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World population is expected to reach 9.7 billion by 2050, which makes a great challenge the achieve-
ment of food security. The use of urease inhibitors in agricultural practices has long been explored as
one of the strategies to guarantee food supply in enough amounts. This is due to the fact that urea,
one of the most used nitrogen (N) fertilizers worldwide, rapidly undergoes urease-driven hydrolysis on
soil surface yielding up to 70% N losses to environment. This review provides with a compilation of what
has been done since 2005 with respect to the search for good urease inhibitors of agricultural interests.
The potential of synthetic organic molecules, such as phosphoramidates, hydroquinone, quinones,
(di)substituted thioureas, benzothiazoles, coumarin and phenolic aldehyde derivatives, and vanadium-
hydrazine complexes, together with B, Cu, S, Zn, ammonium thiosulfate, silver nanoparticles, and
oxidized charcoal as urease inhibitors was presented from experiments with purified jack bean urease,
different soils and/or plant-soil systems. The ability of some urease inhibitors to mitigate formation of
greenhouse gases is also discussed.
� 2018 Production and hosting by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction view of the world population increase [1]. Nitrogen (N) fertilizers
Food production in enough amount and use of better approaches
for efficient management of fertilizers are persistent challenges in
are pivotal for crop production as this element is mandatory for
plant growth and development. Therefore, application of large
amounts of N is a common practice in agriculture [2]. Urea is one
of the most used N fertilizer worldwide [3], particularly due to its
high N content (46%), relatively low cost per N unit, availability in
most markets, high water solubility, low corrosion capacity, com-
patibility tomost fertilizers andhigh foliar uptake, amongothers [4].

Despite the wide use of urea as fertilizer, its application on soil
raises environmental concerns due to the formation of gaseous
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(NH3, CO2, N2O, NO) or ionic (NO2
�, NO3

�) pollutants from urea
hydrolysis, nitrification and denitrification of urea hydrolysis prod-
ucts and NO3

� leaching as well. These events result in increase of
greenhouse gas emissions, water pollution and eutrophication
and lower N recovery by crops [5–7]. Then, the development of
technologies and strategies that allow a more efficient manage-
ment of N fertilizers and decrease or suppress of their negative
effects is desirable for the excellence of the agricultural practices
and environmental sustainability.

The use of urease inhibitors is one of the strategies adopted to
improve urea performance in agriculture and mitigate urea-
driven emission of pollutants [8–11]. Urease is a nickel-
dependent enzyme that catalyzes the hydrolysis of urea to two
moles of ammonia (NH3) and one mole of carbon dioxide (CO2).
As a key enzyme for the global N cycle, this hydrolase is widely dis-
tributed in nature being found in bacteria, yeasts, fungi, algae, ani-
mal waste and plants [12]. A variety of substances have been
reported to slow down urease catalytic activity, in which several
of them are urea analogs that compete with the natural substrate
for the urease active site. If on one hand, urea hydrolysis provides
NH3 that, in turn, is converted to ammonium (NH4

+) in soil solution
prior to uptake by plants, on the other hand, substantial amounts
of N may be lost to atmosphere as NH3 by volatilization [13,14].
Urease inhibitors are particularly interesting when used in the
scope of covering fertilization, in which urea-derived NH3 forma-
tion on soil surface is decreased, favoring, via rain episodes or pro-
grammed irrigation, urea movement to deeper soil layer [15]. Then,
the control of urease activity in soil may serve as an environmen-
tally friendly alternative to improve N content in soil [16].

Although commercial formulations based on urea and urease
inhibitors are available, the efficacy of such inhibitors may vary
according to the soil. Indeed, the rate of urea hydrolysis in soils
has traditionally been explained by variations in soil physicochem-
ical features such as C and N microbial biomass, surface area, tem-
perature, and pH [6,17,18]. In this context, a broad variety of
organic compounds and metal cations (e.g. Hg2+, Cd2+, Ag+, among
others) have been investigated for the potential to inhibit ureases
with focus on agricultural practices. Therefore, this review brings
a compilationofwhatwehave learned since2005 abouturease inhi-
bitors of agricultural interest. It does not include findings related to
urease inhibition by plant crude extracts or isolated natural prod-
ucts as we have published a review on this subject in 2015 [9].

