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Abstract: Metabolomics aims to perform a comprehensive identification and quantification of the
small molecules present in a biological system. Due to metabolite diversity in concentration, structure,
and chemical characteristics, the use of high-resolution methodologies, such as mass spectrometry
(MS) or nuclear magnetic resonance (NMR), is required. In metabolomics data analysis, suitable data
pre-processing, and pre-treatment procedures are fundamental, with subsequent steps aiming at
highlighting the significant biological variation between samples over background noise. Traditional
data analysis focuses primarily on the comparison of the features’ intensity values. However, intensity
data are highly variable between experimental batches, instruments, and pre-processing methods
or parameters. The aim of this work was to develop a new pre-treatment method for MS-based
metabolomics data, in the context of sample profiling and discrimination, considering only the
occurrence of spectral features, encoding feature presence as 1 and absence as 0. This “Binary
Simplification” encoding (BinSim) was used to transform several benchmark datasets before the
application of clustering and classification methods. The performance of these methods after the
BinSim pre-treatment was consistently as good as and often better than after different combinations of
traditional, intensity-based, pre-treatments. Binary Simplification is, therefore, a viable pre-treatment
procedure that effectively simplifies metabolomics data-analysis pipelines.

Keywords: metabolomics; data treatment; data analysis; Fourier Transform Ion Cyclotron Resonance
mass spectrometry; multivariate analysis

1. Introduction

Untargeted metabolomics experiments are focused on obtaining a global picture of a
system with the objectives of identifying and characterizing all its metabolites or identifying
key features, characteristics, and trends in the data that can help define and discriminate
the systems under study [1–3]. At an individual level, every biological system is unique
and will have a unique metabolome. Therefore, even two genetically identical systems
will have minor differences in their metabolome. This uninduced biological variation will
lead to inherent variability in the data [3,4]. The metabolome is extremely sensitive to
experimental manipulation and environmental factors (slight changes in pH or growth
medium, stress, temperature, among others), leading to considerable changes in metabolite
concentration [3]. The variability in the metabolome justifies the need for great care in the
proper quenching of cellular metabolism and the efficient extraction of metabolites during
sample preparation. Moreover, the inherent metabolite concentration variability requires
adequate statistical analysis.

Given its higher resolution, sensitivity, accuracy, and dynamic range, mass spectrom-
etry (MS) is one of the selected analytical methodologies in untargeted metabolomics,
leading to the detection of hundreds to thousands of variables and generating very com-
plex data, which require robust and scalable computational and statistical tools to treat and
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extract meaningful information from them. An MS-based metabolomics dataset usually
has a high number of variables, m/z values, also known as “features”, in comparison with
the number of samples. A characteristic of these datasets is that a lot of these variables
can be highly correlated due to physiological reasons, for example, for belonging to the
same metabolic pathways or due to the sheer number of variables detected—the curse of
dimensionality—leading to model overfitting when analyzed [5,6]. The variability present
in each feature comes from the induced biological variation (that is, the intended varia-
tion to observe and analyze in the experiment) and the previously mentioned uninduced
variation, which also encompasses all the technical variation due to either sample prepa-
ration or instrumental read-out variability. This variability can lead to large fluctuations
in signal intensities not solely attributable to the induced biological variation. The differ-
ent variables in a dataset can also be found within a large range of absolute magnitudes.
Many multivariate statistical methods may give more weight to higher magnitude features,
with larger absolute changes in concentration rather than lower concentration metabolites,
which can be counteracted by proper data scaling. However, the biological importance
of a metabolite may not depend exclusively on its concentration. For example, signal
molecules usually have very low concentrations and can be fundamental in characterizing
the phenotypes under study. Moreover, metabolomics data are usually heteroscedastic
(the variability/variance of its features is not constant), while many different statistical
methods assume the data are homoscedastic [4].

Robust computational and statistical tools have been developed and applied to treat
and extract information from metabolomics data [3,5]. However, many of the currently
applied methods have been adapted to the metabolomics framework from previously
established “omics”, especially transcriptomics and proteomics [1,7], and consequently,
they are not perfectly tailored to metabolomics.

After metabolite analysis, metabolomics data must be pre-processed, resulting in a
2D data matrix with variables represented in one dimension and samples in the other.
Mass-spectrometry raw data processing includes spectra deconvolution, correction of the
baseline and noise filtering, peak detection, or peak picking, peak alignment, and gap
filling (if needed). In cases where MS is coupled with liquid or gas chromatography, re-
tention time correction can also be employed [8,9]. Correction of the baseline is a noise
filtering procedure used to remove low-intensity artefacts (generated from instrumental
or experimental noise) by estimating the baseline shape and subtracting it from the raw
signal [10–12]. The peak detection step aims to identify and quantify all features (ions) in
the spectra while trying to avoid false positives, using, for example, peak-based methods
(detect ‘peak-like shapes’) or binning-based methods (split spectra into small m/z inter-
vals), [10,13]. After peak alignment, missing value imputation (gap filling) is performed
between the pre-processing and pre-treatment steps in the data-analysis pipeline. Missing
values arise in metabolomics datasets after peak or spectral alignments when a feature is
not detected in a sample but is present in another. The imputation consists of filling those
gaps with a value compatible with the different kinds of downstream data analysis steps
(which may not adequately account for the presence of missing values) while maintaining
the overall structure of the data. Missing values can be classified as missed completely at
random (MCAR), missed at random (MAR), or missed not at random (MNAR), defining
the missing-value imputation strategy [14,15]. The choice of the imputation method has a
considerable effect on the data matrix and on the results of downstream statistical steps.
After pre-processing, the obtained dataset must follow a pre-treatment with the objective
of highlighting relevant biological information within the dataset while reducing the ef-
fect of undesired variation due to measurement or technical errors and slight changes in
temperature, batch, or operator variation [4]. Data pre-treatment includes normalization,
transformation, and centering and scaling. Normalization has the objective of suppressing
between-sample global variation by trying to eliminate systematic bias related to sample
dilution [8,11]. Transformations are a set of non-linear treatments whose main objective
is to reduce heteroscedasticity and to make the data more symmetric (less skewed) [4,8].
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Mean centering and scaling have the aim of “balancing” high and low intensity biologically
important metabolites, and, to that end, they are often coupled together [4]. Each category
contemplates multiple options of treatment and may also be applied in combination with
each other [16], exponentially increasing the number of available options. Since the pre-
treatments can considerably alter the results of the statistical analysis and constitute another
layer of data variability, a thoughtful deliberation of the advantages and disadvantages of
each treatment should be made, considering both the goal of the metabolomics study and
the statistical analysis that will be performed downstream of the workflow [4,8].

Traditionally, data pre-treatments focus on the signal intensity values present in the
dataset and are all intensity transformations, from the mathematical point of view. De-
spite maximizing the contribution of biologically important information contained in the
intensities and, indirectly, in the metabolite abundances, these methods usually ignore
(or diminish the relevance of) another important aspect of metabolomics data: the pres-
ence/absence of metabolites in a sample. This predominance of the signal intensity data
in relation to the occurrence of spectral features is also supported by the traditional peak
filtering/picking methods (exclude features that appear in a low number of samples) [14],
followed by the imputation of missing values (which partially eliminates their information
as non-detected metabolites). In general, the consideration of the occurrence of spectral fea-
tures, as opposed to the intensities, is expected to be subjected to lower variability. Indeed,
in a recent work, it was shown for a case study of untargeted metabolomics that the inter-
laboratory compound annotation was more consistent than compound quantification [17].

