors 
might have an influence on an increased risk of IS [48].

It is well-known that brain ischemia releases several damage- 
associated molecular pattern molecules, which can trigger a sterile 
inflammatory response [49]. Indeed, multiple evidence has con-
firmed a causal role for inflammation in the pathogenesis of stroke 
[50], in which IL-6 and COX-2 are important markers of inflamma-
tion [51]. To assess whether cinnarizine was involved in inflamma-
tion for treatment of stroke, we first performed the molecular 
docking to explore the possible binding between cinnarizine and 
these two targets. Fig. 8B suggested that cinnarizine could bind to IL- 
6 and COX-2, with the docking scores of − 7.0 and − 9.2, respectively. 
We next measured the expression of inflammatory related protein 
through western blot. As shown in Fig. 8C–D, both the protein levels 
of COX-2 and IL-6 in OGD/R and vehicle groups were significantly 
increased compared with the control group. 40 μM cinnarizine 
treatment effectively reduced the protein expression of COX-2 and 
IL-6 (Fig. 8C–D).

Similarly, phenelzine, a monoamine oxidase inhibitor (MAO in-
hibitor), is mainly utilized to treat moderate-to-severe depression, 
while its FDA-approved indications also include the management of 
treatment-resistant depression, panic disorder, and social anxiety 

Fig. 4. Network-based drug repurposing for stroke. A total of 185 drugs were considered as candidates for stroke. Drug candidates were classified by the first-level of 
Anatomical Therapeutic Chemical Classification (ATC) code. Note: A: alimentary tract and metabolism; B: blood and blood forming organs; C: cardiovascular system; D: der-
matologicals; G: genito urinary system and sex hormones; N: nervous system; O: others; U: unknown. The lengths of the line bars are consistent with the absolute values of Z- 
score.
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Fig. 5. Drug-target network of 185 drug candidates and gene enrichment analysis. A drug-target network comprising 185 drug candidates and 160 stroke genes. Drug nodes 
were classified according to the first-level of ATC code. The sizes of node and label are proportional to degree (A). BP, MF and CC enrichment results of the top 20 genes in the 
network are displayed (B).
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disorder. Moreover, clinical trial shows that phenelzine can exert 
efficacy on patients with biochemical recurrent castrate-sensitive 
prostate cancer, representing a new avenue for recurrent prostate 
cancer [52,53]. Additionally, phenelzine has been confirmed to be a 
strong inhibitor of primary amine oxidase (PrAO) [54,55], indicating 
its promising role in stroke, since inhibition of PrAO could attenuate 
ischemia–reperfusion injury in a mouse model of stroke [56]. In-
triguingly, Fig. 9A displays that phenelzine interacts with 7 stroke 
genes and 5 PPI partners, suggesting the potential molecular me-
chanism of phenelzine on stroke. We next confirmed whether phe-
nelzine also played anti-stroke role via anti-inflammation. Molecular 
docking results indicated that phenelzine showed good binding 
energy with IL-6 and COX-2 (Fig. 9B). In vitro experiment revealed 
that 40 or 60 μM phenelzine treatments dramatically decreased 
protein expression of IL-6 and COX-2 (Fig. 9C–D). Taken together, 
results aforementioned demonstrated that cinnarizine and phe-
nelzine might protect OGD/R-induced BV2 cells injury via anti-in-
flammation.

3.4.3. Cinnarizine and phenelzine regulated inflammatory cytokines
In this study, Olink inflammation panel was applied to determine 

the protein levels of related inflammatory markers. Fig. 10 revealed 
that the expression level of inflammation related proteins including 
CCL3, CXCL1, CXCL9, IL-17A, IL-17F, IL-1α,IL-1β, IL-5, IL-6, and TNF-α 
were significantly decreased after cinnarizine or phenelzine ad-
ministration compared to the vehicle group. Moreover, results also 
showed that apoptosis-related proteins (CASP-3, PARP-1) were in-
hibited by cinnarizine or phenelzine (Fig. 10A–B). Surprisingly, we 
found that the expression levels of protective proteins, including 
neurotrophic factor NTF-3, IL-10, HGF, TGF-β1 and VEGF-D were 
increased after drug treatments. Taken together, these results 

suggested that cinnarizine or phenelzine might have potential 
therapeutic effects on stroke via acting on these proteins.

4. Discussion and conclusion

Despite that stroke is the second leading cause of death and third 
leading cause of disability globally [1], there are still few therapeutic 
agents for this disease. Fortunately, drug repurposing provides sig-
nificant advantages (e.g., low cost and reduced risk) in comparison 
with traditional drug discovery. In this study, we presented a net-
work-based drug repurposing approach to prioritize potential drug 
candidates for stroke, which integrated the D-T network, systems 
pharmacology analysis, literature evidence, experimental validation 
and mechanism exploration. Specifically, we constructed a com-
prehensive D-T network of approved drugs and identified potential 
drug candidates for stroke via network-based approach. In total, we 
prioritized 185 candidates to be associated with stroke, including 85 
nervous system drugs, 21 cardiovascular system drugs, 9 alimentary 
tract and metabolism drugs, 9 blood and blood forming organs 
drugs, 6 dermatologicals drugs and other drugs. After in-depth lit-
erature mining, we intriguingly found that 68 out of them were 
reported with anti-stroke effects. We next sought literature evidence 
for the other 117 drug candidates and found that 20 out of them 
showed neuroprotective effect. Subsequently, we selected 6 drug 
candidates with in vivo and in vitro neuroprotective effect for further 
experimental validation.