Phosphoramidates

The N-(butyl) thiophosphoric acid triamide (NBPT; Fig. 1) is the
phosphoramidate most known for its use as urease inhibitor in
agriculture worldwide. We are giving emphasis to phosphorami-
dates other than NBPT as the agronomic efficiency of such com-
mercial urease inhibitor is explored in details in another review
of this special issue.

The N-(propyl) thiophosphoric triamide (NPPT; Fig. 1), applied
together with urea on a Chinese silt (sandy) loam soil under green-
house condition, slowed down NH3 volatilization by over 50% in
relation to control soil samples during the first 11 days following
fertilization [19]. The mixture constituted of 0.05% NPPT and
0.05% NBPT was 23.8% and 28.8% more efficient in mitigating
NH3 volatilization from soil when compared to the single treat-
ments NBPT or NPPT, respectively. Two formulations containing
phosphoric acid triamide derivatives (UI1 and UI2) were used on
Haplic Phaeozem soil in greenhouse experiments carried out with
Avena sativa (oat) [20]. Although it was not clearly disclosed the
difference between them, such formulations were likely consti-
tuted of the urease inhibitor NPPT. The UI1 improved biomass
accumulation (12.3 g dry weight pot�1) and N uptake (339 mg
pot�1) in oat panicles as panicles from plants grown under urease
inhibitor-free conditions yielded 9.0 g dry weight pot�1 and 222
mg N pot�1. The N uptake by oat culms from plants under urea +
UI1 or urea + UI2 fertilization averaged 231 mg pot�1 while control
plant culms accumulated only 150 mg N pot�1 [20]. A commercial
formulation named Limus� (25% NPPT + 75% NBPT) was used at
0.12% (w/w related to urea) to fertilize soils from North and North-
east China to grow winter Triticum aestivum (wheat) or summer
Zea mays (maize) [21]. Cumulative NH3 losses reached from 11 to
25% of applied N-urea after two weeks, while soil supplementation
with urea plus Limus� decreased the loss by up to 85%. No differ-
ences of grain yield was observed between urea-treated and urea
plus Limus� soils. These authors also applied Limus� on Fluvo-
aquic and alluvial soils to grow maize [10]. Limus� treatment pro-
moted, in average, a decrease in cumulative NH3 losses by 84%
compared to urea-treated soils. Additionally, urea plus Limus�

improved the apparent N recovery efficiency by 17%. The use of
Limus� on the soils tested could reduce by up to 60% the applica-
tion of N-urea for maize growth and still allowing crop yields as
high as those observed from usual farmers’ practice [10].

A urease inhibitor recently introduced to the market, N-(2-
nitrophenyl) phosphoric triamide (2-NPT; Fig. 1), lowered NH3

volatilization by 26 to 83% from Luvisol (field conditions), causing
a 2–3-day delay in the peak of gas emission [22]. As for a field
experiment carried out with Lolium perenne (perennial ryegrass)
cultivated either in Endofluvic Chernozem or Cambisol, 2-NPT alle-
viated NH3 losses by 69–100% when used at concentrations in the
range from 0.75 to 1.5 g urea-N kg1, while urea by itself led to NH3

volatilization corresponding to up 14% of total N applied [23].
Fourteen phosphoramide derivatives (PADs; Fig. 1) out of 40

compounds synthesized showed higher inhibitory effect on Cana-
valia ensiformis (jack bean) urease activity than NBPT (IC50 = 100
nM) as they presented concentration necessary to inhibit enzyme
activity by 50% (IC50) values ranging from 2 to 63 nM [23]. The
most highly active inhibitors (PADs 6 k, IC50 = 2 nM; 6p, IC50 = 3
nM and 6f, IC50 = 3.5 nM) were selected for tests in acidic (pH
4.5; Anaya de Alba, Spain), moderated acidic (pH 5.9; Las Planas,
Spain) and alkaline (pH 8.5; Mendigorría, Spain) soils. The ability
of 6f and 6p to inhibit ureases frommoderated acidic soil was com-
parable to that of NBPT [24]. These phosphoramide derivatives,
however, inhibited acidic soil ureases by 65% and alkaline ones
by 75% while NBPT inhibited 9% and 45%, respectively. Although
6 k was the most highly active compound in vitro, it showed lower
performance on soil ureases than that of 6f or 6p regardless of soil
pH. Authors hypothesized that 6 k possesses low stability and fast
degradation rate on soil [24].