To make up for this gap in metabolomics and as an effort to make metabolomics data
analysis more reproducible, we propose in this work a pre-treatment method based on
the occurrence of features that forgoes the use of the more variable intensity data. In this
method, named Binary Simplification (BinSim), feature occurrence in samples is encoded
by 1 while feature absence is encoded by 0 in an already constructed data matrix (Figure 1).
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Figure 1. Outline of the Binary Simplification procedure: Numerical data matrices are transformed by encoding missing
values with 0 and non-missing values with 1.

This approach discards the variation in intensity data between different metabolomics
experiments, even within the same batch, due to differences in sample preparation effi-
ciency, dilution, or ionization efficiency. Lin et al. [17] reported the difficulty in having
reproducible intensity and relative quantification results between two different laboratories
that analyzed the same set of samples with the same protocol and different instruments,
despite a good portion of the same metabolites being annotated in both analyses.

BinSim is a pre-treatment procedure that replaces most of the peak filtering, miss-
ing value imputation and pre-treatment methods of normalization, transformation and
scaling used in the metabolomics data analysis pipelines and provides a single faster and
simpler step, where no parameter-method choice or tuning needs to be made. Given its
simplicity and aggressive truncation of signal intensities, one might wonder that infor-
mation contained in data will be lost to an extent where the performance of downstream
statistical methods will degrade. To demonstrate otherwise and establish BinSim as a
viable procedure, we carried out an empirical comparison of the performance of clustering
and classification methods applied to several experimental datasets transformed with
BinSim or with six combinations of intensity-based transformations that can be considered
representative of typical pre-treatment steps employed in metabolomics data-analysis
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pipelines. We conclude that BinSim does not degrade and often improves the performance
of these methods.

2. Results

The BinSim pre-treatment was envisioned as a reliable and simpler alternative to more
established intensity-based pre-treatments. It focuses on the presence or absence of features
from the different samples instead of intensity-oriented pre-treatments. Furthermore, it was
specifically created with ultra-high-resolution metabolomics data analysis in mind, where
the occurrence of missing values is expected to be high. It consists of encoding intensity
values as one for features present in a sample and zero for missing values, resulting in a
binary data matrix comprised of 0 s and 1 s (as shown in Figure 1).

Several benchmark datasets were treated with seven different pre-treatment methods:
BinSim and combinations of different pre-treatments widely used in metabolomics data
analysis—missing-value imputation by either half the minimum value of the data matrix
(1/2 min imputation) or Random Forest imputation (RF imputation) [18]; normalization,
by reference feature or Probabilistic Quotient Normalization [19], depending on the dataset;
generalized logarithmic transformation; and Pareto scaling [4,8]. The combinations were
Pareto scaling only (P); normalization and Pareto scaling (NP); and normalization and glog
transformation and Pareto scaling (NGP). Each of these was applied after either 1/2 min
imputation or RF imputation, giving a total of seven pre-treatment combinations. The
benchmark dataset matrices were constructed from the experimental data of three different
sources: grapevine varieties, prefixed by GD; yeast strains, prefixed by YD; and a human
dataset, referred to as HD. By performing different levels of variable selection related to
spectral feature reproducibility, we were able to obtain eight datasets that display different
basic characteristics such as the number of features and classes and cover a wide range of
missing value percentages (Table 1).

Table 1. General characteristics of the benchmark datasets: Detailed description of the datasets is presented in Materials
and Methods section.

Dataset Samples Features Features/Sample (Range) Classes Samples/Class Missing Values (%)

GDg2− 33 3629 658 (367–1002) 11 3 81.86

GDg2+ 33 7026 1164 (355–2141) 11 3 83.43

GDc2− 33 3026 547 (338–919) 11 3 81.91

GDc2+ 33 4565 824 (215–1670) 11 3 81.94

GD types 33 3026 547 (338–919) 2
15 V. vinifera,

81.91
18 wild Vitis

YD 2/15 15 1973 685 (584–757) 5 3 65.27

YD 6/15 15 606 468 (383–514) 5 3 22.76

HD 249 12,869 7936 (7057–8475) 2 114 “Recurrence”,
135 “no Recurrence” 38.33

Dataset YD 6/15 was specifically created as an example of a scenario where the
presence of missing values is low, which, a priori, is expected to reduce the performance
of methods applied to BinSim treated data. Moreover, the datasets encompass different
levels of class overlap as seen in Figure S1, with datasets GDg2+ and GDc2+ showing a
high proximity of samples belonging to different classes in the PCA scores plots, GDg2−
and GDc2− still problematic but with classes more spread out, YD 2/15 and YD 6/15
showing well-defined and separated classes, and the GD types dataset, used in the two-
class classifiers, with classes also well separated. Class overlap is expected to dictate poor
performance in both clustering and classification methods, since discrimination is expected
to be hard. Furthermore, the differences in data characteristics also relate to instrumental



Metabolites 2021, 11, 788 5 of 23

performance since YD data were obtained in a more recent platform of Fourier Transform
Ion Cyclotron Resonance (FT-ICR) instruments.

Therefore, the benchmark datasets represent several real-life scenarios of data quality
levels in current high-resolution metabolomics.

The human dataset, also used in the two-class classifiers, represents a large LC-MS
dataset with many samples per class but with comparatively low abundance of missing
values and a high degree of class overlap.

To test the viability of the BinSim method in highlighting relevant information from
metabolomics data, in the context of sample discrimination, the performance of two un-
supervised, Hierarchical (HCA) and K-means Clustering, and two supervised statistical
methods, Projection in Latent Structures Discriminant Analysis (PLS-DA) and Random
Forest (RF), was compared. The ability to cluster together samples that are replicates was
the criterion used to assess the performance of the unsupervised methods by defining
“ground-truth” clusters, whereas predictive accuracy was the criterion used for classifiers.
Furthermore, as it is a frequently performed step of metabolomics data analysis, feature
importance evaluation in the classifier models was also analyzed. The goal was to inves-
tigate whether BinSim treated data offers a new perspective on the same original data
(discrimination achieved by highlighting at a different set of features).

2.1. Unsupervised Statistical Analysis—Hierarchical and K-Means Clustering

The overall results of applying Hierarchical Clustering and K-means Clustering after
each of the four pre-treatments are shown in Figure 2 and in Tables S1 and S2. As an
example of the HCA, the resulting dendrograms for the dataset GDc2+ after BinSim and
the three pre-treatments based on 1/2 min imputation are also shown in Figure S2 (for
BinSim, the Jaccard dissimilarity was used as the binary distance metric).
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Figure 2. Effect of pre-treatments on clustering performance: (A) Correct clustering in HCA; (B) Correct first clustering
in HCA; (C) Discrimination Distance in HCA; (D) Correct clustering in K-means clustering; (E) Rand Index in K-means
Clustering; (F) Discrimination Distance in K-means clustering; Data pre-treatments: Pareto scaling only (P); normalization
by reference feature and Pareto scaling (NP); normalization by reference feature and glog transformation and Pareto
scaling (NGP); Binary Simplification only (BinSim). P, NP, and NGP were applied after either 1/2 min or RF missing-value
imputation procedures. Except for BinSim, only the highest value of each measure between the two imputation procedures
is plotted. The full results of clustering performance are shown in Tables S1 and S2.
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The overall trend in these results is that the clustering methods applied to BinSim-
treated data perform, in most cases, better than when applied to data subjected to the
other pre-treatments. Considering the correct clustering percentage, which requires both
completeness (all replicates cluster together) and homogeneity (each cluster contains only
replicates) both methods achieve higher values with BinSim, except in the case of K-means
Clustering for the two GDg2 datasets, which are characterized for having samples from
different ground-truth clusters very close together and might be considered low quality
datasets. In fact, for GDg2+, both clustering methods perform poorly regardless of the pre-
treatment procedure, with the correct clustering percentage below 50% in all cases. Even
for these datasets, BinSim is not the worst pre-treatment. It is worth noticing that BinSim
was the only pre-treatment to allow 100% correct clustering for the two GDc2 datasets using
HCA and for GDc2− using K-means. The results on the correct clustering percentage are
qualitatively the same in HCA and K-means, even with the slight difference in definition:
For HCA, “correct clustering” was defined as all the samples in a replicate group clustering
together before clustering with a sample from any other group, whereas in K-means,
the number of clusters in the result is prescribed as the number of replicate groups, and
the definition requires homogeneity and completeness in the clusters obtained when the
algorithm finally converges. Given these definitions, it is expected that correct clustering
values will be lower for K-means when compared to HCA and that is, in fact, observed.