We next established an OGD/R model to simulate cerebral is-
chemic injury and determined the anti-stroke effects of potential 
drug candidates. All the six candidates showed good activities on 
BV2 cell. we further showcased the mechanism of action (MOA) of 
cinnarizine and phenelzine via network analysis, molecular docking, 

Fig. 6. Twenty drug candidates with neuroprotective effect. PMID denotes the specific previous references. Evidence represents the literature evidence with confirmed in vitro 
or in vivo neuroprotective effects. If the previous literature had no specific information of in vitro or in vivo, we considered it uncertain. Adj-p corresponds to the adj-p values of 
drug candidates. A cutoff adjusted P-value  <  0.001 was considered as statistically significant.
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Fig. 7. Effects of drug candidates on BV2 cells viability. BV2 cells viability was tested via CCK8 after treatment with cinnarizine (A), orphenadrine (B), phenelzine (C), ketotifen 
(D), diclofenac (E), omeprazole (F). Data from three times independent experiments were expressed as means  ±  SD. n = 3. ### P  <  0.001 vs. control group. *P  <  0.05, **P  <  0.01 vs. 
vehicle group.

Q. Wu, C. Chen, W. Liu et al. Computational and Structural Biotechnology Journal 21 (2023) 2809–2823

2818



western blot, and Olink inflammation panel. We found that cinnar-
izine and phenelzine could significantly inhibit the release of in-
flammatory factors (IL-6 and COX-2). Overall, cinnarizine and 
phenelzine could significantly inhibit inflammation to exert anti- 
stroke effects, which further supported our network-based predic-
tion on the potential MOA of cinnarizine and phenelzine for stroke.

Several advantages of this study can be highlighted. Firstly, we 
proposed network-based drug repurposing approach to prioritize 
promising candidates, which might be applied to identify re-
purposable drugs for other diseases, such as AD and cardiovascular 
disease. Xu et al. proposed a network-based, multimodal metho-
dology for drug discovery and prioritized fluticasone and mometa-
sone as the potential treatments against AD [57]. In 2021, Fang et al. 

also developed an integrated, network-based artificial intelligence 
methodology for therapeutic discovery in AD, which found three 
drugs (pioglitazone, febuxostat, and atenolol) were highly related 
with decreased risk of AD [58]. As for the cardiovascular disease, 
Cheng et al. presented network-based approach for prediction of in 
silico drug repurposing, and identified that carbamazepine was as-
sociated with an increased risk of coronary artery disease (CAD) 
while hydroxychloroquine was associated with a decreased risk of 
CAD [16]. Moreover, this study performed experimental validation 
for pharmaceutical effect and MOA of potential drug candidates that 
was an advance compared with our previous studies [13,59] and 
other drug repurposing researches [60]. Furthermore, our study in-
tegrated D–T network, molecular mechanism exploration and in 

Fig. 8. Mechanism exploration of cinnarizine against stroke. The drug-target and protein-protein interaction network of cinnarizine (A) and molecular docking result (B). 
Representative western blot images of IL-6 (C) and COX-2 (D) protein expression in BV2 cells after OGD/R injury treated by cinnarizine. The data in the figures were presented as 
mean  ±  SD. n = 3 per group. #P  <  0.05, ##P  <  0.01, ###P  < 0.001 vs. control group. *P  <  0.05, **P  <  0.01 vs. vehicle group.

Q. Wu, C. Chen, W. Liu et al. Computational and Structural Biotechnology Journal 21 (2023) 2809–2823

2819



vitro verification, which to some extent provides case study for other 
scholars.

However, several limitations of this work should be acknowl-
edged. First, the D-T network data may still be incomplete although 
we have tried to assemble large scale, experimentally reported DTIs 
from multiple publicly available databases. To further expand D–T 
network data, we may apply the computational approaches, such as 
network-based inference method to systematically predict the DTIs 

[61]. Moreover, considering the limited cost and time, we just va-
lidated several promising drugs in this study whereas other pre-
dicted drug candidates are also worth verification. Finally, we 
performed in vitro experiments on candidates at the cellular level 
while in vivo studies and randomized controlled clinical trials are 
still needed to further confirm the anti-stroke efficiency, since a gap 
may exist between the anti-stroke effects and the true effect in 
stroke patients.

Fig. 9. Mechanism exploration of phenelzine against stroke. The drug-target and protein-protein interaction network of phenelzine (A) and molecular docking result (B). 
Representative western blot images of IL-6 (C) and COX-2 (D) protein expression in BV2 cells after OGD/R injury treated by phenelzine. All data was presented as mean  ±  SD. n = 3 
per group. ##P  <  0.01, ###P  <  0.001 vs. the control group. *P  <  0.05 vs. the vehicle group.
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In summary, we demonstrated that the network-based drug re-
purposing could provide efficient strategies for uncovering the po-
tential therapeutic medications for stroke through exploiting the 
great wealth of existing drugs.
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