The extent of the inhibitory effect of phenylphosphorodiami-
date (PPD; Fig. 1) on urease has been reviewed in 2009 [25]. Since
then, the kinetic and thermodynamic behaviors of PPD towards soil
ureases were studied at 10, 20 and 30 �C and under waterlogging
using Pachic Udic Mollisol (black soil) [26]. The PPD at 50 mg
kg�1 dry soil worked as mixed inhibitor as it increased urea KM

and decreased ureases Vmax when used at room temperature. The
KM and Vmax significantly increased following temperature incre-
ment. Soil urease thermodynamic parameters, such as activation
energy, enthalpy of activation and temperature coefficients slightly
increased upon PPD treatment and increasing temperature when
compared to soils devoid of PPD treatment [26]. The PPD treatment
led to higher KM (ca. 40 mM) and lower Vmax values (ca. 200 mg
hydrolyzed urea-N kg�1 dry soil 5 h�1) than those of NBPT treat-
ment up to 30 days of experiment under water-logging. This indi-
cates that PPD is a better urease inhibitor than NBPT in
waterlogged soil [27]. The performance of 2% (w/w) PPD as urease
inhibitor was also verified in a Calcic Haploxerepts soil featuring
sandy clay loam texture in the upper (0–28 cm) horizon [28]. The
PPD treatment decreased soil urease by ca. 45% during the first
two days following application of 120 kg N ha�1 urea. No signifi-



Fig. 1. Structure of phosphoramidates that present notable inhibitory effect on ureases. The phosphoramide derivative derivatives (PAD) exemplified from Ref. [24].
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cant effect on N2O emissions was observed for soils at 40% and 60%
water-filled pore space (WFPS) supplemented with urea plus PPD,
although gas emissions increased from 4.5 mg N2O-N kg�1 d�1

(control) to 5.8 mg N2O-N kg�1 d�1 when soils at 80% WFPS
received PPD treatment [28].

The substituted phosphoric acid triamide P101/04 at 0.06%
(w/w in relation to urea) was used as urease inhibitor in pot
experiments devoid of vegetation or with spring wheat grown for
70 days in Cambisol under controlled conditions [29]. The surface
application of P101/04 promoted a decrease of N2O emission from
plant-free soil by 15–46%, regardless of the size of urea granules
used. Lower levels (0.16–0.27% of total fertilization) of emitted
N2O were achieved from the wheat-grown soil [29].
Hydroquinone and quinones

It is known that NH3 formed on soil surface may also be con-
verted to the pollutant N2O from either sequential activity of
microbial ammonia mono-oxygenase and hydroxylamine oxidore-
ductase enzymes or from the action of the latter enzyme followed
by the activity of denitrifying bacteria [30].

A meta-analysis study with several agricultural soils showed
that hydroquinone (HQ; Fig. 2), a urease inhibitor, significantly
reduced N2O and NO emissions by around 5% [31]. Application of
12 kg N ha�1 HQ on an Alluvial soil, in conjunction with 120 kg
urea-N ha�1, decreased N2O emission by 5% in rice (Oryza sativa)
and 7% in wheat systems when compared to the crops grown solely
in the presence of 120 kg N ha�1 urea [32]. Authors noted, how-
ever, that 10% HQ (in relation to urea) + urea contributed to an
increment of methane (CH4) emission by 12% and then an increase
of Global Warming Potential index by 5% [32]. The application of
lower amounts of HQ (0.3% in relation to urea) + urea 0.1% in a rhi-
zobox system containing 2 kg of sandy loam Belgium soil (classi-
fied as luvisol) resulted in a higher number of tillers per rice
plants [33]. Furthermore, the association of HQ with dicyandi-
amide (DCD; nitrification inhibitor) improved rice growth and sig-
nificantly decreased N2O emissions from soil in comparison to urea
treatment [33]. The effect of HQ + DCD on N2O emission was also
analyzed in a soil from a paddy field classified as Typic Haplaque-