As the correct clustering percentage might be considered to have course granularity,
since its values can only be multiples of 100/number of clusters, the correct first clustering
percentage for HCA and the Rand Index for K-means were also calculated as other measures
of clustering performance with finer granularity. Looking at these measures, the same
overall trend holds, with BinSim being the best or second best except for the Rand Index
for the low-quality dataset GDg2+ and being the only pre-treatment to achieve close to top
values for GDc2 datasets.

It is also important to note that, using these measures of clustering accuracy, perfect
clustering was obtained with the two YD datasets in all cases, which is consistent with
the fact that these are high-reproducibility datasets with replicate groups well separated
from each other. This indicates that, also for data of high quality, BinSim does not degrade
clustering performance.

Another measure for comparison, the Discrimination Distance, was also calculated.
This measure represents the robustness of clustering performance to the negative impact of
noise as it is an average of the normalized distance thresholds that, if overcome by outlier
samples, would result in clustering errors. Datasets treated with BinSim consistently
result in the best or close to the best value of Discrimination Distances when the K-means
algorithm is used. As for HCA, BinSim only leads to lower Discrimination Distances
for the two high-quality YD datasets. This qualitative discrepancy between HCA and
K-means datasets might be related to the fact that in HCA the Jaccard dissimilarity was
used as the distance metric for the BinSim-treated data and Euclidean distance in the other
pre-treatments, whereas K-means uses Euclidean distance regardless of the pre-treatment.
This is because K-means uses the projection of the samples in the n-dimensional space
with n equal to the number of features, and therefore, binary distance metrics cannot
be used to cluster the samples. So, the distance metric used was Euclidean for all the
different datasets, including those treated with BinSim. Another reason might stem from
the fact that the Discrimination Distance is defined differently in both methods, given their
operating characteristics.

It is worth noting that the correct clustering percentage and Discrimination Distance
are very sensitive to outliers with the “correct clustering” definition used, since just one
stray sample from a group can lead to that entire group being labelled as not “well clus-
tered”. However, this is not a problem for the results obtained since each dataset used here
has only three replicates. Hence, one sample being an outlier in the group corresponds to a
hefty part of the group and should be considered. It would be remiss to not say that these
methods are not suited to be directly applied to test the clustering efficiency for datasets
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with higher number of samples per group. In these cases, they should be adapted. On the
other hand, the correct first cluster percentage should be resistant to outliers as is.

These results using ground-truth clusters defined by replicates mean that, at a first look,
the data treated with BinSim retain as much information as the other treated datasets to
discriminate between the different groups. However, for HCA, it is interesting to investigate
if during the agglomerative procedure some higher-level clusters are found to be common
among the four pre-treatments. The interpretation of results based on these higher-level
clusters is one of the motivations for using HCA, and the BinSim treatment should not
destroy these relationships contained in data. A quick inspection of the dendrograms
resulting from the four GD datasets (Figure S2) seems to reveal at least the CS/RL and
RU/REG/TRI higher-level clusters. These are found regardless of the pre-treatments,
including BinSim.

To have a more objective measure of the similarity between the dendrograms, the
cophenetic correlation coefficient [20] and the Baker’s Gamma correlation coefficient [21]
between all pairs of dendrograms were calculated. Figure 3 shows the heatmaps of such
correlations for the two GDg2 datasets, considered representative of lower quality data,
with the Jaccard, Hamming, and Yule binary distance metrics used in HCA for BinSim-
treated data while Euclidean distance was used in all three of the other pre-treatments.
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was used. A 1/2 min missing-value imputation was used in pre-treatments of P, NP, and NGP. Average linkage was used
in all cases.

Both correlation coefficients between the different dendrograms were, with few ex-
ceptions, higher than 0, and in fact, most of them indicate strong positive correlations.
Furthermore, we could not establish the rule that intensity-oriented pre-treatments lead
to clustering patterns quite different from those obtained from BinSim-based procedures:
Correlations are not consistently higher between the three intensity-based pre-treatments
than between these and BinSim with different distances and vice versa. For instance,
NGP pre-treatment correlates higher with BinSim with all three distances in GDg2− than
with P and NP. Conversely, BinSim with Jaccard has a lower correlation with BinSim
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with Hamming and Yule than with NGP in GDg2+. As another example, for GDg2+, the
clustering resulting from HCA after NP has a low correlation with all other pre-treatments
including BinSim with different distances. BinSim with the Hamming distance seemed to
have slightly higher correlations with the P-, NP-, and NGP-treated datasets, but the den-
drograms resulting from the three binary distance metrics were highly correlated (so any
of the binary distance metrics led to very similar results) and were also usually positively
correlated with the dendrograms treated with the other treatments (computed using the
Euclidean distance). From these results, we reached the conclusion that data subjected to
the Binary Simplification treatment revealed the same trends and information, as far as
the metabolic similarity of the defined distinct groups are concerned, and that this can be
extended to higher-level clusters in HCA.

2.2. Supervised Statistical Analysis—Random Forest and Projection in Latent Structures
Discriminant Analysis Classifiers: Accuracy of Prediction

The next step was to compare the predictive performance of two types of classifiers,
Projection in Latent Structures Discriminant Analysis (PLS-DA) and Random Forest (RF),
considering the classes defined in the same way that they were defined for the comparison
of the unsupervised methods. GD types was added to this benchmark, featuring a two-
class problem targeting Vitis vinifera versus wild Vitis samples, based on GDc2− but with
these different labels as targets. HD was similarly added to this benchmark, as another
two-class problem with many samples per class but a rather low missing-value abundance
and significant class overlap. These problems were created to benchmark BinSim’s effect
on a common scenario in metabolomics data analysis: the use of two-class classifiers for
discrimination and assignment of importance to features. As for the clustering methods, the
seven pre-treatments were applied, and classification models were then built. Performance
was evaluated by internal stratified cross-validation. The rationale for the inclusion of
Random Forest was that the binary choices made during the operation of this algorithm
would be able to extract the information present in a binary encoded dataset such as those
resulting from the BinSim pre-treatment by choosing features where the two-levels would
relate to class separation. This type of methods seems to be tailored to use BinSim treated
data. On the other hand, PLS-DA is a dimension reduction classifier that was chosen due
to its popularity in the metabolomics data analysis workflow [5,22].

The results of the accuracy achieved by the two methods for data subjected to the
seven pre-treatments are shown in Figure 4.