Fig. 2. Structure of hydroquinone and quinones of recognized potential as urease
inhibitor of agricultural interest.
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pts [34]. A mixture of 0.3% HQ, 5.0% DCD and 300 kg urea-N ha�1

mitigated N2O emission from soil by 24%, 56% and 17% right before
rice transplanting, at tillering or at panicle initiation stages, respec-
tively, in relation to urea-fertilized soils [35]. The CH4 emission (43.
39 ± 3.89 kg ha�1) from these same treatments decreased by 35, 19
and 12% and the Global Warming Potential dropped from 99 mg
CO2-eq m�2 h�1 to 71,6 and 84 mg CO2-eq m�2 h�1, respectively
[33]. In addition, rice grain yield increased by 10%, 18% and 6%,
respectively, while the straw weight was improved by 16%, 17%
and 8% in comparison to control samples (7.9 and 8.2 t ha�1 for
grain yield and straw weight, respectively) [34].

The use of HQ and DCD was investigated in coastal saline Jeru-
salem artichoke bioenergy cropping system maintained in a Flu-
voaquic soil [36]. Urea (300 kg N ha�1) was used by itself or in
conjunction with HQ (30 kg ha�1) and DCD (9 kg ha�1) during arti-
choke growing season. The flux of CO2 and N2O from soil supple-
mented with urea was 517.9 mg CO2 m�2 h�1 and 54.7 mg N2O-
N m�2 h�1 and decreased by 12 and 16% upon addition of HQ +
DCD, respectively. The net primary production in systems treated
with urea + HQ + DCD increased by 18% in relation to that of
urea-treated ones (18.3 ± 1.36 t C ha�1). Association of HQ and
DCD with urea yielded a 35% decline in the net ecosystem
exchange of CO2. Likewise, the estimated net greenhouse gas bal-
ance and greenhouse gas intensity from Jerusalem artichoke crop-
ping system dropped 37% and 15%, respectively [36].

The efficiency of urease inhibitor HQ was also tested in Pachic
Udic Argiboroll (black soil) at 20% moisture or under waterlogged
conditions (3–5 cm water layer). The urea KM values towards soil
ureases were ca. 36 mM at the first day of soil incubation with
HQ and ca. 25 mM 10 days post incubation [27]. In contrast, soil
ureases Vmax at 20% moisture increased from 220 mg hydrolyzed
urea-N kg�1 dry soil (first day) to 250 mg hydrolyzed urea-N
kg�1 dry soil at 10–30 days post-HQ soil treatment while the incre-
ment in waterlogged soil was ca. 40 mg hydrolyzed urea-N kg�1

dry soil during the same period of soil incubation with HQ [27].
Another investigation with black soil showed that temperatures
ranging from 10 to 30 �C and HQ incubation times up to 20 days
do not affect urea KM values in soil supplemented with urea + HQ
[26]. Temperatures of 20 and 30 �C led to significant increment
of soil ureases Vmax 10 and 30 days after soil incubation with HQ.
Authors also determined that HQ affects soil kinetic parameters
much more than it does on soil thermodynamics ones.

Halogen-substituted p-benzoquinones such as those containing
Cl, Br or F atoms has been long recognized as excellent soil urease
inhibitors [37]. The mode by which tetrachloro-1,2-benzoquinone
and tetrachloro-1,4-benzoquinone affect jack bean urease activity
was determined to be as slow-binding inhibition with formation
of very stable urease-inhibitor complexes [38]. Tetrachloro-1,4-
benzoquinone was more effective than the corresponding ortho-
substituted benzoquinone as the urease residual activity reached
a plateau in the presence of the former at concentrations much
lower (0.29 and 0.59 mM) than those (7.5 and 15 mM) of the latter.
The inhibition constants (Ki

⁄) for tetrachloro-1,2-benzoquinone and
tetrachloro-1,4-benzoquinone were 2.4 � 10�6 mM and 4.5 � 10�7

mM, respectively. The interaction between these chloro-
substituted benzoquinones and a Cys residue present in urease
active site was responsible for the enzyme inhibition [38].

The inhibition of jack bean urease by 1,4-benzoquinone, 2,5-
dimethyl-1,4-benzoquinone, tetrachloro-1,4-benzoquinone occurs
in a concentration-dependent manner, wherein the enzyme-
inhibitor equilibrium was achieved in ca. 10 min [39]. The IC50 val-
ues for 1,4-benzoquinone, 2,5-dimethyl-1,4-benzoquinone and
tetrachloro-1,4-benzoquinone (Fig. 2) were 5.5, 50.0 and 0.6 mM,
respectively. The residual urease activity was linearly correlated
with the number of modified thiols in protein structure. Therefore,
arylation of Cys thiol group caused by the quinones tested con-
tributes for the mechanism of enzyme inhibition [39]. Besides ary-
lation of Cys thiol group, 1,4-naphthoquinone (Fig. 2) promotes
thiol oxidation. The enzyme inhibition by this benzoquinone is
biphasic-type, time- and concentration-dependent with a non-
linear residual activity dependent on thiol modification [39,40].
Indeed, co-crystallization of Sporosarcina pasteurii urease and 1,4-
benzoquinone (41) showed that the enzyme inhibitor covalently
binds to the thiol group ata Cys322, a highly conserved residue pre-
sent at themobile flap that controls urea access to urease active site.

(Di)substituted thioureas

A recent report revealed the potential of benzoylthioureas
(BTUs) as urease inhibitors of agronomic interest [42]. An initial
in vitro screening performed with 10 mM urea and BTUs at 0.5
mMshowed that 51 out of 65 compounds inhibited jack bean urease
at different extents [42]. Eight BTUs (11, 12, 14, 19–22, and 37;
Fig. 3) were the most potent inhibitors as they negatively affected
the ureolytic activity of urease by in the range from 50 to 77%. Such
benzoylthioureas function as mixed-type inhibitors exhibiting
higher affinity to urease active site than allosteric ones. Based on
the equilibrium dissociation constant Ki, BTU 14 was the most effi-
cient mixed inhibitor followed by 11, 22, 19, 37, 20, 21, and 12.
Experiments performed with Clayey dystrophic Red Latosol soil
supplemented with 0.5 mM BTUs and 72 mM urea showed that
compounds 3, 6, 10, 12, 16, 19, and 22 were more efficient than
NBPT to inhibit the activity soil ureases. Other 21BTUswere demon-
strated to be as potent as NBPT. Notably, the most efficient BTUs on
soil were also found to be more thermostable than NBPT, which
makes this class of compounds eligible for further studies towards
the development of new urea-based fertilizer formulations [42].

The urease inhibition potential of N,N0-disubstituted thioureas
(DSTUs) was evaluated in vitro, using jack bean urease and
100 mM urea [41]. Thirteen thiourea derivatives (DSTUs 1, 3, 4, 9,
13–16, 18–20, 26, and 30; Fig. 3) efficiently inhibited urease activity
exhibiting IC50 values (from 8.4 to 20.3 mM) lower than that of stan-
dard inhibitor thiourea. These compounds presented Ki values
ranging from 8.6 to 19.3 mMand showedmechanisms of action typ-
ical of mixed (DSTUs 1, 3, 9,14, 15, 18, and 26), competitive (DSTUs
13 and 30) or non-competitive (DSTU 19) inhibitors [43].