The results show that the BinSim pre-treatment does not compromise the performance
of the classifiers developed for the eight problems included in this benchmark. For most
examples, the classifiers perform better with BinSim than with the other pre-treatments,
and in the cases where another pre-treatment results in better method accuracy, BinSim
follows very closely, and the performance difference is only very slight. In absolute terms,
the accuracy with BinSim-treated data follows the general trend of the clustering methods
and leads to perfect classification in the case of the 5-class YD problems, close or equal to 1
in the 2-class GD types problem, and only leads to poor accuracy in the case of the two GDg2
examples, which are 11-class and difficult to discriminate problems, although still above 0.8
for GDg2−. It is worth noticing that the classifiers fitted on BinSim-treated data outperform
the classifiers for the other treatments for the 11-class GDc2 problems. With RF, it is the
only treatment leading to perfect classification. Furthermore, regardless of the fundamental
algorithmic differences, the results of PLS-DA are qualitatively consistent with the results
of RF. The example of the large dataset HD suggests that BinSim does not degrade the
performance of classifiers in large and complex datasets. Here, the type of classifier made a
difference, with PLS-DA classifiers performing better than the corresponding RF classifiers.
However, even for this example, classifiers for BinSim-treated data achieve an accuracy
very close to the most accurate combination in the remaining six pre-treatments. For the
GD types two-class dataset, ROC curves were also computed for the RF models built for
BinSim and the three combinations based on 1/2 min imputation. These curves are shown
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in Figure S3, where the superiority of the RF model employed after the BinSim treatment is
apparent.
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The significance of the accuracy of the models was assessed by permutation tests,
where the predictive accuracy with randomly permuted labels, estimated by cross-validation,
was compared to the predictive accuracy of the corresponding non-permuted model
(Table S3 and Figure S4). In all cases, the predictive accuracy distribution of permuted
labels models was considerably below the non-permuted model accuracy (p-values < 0.02),
which means that the classifiers’ accuracy resulted from significant information present
in the data and not from random noise. This could also be concluded for the BinSim
pre-treatment.

The main conclusion of this benchmark is that BinSim does not negatively impair
classifier performance and often leads to its improvement. Despite the similar performances
of the different models using the negative mode GD datasets, BinSim models seemed to
perform slightly better than the other pre-treatments. It was also more consistent since
it was the best or close to the best of all pre-treatments with RF, PLS-DA, HCA, and K-
means in all the datasets studied. The information extracted from these datasets led to
consistently good discrimination power of the numerous classes. These datasets work as a
good proof-of-concept for the viability of BinSim with data difficult to discriminate. For
the YD datasets, both RF and PLS-DA models had a perfect predictive accuracy (100%) in
the discrimination of the five groups built on the models. This leads to the conclusion that
the BinSim pre-treatment did not discard substantial and essential information by ignoring



Metabolites 2021, 11, 788 10 of 23

intensity data to hamper a perfect discrimination. Furthermore, comparing the results
of YD 2/15 with YD 6/15, the reduction of missing value abundance in the latter did not
compromise such discrimination. Similarly, the lower abundance of missing values in HD
dataset did not compromise the discrimination of the two classes.

2.3. Feature Importance in Classifiers

After establishing that the discrimination power of different statistical methods did
not degrade with BinSim-treated data and that it was often improved, the next step was to
investigate if BinSim was, as hypothesized, “looking at the information differently”, that
is, if BinSim is giving more weight to information/features that are not as important in
the results of the application of classifiers to data subjected to the other pre-treatments.
Different “feature importance” metrics were used, specifically, the Gini Importance in
RF models [23] and the Variable Importance in Projection (VIP) in PLS-DA models [24].
Importance scores were estimated with cross-validation and averaged for 20 iterations.
The top 2% of features were retained. This fraction is usually much less than the fraction
of features that is traditionally considered important when classifiers are used for feature
importance assignment. For example, for the VIP metric, a usual cut-off threshold to keep
a feature in feature selection is 1 [24]. In our benchmark, this cut-off would considerably
increase the number of selected important features. Since the aim here was to compare the
most essential features, only a smaller number of features was considered.

Using the datasets GDg2− and YD 2/15 as examples, and considering the top 2%
important features, Figure 5 shows the overlap of important features between BinSim
and the different pre-treatments based on 1/2 min missing-value imputation for the two
types of classifiers. Figure 6 shows the distribution of important features according to their
occurrence in samples considering the same pre-treatments, and the median and range of
number of sample and class occurrences.
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Considering the number of unique important features, BinSim-treated datasets have
the most unique important features calculated from both classifier types, except for the
case of the RF model applied to GDg2− with pre-treatment P where BinSim has the second
highest number of unique features. Furthermore, the number of common features with the
other treatments tends to be small.

Considering the distribution of the important features with the number of samples
where they occur, both RF and PLS-DA models chose features for BinSim-treated datasets
that appeared in a lower number of samples, except for the PLS-DA models applied
to GDg2− after the NGP and NP treatments. These trends are also observed for the
distribution by number of classes (the medians are indicated in Figure 6). This seems
to point towards a conclusion that classifiers applied to BinSim-treated datasets tend to
emphasize the information present in different features with different characteristics, when
compared with the other pre-treatments. For RF models, it is clear that the important
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features have a bigger number of missing values and tend to be exclusive to one or very
few classes. In class discrimination contexts, features exclusive to only one group act as
potential “biomarkers”. These features are often discarded during traditional peak filtering
for having too many missing values. For example, considering the top 2% important
features for the RF model for the BinSim-treated dataset GDg2−, if a filter of 50% non-
missing values was applied, then only two of these features would be retained. Only
with more permissive filters would these features be carried over to further investigation:
By allowing 80% missing values, 19% of these features would be retained, and allowing
90% missing values, 64% would be retained. When these features are kept, it is usually
because feature filtering was conducted on an individual group basis. This kind of filtering
would potentiate, in theory, the results of a method based on the occurrence of spectral
features as opposed to intensity data, such as BinSim (highlights biomarker-like features).
This was observed when this filtering was performed in the two GDc2 datasets, leading
to an increase in the performance of different methods for BinSim-treated datasets when
compared to the GDg2 datasets, where the reproducibility filter was global, considering
all samples. It is interesting to note that the abundance of features that appear in very few
classes in RF models of BinSim-treated data is not echoed in features that are present in
almost every group except one or two. Therefore, this leads to the conclusion that there
are more features that act like “biomarkers” than the opposite (are only absent in one
or two classes).

The distribution of the feature occurrence by number of samples was very different
in the RF and PLS-DA models. In the RF models, they mostly appeared in a very small
number of samples ranging between three and six, that is, features that were exclusive
to one class or sometimes two classes. This was more apparent in the YD 2/15 dataset,
where a significant number of important features occurred in only three samples, the
number of samples in each class (Figure 6B). The choice of these features by the operation
of the RF classifier are, most likely, due to the property that they identify and separate the
samples belonging to one or sometimes two groups in one decision node in the ensemble
of decision trees. On the other hand, in PLS-DA models, the important features tended
to occur in approximately half of the samples for both datasets. For example, in YD 2/15
(Figure 6D), most features occurred between 6 and 9 samples (with a higher number for
occurrence in 6 samples) of the 15 total samples, that is, in 2 or 3 of the 5 different yeast
strains. This difference from RF may be attributed to the fact that each component in PLS-
DA is trying to maximize the global separation between all classes instead of prioritizing
individual class separation. Using the example of YD 2/15, since features can only have two
values (1 or 0), this happens when the contribution of a feature to a component separates
approximately half of the classes between each other, that is, two classes from the other
three; therefore, features that appear in two or three classes only (appear between six and
nine samples) are prioritized.