Benzothiazoles

The inhibitory effect of new benzothiazoles (BZT; Fig. 4) on
urease activity was assessed in vitro in reactions containing



Fig. 3. Structure of (di)substituted thiourea derivatives of known antiureolytic activity in the scope of agriculture. The benzoylthioureas (BTUs) exemplified from Ref. [42]
while the disubstituted thioureas (DSTUs) come from Ref. [43].
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10 mM urea and 1.6 mM compound-test. The most effective com-
pounds were 2-phenylbenzothiazole (BZT 1), 2-(4-nitrophenyl)
benzothiazole (BZT 2), 2-(4-hydroxyphenyl)benzothiazole (BZT
9), 2-(4-pyridyl)benzothiazole (BZT 15), 2-(3-pyridyl)
benzothiazole (BZT 16), 2-(2-carboxyphenyl)benzothiazole (BZT
17) and 2-(1,3-benzodioxol-5-yl)benzothiazole (BZT 18). Among
them, BZT 15 was the most active as it inhibited jack bean urease
by 55%. The efficiency of hydroxyurea, a reference of inhibitor,
averaged 62% [44]. The mechanism by which BZT 15 inhibits jack
bean urease is compatible with that of mixed inhibitors that exhi-
bits higher affinity to the active site (Ki = 1.02 ± 0.04 mM) than
allosteric ones (Ki

0 = 3.17 ± 0.69 mM) [44]. Fourteen benzothiazoles
synthesized also inhibited, to different extent, ureases present in a
Clayey dystrophic Red Latosol soil under controlled conditions (0.5
g of soil supplemented with 72 mM urea). Five compounds (BZTs 2,
8, 9, 15, and 16) at 1.6 mM were as efficient as NBPT (reference
inhibitor) while BZT 10 was 12% more potent than NBPT [44].
Fig. 4. Structure of benzothiazoles (BZTs) of recognized potential as urease
inhibitors of agricultural interest. Compounds are based on Ref. [44].
Coumarin derivatives

The potential of some coumarinyl pyrazolinyl thiomide (CPTs;
Fig. 5) as urease inhibitor was evaluated in vitro using jack bean
urease [45]. The derivative bearing an unsubstituted phenyl group
(CPT 5n) was the most potent compound exhibiting IC50 as low as
0.036 nM from reaction media (90 mL) containing 0.1 U urease,
100 mM urea at pH 8.2 [45]. The presence of an ANO2 at para-
position (CPT 5p), an AOH group at para-position (CPT 5q), ACl
andANO2 at ortho- andmeta-positions (CPT 5i) on phenyl ring com-
promised the anti-ureolytic activity of coumarin derivatives by 17-
fold for the former and over 270-fold for CPTs 5i and 5q. The most
active compound (CPT 5n) was determined to be a typical non-
competitive inhibitor of jack bean urease as increasing concentra-
tions of such coumarin derivative decreased urease activitywithout
significantly affecting urea KM [45]. Docking studies showed that 5n
may form two and one hydrogen bonds with Asp494 and Ala440



Fig. 5. Structure of coumarinyl pyrazolinyl thiomides (CPTs) of recognized potential
as urease inhibitor of agricultural interest. Compounds are based on Ref. [45].
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residues present at urease active site, respectively. Hydrogen bond
may also be formed between S atom and Asp494.
Phenolic aldehyde derivatives

Four Biginelli adduct were synthesized inspired in the structure
of natural phenolic aldehydes namely protocatechuic aldehyde
(PA), syringaldehyde (SA) and vanillin (VN) [46]. In vitro assays
using jack bean urease (12.5 mU), 10 mM urea and compounds-
test at 1.6 mM showed that 2A7 and 2B10 (PA derivatives; Fig. 6)
inhibited the ureolytic activity by 94% while enzyme activity inhi-
bition reached 58.6% (in average) when 2A9 (VN derivative) or 2D2
(SA derivative) was added to the reaction medium. These com-
pounds exhibit a mechanism of action typical of mixed inhibitors
in which 2A7 was determined to be the most efficient one. The
effect on Clayey Dystrophic Red Latosol (oxisol), however, revealed
that 2A7 and 2D2 were the most potent against soil ureases as they
inhibit the ureolytic activity by 50% when applied at 3.3 mM [46].
This demonstrates that results obtaining with purified ureases may
not necessary reflect what happens on soil due to its complexity.
Fig. 6. Structure of natural phenolic aldehyde derivatives reported to inhibit soil
ureases. Compounds are based on Ref. [46].
Both 2A7 and 2D2 were determined to be more thermal stable
than the commercial urease inhibitor NBPT.
Miscellaneous