Concerning the intensity-based pre-treatments, differences in the distributions of
sample and class occurrences are clearly observed, not only between the two types of
classifiers but also between the different pre-treatments. Even with RF, the information
regarding the presence and absence of features becomes secondary, and class discrimination
is often made by finding intensity patterns between the classes in features present in almost
all samples. This is especially observed in P-treated datasets, where important features
tend to occur in almost every sample and, consequently, every class, in contrast with the
general trend of BinSim. This leads to the conclusion that the information regarding the
presence and absence of features is being overlooked. On the other hand, the distribution
for NGP is very spread out without a particular bias for samples that appear in a high or
low number of samples. For NGP, there was a slightly higher occurrence of features that
appear in multiples of three samples for the YD 2/15 dataset. This higher occurrence can be
explained by the fact that there may be some preference for features that only appear in
some groups. This is an indication that there is still some consideration for the presence and
absence of the features, which might be related to the fact that, among the intensity-based
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methods, the logarithmic transformation included in NGP decreases the difference between
high-intensity values more than between smaller values, such as between imputed missing
values and low intensity peaks, separating the “missing values” (absence of the features)
more from the low-intensity features that count as present in the data. By attributing to
these separations a slightly greater importance, when compared to other intensity-based
pre-treatments, NGP acts closer to BinSim. In fact, in the Venn diagrams (Figure 5), the
overlap between NGP and BinSim tends to be higher than with BinSim and the other two
pre-treatments (despite still being small).

In summary, these results suggest that BinSim extensively changes classifiers’ impor-
tant feature profiles. In BinSim-treated data, important features tend to work as indicators
of groups as a direct result of the binary nature of data transformation. The differences from
the features highlighted by classifiers after application of the other pre-treatments makes
BinSim useful as a method that offers a different perspective on the information contained
in metabolomics data without impairing the predictive performance of the classifiers.

3. Discussion
3.1. Advantages of BinSim

This empirical study suggests that BinSim is a viable alternative to traditional pre-
treatment methods in metabolomics data analysis as it does not seem to impair the per-
formance of downstream methods. As such, the main advantage of BinSim is clearly
procedural simplification since it substitutes a multi-step pre-processing pipeline for a
one-step data transformation. Apart from the gain in processing speed, the most important
consequence of such substitution is that fewer choices about methods, options and parame-
ters need to be made. BinSim works as a missing-values imputation, a normalization, and
a scaling procedure out of the box: zero flags missing values, and variables are bounded
by zero and one regardless of their former absolute magnitude. Global intensity biases
that justify the need for normalization methods between samples are also averaged and
thus attenuated by BinSim. It is worth noting that practice and benchmarking studies have
shown that the choice of method for missing-value imputation, normalization, and scaling
may have a significant impact on the results of data analysis in metabolomics and that there
is not a universal choice in combinations of methods and parameters that works best in
every study. This study also points out exactly that, by showing the inconsistency between
the results of the six intensity-based pre-treatments applied to the same datasets.

The presence or absence of features can be very helpful in the discrimination of
classes or groups especially for metabolites that are exclusive to one of the classes for a
metabolomics study (and act as putative biomarkers in this context), or, conversely, when
key features are absent from just one or two classes. However, this kind of information tends
to be overshadowed by the intensity data in the usual metabolomics workflow due to the
extensive peak filtering, missing value imputation, and the intensity-oriented nature of the
traditional pre-treatments. Peak filtering tends to exclude features with higher amounts of
missing values. Depending on the filtering method, those might include features exclusive
to one or a few classes, overlooking the importance of these features in discrimination. The
estimates of the loss of BinSim-RF important features for the example GDg2− shows that
the use of common thresholds of non-missing-value abundance, say 50%, could result in
the exclusion of most of those features, which are informative by their sample occurrence.
For the application of BinSim, as shown in this study, the use of a filtering procedure
related to missing-value abundance is not strictly necessary. The imputation of the missing
values after filtering is an almost mandatory step for further statistical analysis since many
statistical methods do not work with missing data. When these values are related to
mistakes in the acquisition or processing of the data, that is, as MAR/MCAR values [14],
their potential value for discrimination is lost. When they are MNAR values, usually
resulting from metabolites that are absent or in very low concentrations [15], they are
usually replaced by small values and partially retain their information and importance as
these values are computed to express low concentration or absence. However, non-missing
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low intensity spectral features can be closer to (originally) missing values than to higher
intensity features and may be treated in the same way as these by some statistical methods.
This diminishes the importance of missing values in discrimination. With BinSim, MNAR
values become informative as missing values and zeros in the encoding, fully contrasting
with intensity features, even those with low concentration.

The good performance observed with BinSim-treated datasets might be a consequence
of the big inherent variability of the intensity data of FT-ICR-MS that reduces the efficiency
of the other treatments. With a lower sample/class ratio, trying to discern intensity patterns
that reliably discriminate the different classes is challenging for classifiers and, therefore,
more prone to errors, since an incidental pattern found in a very limited number of training
samples might not be replicated in the corresponding test set, leading to misclassifications.
We hypothesize that the BinSim’s robustness is higher (in comparison to other treatments)
on low- to medium-sized datasets, where the amount of training samples to build a classifier
is limited and relying on intensity patterns may be more prone to errors because of their
variance. This could possibly be explored in future studies.

Another advantage of BinSim is that the results of the binary encoding are less de-
pendent on instrumental settings and data analysis stages upstream pre-treatments. There
are few operational settings that determine how a data point will be binarily encoded.
One of them is the alignment of spectral features between the ensemble of samples, which
constructs the data matrix, and is, in turn, dependent on instrumental measurement ac-
curacy (m/z in MS-based metabolomics, chemical shifts in NMR-based metabolomics)
and the tolerance prescribed for the deviations between spectral feature values between
the different samples. However, this spectral alignment will influence the results of all
pre-processing pipelines and will not specifically affect BinSim in any distinctive way. The
signal-to-noise ratio is another instrumental parameter that will affect the results of BinSim
since it will directly dictate whether a feature is a missing value by thresholding its inten-
sity. In addition to affecting all other pre-treatments, the signal-to-noise ratio impact is not
expected to be of great concern because it leads to relative, not absolute, thresholds. Since
BinSim substitutes the normalization step, the overall intensity biases in samples, which are
corrected by normalizations, could, in principle, cause differences in missing/non-missing
value assignments of spectral features. However, constant signal-noise-ratio thresholds
mitigate the effect of these biases since the baseline noise level variations tend to follow the
general signal intensity variations of a sample. Therefore, it is expected that features be
classified as missing/non-missing almost independently of overall intensity differences
between samples.

A final advantage of BinSim is robustness to data leakage along the pre-processing
pipelines. When BinSim is used to transform data, in each variable the zero or one encod-
ing is specific to each sample and each variable and does not carry over any distribution
information for that variable among the set of samples. In model validation, data arranged
by train–test splits do not contain such distribution information that might have been intro-
duced by other pre-processing procedures and the care to apply the whole pre-processing
pipeline to the train and test sets is, thus, not necessary.

3.2. General Applicability of BinSim

Although in this study we benchmarked BinSim using as examples datasets ob-
tained in two different instruments, with different characteristics in terms of class/group
separation, class number, and missing value abundance, and observed quite acceptable
performance in clustering and classification methods, we cannot completely generalize the
use of BinSim on all types of metabolomics data. A few pitfalls and specific characteristics
preclude that generalization.

BinSim uses the contrast of missing to non-missing values in features as a key source
of information to be extracted from data. It is predictable that BinSim will degrade the
performance of downstream methods if missing-value abundance is either too low or too
high. In both cases, there would be few contrasting variables in terms of missing values
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to allow for good group/class discrimination. In our examples though, even for YD 6/15,
the dataset with the lowest fraction of missing values, we did not observe such a problem.
A systematic study of the effect of BinSim with the overall percentage of missing values
falls out of the scope of this work. Our purpose was to compare the effect of BinSim on
discriminatory analysis of real datasets and a controlled comparison of the effect of missing
value abundance is best carried out with synthetic datasets. However, it is expected that,
in ultra-high-resolution metabolomics datasets, missing-value abundance will generally
fall within the appropriate range for BinSim to work. In low-resolution metabolomics data,
with data matrices constructed from binning with comparably large bins, missing values
might be too scarce.

Another concern for the general applicability of BinSim relates to the fact that BinSim
transforms with the same coding scheme all the missing values in a data matrix regardless
of their type: The distinction of MNAR versus MAR/MCAR values [14] is not made,
and, by relying on missing-value occurrence, the performance of downstream methods
after BinSim is dependent on the high relative abundance of MNAR values, as these are
informative in contrast to MAR/MCAR values. Since the assessment of the type of missing
values present in a given sample is usually very hard, it is difficult to establish if the
BinSim pre-treatment can, in general, be applied to datasets with a high abundance of
MAR/MCAR values. However, the use of two different imputation methods in this study
and the results with the dataset HD suggest that BinSim may, in fact, be robust to the
presence of MAR/MCAR values, if MNAR are still abundant. In comparison studies of
different imputation methods [14,25], RF imputation was shown to outperform other im-
putation methods if MAR/MCAR are abundant. However, if a data matrix contains almost
exclusively MNAR values, then imputation methods of the limit-of-detection type, as the
1/2 min imputation method used in this work, may outperform RF imputation [14,25].
Although these conclusions were not established by the effects of imputation method on
clustering methods and classifiers, we can compare our results for the non-BinSim pre-
treatments with either method of imputation and infer that when performance is higher
with RF-imputation than with 1/2 min imputation, then MAR/MCAR values may be
present in the dataset. Considering the PLS-DA classifier results, GDg2− might be such
a case. However, the results with the RF classifier favor 1/2 min imputation in the same
example. Furthermore, the results for the HD dataset also support the robustness of BinSim
to MAR/MCAR values as, in large datasets, the probability of existing missing values of
these types increases. Here, for PLS-DA, the performance of classifiers after pre-treatments
beginning with RF-imputation was higher than 1/2 min imputation. In these two cases,
BinSim did not impair the performance of the classifiers since it was never the worst
pre-treatment and the difference to the top pre-treatment was always slight. This may be a
sign of the robustness of BinSim to MAR/MCAR values.

A characteristic that does not generalize the use of BinSim in every metabolomics
study is what is concluded from the feature importance comparison. After BinSim, RF
classifiers “seek” features that occur in very few classes and with sample occurrence that
corresponds to the number of samples in those classes. These “biomarker-type” features
may not be what a researcher wants to investigate. Instead, features that are known to
occur in every class and are considered of interest in a targeted metabolomics study need to
be assessed by methods used after intensity-based pre-treatments. In this context however,
analysis based on BinSim-treated data may still be considered complementary to other
methods and it may be envisaged as “another tool” available to the metabolomics data
analyst.

Another concern that may rise during the use of BinSim as a pre-treatment stems
from the fact that BinSim does not provide any form of feature selection per se. In this
study’s benchmark, feature selection was also not included in any combination of intensity-
based pre-treatment steps. This was because feature selection methods are very diverse
and there is no obvious general adaptation of the feature selection methods commonly
found in metabolomics data analysis to BinSim. Selection of variables relying on feature
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importance, with the purpose of iteratively improving model performance are independent
of pre-treatments and should present no problem if used to complement BinSim. Variable
rejection based on an excessive number of missing values can still be applied, but specific
thresholds must be adapted taking BinSim into consideration for the reasons discussed
above about the dependence of BinSim on missing-value abundance. Most likely, these
thresholds must be different from those used in intensity-based pre-treatments, but without
a systematic study on the effect of missing-value abundance on BinSim effectiveness, we
cannot anticipate any general rule for the application of this form of feature selection.
A third type of feature selection, commonly implemented and used as the default in
metabolomics data analysis software (in MetaboAnalyst [26], for instance), is the filtering
of variables by their variability among the ensemble of samples, where variables with low
values of a dispersion statistic are discarded. There is no direct counterpart of this selection
after BinSim was already applied. A procedure which could be considered analogous
to this type of filtering would be to specify a threshold for Gini impurity of variables:
variables with non-missing values distributed by many classes would not be considered as
carrying useful occurrence information and should be discarded. An investigation of the
effect of this step, to be applied after BinSim in the pipeline, falls out of the scope of this
study but may be established as an interesting complement that falls within the rationale
behind BinSim.

In this study we performed a form of feature selection: The rejection of variables with a
very low number of sample occurrence (one count in the set of all samples) was performed
prior to the application of all pre-treatments. This was justified by a reproducibility criterion,
as such variables may be considered the result of noise or excessive variability but close to
the limit of detection. This form of selection affected all pre-treatments in our study, and
it is a procedure that was not applied with the argument of performance improvement
in mind. Above all, it had the effect of significantly reducing the number of variables,
most of which would not carry any information for further analysis whether in occurrence
or intensity. However, a more stringent form of this selection was also employed: In
datasets GDc2+ and GDc2−, variables with a single occurrence in each class (or group)
were discarded. The effect of this type of filtering is apparent when GDg2+ and GDg2−
are compared with GDc2+ and GDc2−: All methods improved performance, especially
after the BinSim transformation. This was expected, since it improves the likelihood of
variables becoming characteristic of classes and effectively “spikes” their occurrence in
those classes and samples of the same class are artificially made more similar to each
other, something that benefits methods used on BinSim data. This form of filtering, that is,
justified by performance improvement arguments, should be used with care, since it may
lead to a form of data leakage: When using internal validation methods, “test samples”
used to validate the models were made artificially closer to the training samples. The use
of this type of filter in training data in a discriminatory analysis context requires the model
to be validated by an external metric so that testing samples are always treated as truly
“unseen samples”.

BinSim, as a pre-treatment method, might prevent some types of analysis that rely
heavily on intensity-based data. Univariate methods are no longer possible and value
predictions from regression methods might also require data that are not binarized. We
showed that BinSim works well for clustering and classification, which are common in
metabolomics data analysis but its effect on the performance of regression methods needs
to be established by a systematic comparison, conceptually similar to the one performed in
this study.

As proposed in this study, BinSim behaves as a binary encoding of feature occurrence
in the data matrix and is akin to the binary encoding of categorical variables. However,
issues resulting from the introduction of such encodings in the explanatory data matrix
have been pointed out for some situations. For instance, when the explanatory data matrix
combines variables of different measurement scales, such as categorical and interval or
ratio scales, PLS based methods, including PLS-DA, must be adapted to ensure optimal
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scaling [27]. To avoid these problems, BinSim should not be used with such heterogenous
data for the development of a PLS-DA model, even in the case where BinSim is applied
to variables of only one type. In this study, in all the benchmark examples, BinSim was
applied to the whole data matrix that contained only metric (interval or ratio scale) data.

4. Materials and Methods
4.1. Datasets

The main goal of this study was the comparison of the effects of Binary Simplifica-
tion and traditional pre-treatments of the data matrix in downstream metabolomics data
analysis. For that purpose, we constructed eight data matrices from experimental data
which encompass different levels in terms of number of features and abundance of missing
values. Seven of the data matrices (datasets) were based on three metabolomics datasets
obtained from two different Fourier transform ion-cyclotron resonance mass spectrome-
try (FT-ICR-MS) instruments, with different mass accuracies and resolutions. The eighth
dataset was obtained in an Orbitrap instrument coupled with a hydrophilic interaction
chromatography (HILIC).