The use of urea coated with Cu plus Zn on a Malaysian typic
paleudult soil greatly improved N uptake by Pannicum maximum
(Guinea grass) from 12 kg N ha�1 to 137.9 kg N ha�1. Soil supple-
mentation with Cu-coated urea yielded an N uptake by plants of
up to 96.7 kg ha�1 [47]. These treatments were shown to slow
down urea hydrolysis in comparison with the soil that solely
received urea, in which that supplemented with Cu-Zn-coated urea
exhibited an increment of pasture production by up to 50% [47]. The
use of Cu-B-coated urea in a field study with rice plants cultivated
in Typic Albaqualf soil (non-tillage system) reduced the total N-NH3

loss from 47% (urea by itself) to 22% after 96 h of fertilizer applica-
tion [48]. Likewise, the 1.2% N-NH3 loss observed in urea-supplied
conventional crop system was decreased to 0.3% after 216 h of
Cu-B-coated urea application [48]. Rice productivity, however,
was not affected by urea coated with Cu plus B. The N loss by
NH3 volatilization was also diminished by urea coated with S or
boric acid plus Cu in a field experiment carried out with Saccharum
officinarum (sugarcane) cultivated in a Brazilian sandy soil [49].
Accumulated N-NH3 losses from soil treated with acid-boric-Cu-
coated urea and S-coated urea were determined to be 2.2 kg ha�1

and 4.6 kg ha�1, respectively, while N-NH3 loss from soil treated
with urea was as much as 9.1 kg ha�1 Therefore, acid-boric-Cu-
and S-coated urea mitigated N-NH3 losses from soil by 75 and
50%, respectively [49]. In 12-month field experiment, the grain
yield for maize plants grown in a Brazilian Red Latosol (non-
tillage system) containing boric-acid-Cu-coated urea was roughly
twice (9.9 kg ha�1) as much as that of plants grown in the presence
of uncoated urea [50]. Application of Cu-B-incorporated urea to
Brazilian Haplic Planosol mitigated total NH3 volatilization by 54%
compared to commercial urea in an 18-day greenhouse experiment
[51]. Also, Cu-B-incorporated urea was up to 36.5% more efficient
than Cu-B-coated urea with respect to the ability of inhibiting N-
NH3 loss from soil [51]. The use of a physical mixture constituted
of urea, Cu and B postponed the peak of NH3 volatilization for
two days and decreased the total N loss by 18%, compared to com-
mercial urea, in a field experiment carried out with maize culti-
vated in dystrophic Red Latosols [52]. Nevertheless, the presence
of these urease inhibitors did not affect N accumulation in maize
grains or stubble. Incorporation of Zn to urea pellets (up to 5 g
Zn/kg urea) also efficiently inhibited the activity of red-yellow Oxi-
sol (Typic Hapludox) ureases containing Megathyrsus maximus
(Guinea grass cv. Mombaça) crop under controlled conditions
[53]. Although no significant increment in plants biomass was
observed when compared with plants from soil fertilized with urea
only, Zn-incorporated urea pellets boosted N-uptake by plants. This
is likely due to the ability of Zn to maintain higher levels of N in soil
(74%more than that for soils treatedwith urea only) as a result of its
negative effect on NH3 volatilization [53]. Bench experiments per-
formed for 8 weeks with Malaysian rice soils (Selangor and Chem-
paka) demonstrated that the use of urea coated with Cu, Zn and Cu
+ Zn decreased N2O emission from soil by 17.6, 21.6 and 29.7%,
respectively, in relation to the control [54]. The cumulative NH3

volatilization from soil for these treatments ranged from 32.1 to
39.6% while soils treated solely treated with urea emitted 34.7%
more NH3 [54]. These results evidence that the use of Cu-, Zn- or
Cu + Zn-coated urea on such Malaysian soils efficiently mitigate
the emission of pollutants from urea fertilizer.

Ammonium thiosulfate (ATS) was shown to decrease urease
activity in an Italian sandy soil bearing higher pH values and con-
taining relatively lower amount of organic matter [55]. Maximum



Fig. 7. Structure of non-phytotoxic dimeric vanadium-hydrazine complexes
(DVHCs) known to inhibit urease. Compounds are based on Ref. [58].
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urease inhibition (88%) was achieved already three days after
application of 100 mg ATS kg�1 soil while 25 mg ATS kg�1 soil
caused a 70% enzyme inhibition. Authors found that ATS by itself
or in association with urea did not affect soil microbial biomass
pool. On the other hand, a field experiment performed with Cana-
dian clay loam and fine sandy loam soils showed inconsistent
results with respect to urease inhibition by ATS [56]. These find-
ings suggest that ATS performance may be affected by the soil type.

The complex formed between silver nanoparticles (AgNPs) and
jack bean urease was shown to destabilize the hexameric protein
structure, a phenomenon than caused loss of ureolytic activity by
up 10%, 95% and 100% for urease/AgNPs ratios of 1:1, 1:5 and
1:7, respectively [57]. In this sense, the use of AgNPs as additive
in urea-based formulation could be advantageous as such nanopar-
ticles have been also shown to contribute for pest control in agri-
culture (www.nal.usda.gov/fsrio/research_projects//printresults.
php?ID = 9104; accessed on Nov 21, 2017).

The dimeric vanadium-hydrazine complexes (DVHCs; Fig. 7) 6c,
10c and 11c were shown to inhibit jack bean urease at IC50 values
ranging from 15.0 ± 0.1 to 37.0 ± 0.4 mMwhile the hydrazine ligand
is inactive towards such enzyme [58]. The complexes DVHC 6c, 10c
and 11c act as non-competitive inhibitors and show low phytotox-
icity against Lemna aequinoctialis (duckweed) in comparison to
paraquat (known herbicide).

The NH3 emissions from a 10 cm-surfaced Red-Yellow Ultisol
(under no-tillage) after fertilization with urea coated with oxidized
charcoal (produced at 350 �C) were 43% lower than that of soils fer-
tilized with uncoated urea [59]. Additionally, oxidized charcoal
delayed the maximum volatilization peak of NH3 in 24 h, keeping
urea-N on soil for longer periods [59]. Similarly, urea coated with
16% oxidized charcoal further reacted with NaOH and urea coated
with 39% oxidized charcoal under no alkali treatment also allevi-
ated NH3 volatilization by 40% from a Hapludalf soil [60]. The N
losses to the atmosphere (as NH3) were also decreased by 12% upon
treatment of soils belonging to the subgroups Typic Hapludox,
Lamellic Hapludalfs, Aquic Argiudolls and Typic Endoaquolls with
urea plus oxidized charcoal [61]. The presence of oxidized charcoal,
however, did not change the levels of exchangeable NH4

+, NO3
�, and

NO2
� in the soil in comparison to samples treated with urea only.
Conclusions and future perspectives

Since 2005, several substances, namely phosphoramidates,
hydroquinone, benzoquinones, (di)substituted thioureas, benzoth-
iazoles, coumarin derivatives, phenolic aldehyde derivatives,
dimeric vanadium-hydrazine complexes, oxidized charcoal, silver
nanoparticles have been synthesized and shown to be potential
urease inhibitors for use in agriculture. The efficiency of inorganic
substances (ammonium thiosulphate, boric acid etc) or metal
cations and sulfur on soil ureaseswas also demonstrated. The ability
of urease inhibitors to mitigate the formation of greenhouse gases
has been widely investigated focusing on more sustainable agricul-
tural practices. The effect of disubstituted thioureas, coumarin
derivatives and silver nanoparticles on soil ureases deserves inves-
tigation since compounds capable of inhibiting jack bean urease
may not be active against soil ureases. There is a need for the world
market to broaden the offer of urease inhibitors that are effective on
distinct types of soil. This is a very challenging task as urea compat-
ibility, efficiency at relatively low concentrations, minimal negative
effect on soil microbiota, plant metabolism and human health (if
uptaken by crop roots from soil), environmentally friendly capabil-
ity and prolonged shelf life are criteria that need to be considered for
the development of urease inhibitors of agricultural interest.
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