“Grapevine datasets” were constructed from already published and openly avail-
able data [28] related to a study of the metabolome differences observed in Vitis varieties
that are susceptible or resistant to oomycete/fungal infections [29]. Detailed description
of metabolomics data acquisition is described in the article and in the data deposition
site [28,29]. Briefly, leaf samples of different Vitis plants were analyzed by direct infu-
sion in a 7T-Apex FT-ICR-MS, by electrospray ionization in positive (ESI+) and negative
(ESI−) modes [29]. The data consist of 3 biological replicates of 11 different grapevine
genotypes [28], and data from the positive and negative ionization modes were treated in-
dependently. The 33 total samples were aligned together by a peak-based method using the
metabolinks Python package [30] at 1 ppm m/z distance tolerance, generating a data matrix
with 5821 peaks in the negative mode and a data matrix with 30,660 peaks in the positive
mode. From these datasets, several matrices were constructed by performing different
levels of a variable selection related to spectral feature reproducibility (Table 1): matrices
GDg2+ and GDg2− were generated after retaining only features that occur (globally) at
least twice in all 33 samples, for each of the acquisition modes; matrices GDc2+ and GDc2−
were generated after retaining only features that occur at least twice in the three replicates
of at least one Vitis variety (class), for each of the acquisition modes. In the assessment
of the performance of supervised methods, an additional dataset was created, suitable
for fitting two-class classifiers. This is just dataset GDc2− with class labels “vinifera” and
“wild”, corresponding to grapevine varieties of Vitis vinifera and to wild Vitis (non-vinifera)
species, respectively. This dataset is referred to as GD types.

“Yeast datasets” were built from data obtained from direct infusion analysis by elec-
trospray ionization in a 7T-Solarix XR FT-ICR-MS, operating in positive (ESI+) ioniza-
tion mode [31,32] and available in the figshare public repository [33]. The data consist
of 3 replicates of 5 different strains of Saccharomyces cerevisiae: the reference strain BY4741
(represented as wild type, WT), 3 single-gene deletion mutants of this strain, related to
methylglyoxal metabolism—∆GLO1, ∆GLO2, ∆GRE3, and the single-gene-deletion control
∆ENO1. The raw data from the 15 samples were aligned using the MetaboScape 4.0 soft-
ware (Brüker Daltonics, Bremen, Germany) using the T-ReX (Time aligned Region complete
eXtraction) algorithm with the following parameters: m/z delta = 1.10, Intensity Threshold
= 0.00, Maximum Charge = +1. From the resulting “bucket table”, two datasets were
constructed by selecting features based on its reproducibility with different thresholds: In
dataset YD 2/15, features that occurred in at least 2 samples were retained, and in dataset
YD 6/15, features that occurred in at least 6 samples were retained.

“Human dataset”, here referred to as HD, was built from data obtained from a study
of the preoperative metabolic signatures associated with prostate cancer recurrence versus
remission after radical prostatectomy [34]. These data are available at the NIH Common
Fund’s National Metabolomics Data Repository (NMDR) website, the Metabolomics Work-
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bench, project ID PR000724 (study ID: ST001082). Detailed metabolomics data acquisition
is described in the study and in the data deposition site. Briefly, blood serum of 80 patients,
collected before radical prostatectomy, was analyzed by Hydrophilic Interaction Chro-
matography (HILIC)-MS. Chromatography was performed with a Waters XBridge BEH
HILIC column (2.1 × 75 mm, 2.5 µm particle size) in a Thermo Dionex Ultimate 3000
and MS analysis was performed in a Thermo Q Exactive HF hybrid Orbitrap operating in
positive electrospray ionization (ESI+) mode [34]. The available data from Metabolomics
Workbench consist of 135 MS spectra samples from patients in prostate cancer remission
(‘No Recurrence’ class) and 114 MS spectra samples from patients with recurrence of
prostate cancer (‘Recurrence’ class). Raw data were aligned and peak picked using the Pro-
genesis QI software package (Nonlinear Dynamics, Waters Corp., Milford, MA, USA), [34].
The average of five blank samples were subtracted from the dataset with emerging negative
values coded as 0. From this data, features that occurred in at least 2 samples were retained.

A general characterization of all eight datasets (GDg2−, GDg2+, GDc2−, GDc2+, YD
2/15, YD 6/15, GD types, and HD) is found in Table 1. Before the data pre-treatments
compared in this work, a preliminary assessment of the extent of class/group’s proximity,
and consequent degree of difficulty for clustering and classification methods, was per-
formed. For this purpose, Principal Component Analysis scores plots of these datasets
were obtained and shown in Figure S1, with indication of each sample class. For this
preliminary analysis, data were pre-treated with missing value imputation by half of the
global minimum of non-missing values and auto-scaling.

4.2. Data Pre-Treatments

Seven data pre-treatment procedures were applied independently to all datasets:
Binary Simplification, showcased in this work, and, for comparison, combinations of some
of the most established intensity-based methods. These methods were chosen to represent
the different stages of pre-treatment in metabolomics data analysis: imputation of missing
values, normalization, transformation, and centering/scaling.

Except for BinSim, two missing-value imputation procedures were applied before any
treatment:

- Half min: missing values were replaced with half of the minimum intensity value
present in the whole data matrix. This is a limit of detection type of missing value
imputation commonly applied in metabolomics data analysis.

- RF imputation: Random Forest missing-value imputation [18], where a Random Forest
regression method is used to estimate missing values from a number of similar features.
The number of trees in RF was set to 50 and the number of similar features to 100.

Each missing-value imputation procedure was then followed by combinations of three
pre-treatment methods:

- P: Pareto scaling was applied to either 1/2 min- or RF-imputed data.
- NP: samples were normalized by the reference feature (leucine enkephalin, for ESI+

data, m/z 556.276575; for ESI− data, m/z 554.262022). Dataset HD was normalized by
Probabilistic Quotient Normalization [19]. Pareto scaling was then applied. The two
steps were applied to either 1/2 min or RF-imputed data.

- NGP: samples were normalized as in NP and then transformed by generalized loga-
rithmic transformation and scaled by Pareto scaling. The three steps were applied to
either 1/2 min- or RF-imputed data.

The Binary Simplification procedure (BinSim) considers the occurrence of spectral
features to construct a binary data matrix encoding feature presence (with intensity values)
as 1 and absence (missing values) as 0. No further transformation was applied.

In total, seven different combinations were applied to each dataset: P, NP, and NGP
applied to either 1/2 min- or RF-imputed data and BinSim.
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4.3. Assessment of the Effect of Pre-Treatments

BinSim was compared with the other pre-treatments regarding the effect on the
performance of selected clustering and classification methods representing the two general
types of unsupervised and supervised methods used in metabolomics data analysis. For
clustering, performance was assessed by the ability of the methods to correctly cluster
replicates of the same type, species or strain of the organisms that contribute to the different
datasets. These groups, defined by the replicates, are the “ground truth” of correct clusters
allowing the use of ground-truth related metrics of clustering performance. Clustering
was applied after each pre-treatment for datasets GDg2+, GDg2−, GDc2+, GDc2+, YD 2/15,
and YD 6/15. For classifiers, these replicates of the same type, species, or strain also define
the target classes to be predicted, except for the GD types dataset where two classes were
defined as described above, considering wild Vitis plants versus Vitis vinifera plants and
the HD dataset where the two classes represent patients with cancer recurrence versus
cancer remission (binary classifier problems). For classifiers, predictive accuracy was the
main performance goal to be assessed. Clustering methods assessed were Agglomerative
Hierarchical Clustering (HCA) and K-means Clustering, and classifiers methods were
Random Forest (RF) and Projection in Latent Structures Discriminant Analysis (PLS-DA).

4.4. Clustering Methods

Agglomerative Hierarchical Clustering Analysis with UPGMA (average) linkage
method was performed on each dataset. Euclidean distance was used for the datasets
treated with intensity-based pre-treatments, whereas, for the BinSim-treated datasets,
three dissimilarity metrics were chosen due to their binary natures: Jaccard and Yule
dissimilarities and Hamming distance.

For two samples, S1 and S2, if n11 is the number of features present in both samples,
n00 is the number of features absent from both samples, n10 is the number of features
present in sample 1 but not in sample 2, and n01 is the number of features present in
sample 2 but not in sample 1; these dissimilarity metrics are defined as follows:

- Jaccard dissimilarity [35]:

DJaccard (S1, S2) = 1 − n11

n11 + n10 + n01
(1)

- Yule dissimilarity [36]:

DYule (S1, S2) =
2 × n10 × n01

n11 × n00 + n10 × n01
(2)

- Hamming distance [37]:

DHamming (S1, S2) =
n10 + n01

n11 + n00 + n10 + n01
(3)

Clustering performance was expressed by three metrics. The “correct clustering”
percentage is defined as the percentage of the groups whose samples all clustered together
before any other clustering with other samples or already formed clusters in the agglom-
erative procedure. The global “Discrimination Distance” (DD) is defined as the average
of “group discrimination distance”. For each group, the discrimination distance is 0 if the
group is not “correctly clustered” (in the sense used for the correct clustering metric) or it
is the distance between the node that includes all the samples of the group and the next
closest node (including those samples) in the agglomerative procedure, normalized by the
maximum distance of any pair of nodes in the final resulting clustering. The “correct first
cluster” percentage is defined as the percentage of samples whose first clustering was only
with a sample(s) from its group. The similarity between the dendrograms obtained for the
same dataset with different pre-treatments was evaluated by the cophenetic correlation
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coefficient [20] and the Baker’s gamma correlation coefficient [21]. The computation of
these coefficients was adapted from the R package dendextend version 1.15.1 [38].

K-means Clustering Analysis was applied per dataset and treatment parameterized
with a cluster number equal to the total number of classes/groups (11 in GD and 5 in YD)
and using Euclidian distance (including for the BinSim-treated datasets). As K-means
Clustering results can vary with the randomness of initial centroid assignments [39], the
algorithm was repeated 15 times and retaining the result with the least inertia. Clustering
performance was expressed by three metrics: as in HCA, discrimination distance and
correct clustering percentage (group-based metrics) were computed but with a slight
redefinition of the concept of “correct clustering”. In this case, the distances are measured
between cluster centroids and a clustering is correct if it contains all and only the samples
of a single group (total homogeneity and total completeness). This is a stricter condition
that the one imposed in the HCA, so a lower percentage of correct clustering is expected.
The third metric was the Rand Index (a sample-based metric), a measure defined by the
proportion of sample pairs which are correctly clustered or correctly not clustered, adjusted
for the expected percentage of samples which would be in those situations randomly.

4.5. Classifiers

The classifiers chosen to use as a comparison test between the different pre-treatments
were Random Forests and PLS-DA. Except for the GD types problem, where the 2 classes
have 15 and 18 samples each and the HD problem where the 2 classes have 114 and 135
each, the other datasets have a low number of replicates and, by the definition of the
classification target, a low number of samples in each class. Therefore, validation of the
models was done by internal stratified 3-fold cross-validation [22] and 5-fold stratified
cross-validation in the GD types and HD problems. The performance of the models was
judged based on their average prediction accuracy in cross-validation. Since the random
splits of the samples in each fold can affect the results (even if slightly), especially with low
sample size in each class, this process was iterated 20 times and the mean accuracy of all
repetitions was taken as a global metric for the cross-validation evaluation.

The number of trees used for the Random Forest classifiers was optimized to 100. Other
parameters were left as the default values used in the scikit-learn RandomForestClassifier
object constructor. For each model, the Gini Importance of each feature was calculated [23].
The top 2% of Gini Importance features were retained and their relevant characteristics
were evaluated, namely, the number of samples and classes where they occur.

For the two-class GD types classification problem, a ROC curve for each of the three
pre-treatments starting with 1/2 min imputation and for BinSim was also computed.

Projection in Latent Structures Discriminant Analysis (PLS-DA) classifiers were built
for each dataset and each pre-treatment using the PLS2—NIPALS algorithm implemented
in PLSRegression module of scikit-learn [40]. The default parameters in scikit-learn were
used, except the scaling of the samples, not performed since data were already pre-treated.
The number of components for the PLS-DA models were chosen to minimize the predic-
tive residual sum of squares (maximize Q2) computed from cross-validation. Moreover,
11 components were chosen for all GD datasets, 6 components for the YD datasets and
GD types, and 15 components for the HD dataset. Class membership was encoded by the
one-hot encoding method, and the prediction decision samples were assigned to the class
corresponding to the maximum value in ypred of the PLS output. In the GD types and HD
problems, class membership was encoded as 0 or 1, with a 0.5 threshold for decision. As
it was conducted for the Random Forest, the top 2% of the features considered as most
important were taken to build the models, and their sample and class occurrence was
calculated. Here, the Variable Importance in Projection (VIP) was used to estimate the
importance of each feature to build each model [24].

For both RF and PLS-DA methods, permutation tests (with 500 iterations each) were
performed to further assess if the models were significant.
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4.6. Implementation

Data transformations, clustering methods, and classifiers were implemented in the
Python language version 3.8.5 using pandas version 1.2.4 [41] and scikit-learn version
0.24.2 [40] packages using the Python module metabolinks version 0.71 [30]. The code that
supports this study is available at the repository https://github.com/aeferreira/binsim_
paper since 16 November 2021.

5. Conclusions

The Binary Simplification (BinSim) pre-treatment was specifically created with
metabolomics’ data analysis in mind as a simpler and reliable alternative to traditional pre-
treatments. It focuses on the presence or absence of features instead of the intensity-based
nature of the other pre-treatments. The occurrence of features leads to the construction
of binary data matrices encoding feature presence as 1 and absence as 0. Despite this
binarization and aggressive truncation of intensity information, the performance of both
clustering and classification methods was not compromised. HCA, K-means Clustering,
PLS-DA, and RF did perform consistently as well or, often, better with BinSim-transformed
data than with data subjected to combinations of other intensity-based pre-treatments.
Furthermore, the general trends observed in the comparison of performances were also
consistent between the different methods.

With RF models, the characteristics of important features are distinctive: with BinSim-
treated data, classifiers tend to attribute higher importance scores to features with sample
occurrences characteristic of indicators of one or very few classes/groups, while, with
data subjected to intensity-based pre-treatments, the distribution of sample occurrence
of important features tends to be more uniform or less related to class occurrence. After
BinSim, classifiers score features according to a “different perspective” on data.

BinSim, as pre-treatment, substitutes several steps in a metabolomics data analy-
sis pipeline, in particular, missing-value imputation, normalization, and scaling. The
pre-treatment stage of data analysis becomes straightforward, as the need for choices of
methods and method parameter vanishes.

While not generalizable to all scenarios in metabolomics data analysis, BinSim is a
viable alternative to intensity-based pre-treatments for high-resolution, high-mass-accuracy
untargeted data, where missing-value occurrence carries a significant information content.
Since metabolomics studies that generate data with these characteristics are currently be-
coming common, we propose the adoption of BinSim as pre-treatment step in metabolomics
data-analysis.
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